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Abstract. This paper discusses the ontological status of remote sensing
images, from a GIScience perspective. We argue that images have a
dual nature—they are fields at the measurement level and fiat objects at
the classification level—and that images have an ontological
description of their own, distinct and independent from the domain
ontology a domain scientist uses. This paper proposes a multi-level
ontology for images, combining both field and object approaches and
distinguishing between image and user ontologies. The framework
developed contributes to the design of a new generation of integrated
GISs, since two key benefits are achieved: (1) the support for multiple
perspectives for the same image and (2) an emphasis on using images
for the detection of spatial-temporal configurations of geographic
phenomena.
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1 Introduction

Remotely sensed imagery is one of the most pervasive sources of spatial data
currently available to researchers who are interested in large-scale geographic
phenomena. The variety of spatial and spectral resolutions for remote sensing images
is large, ranging from IKONOS 1-meter panchromatic images to the polarimetric
radar images soon to be part of the next generation of RADARSAT and JERS
satellites. Recent advances in remote sensing technology, with the deployment of a



new generation of sensors, have improved considerably such application areas as
environmental monitoring and urban management.

Despite over 30 years of experience in data gathering, processing and analysis and
the now ubiquitous nature of remote sensing imagery, the ontological status of images
remains an open issue. It is surprisingly difficult to provide a straightforward answer
to a very basic question, “What’s in an image?” or to put the same question
differently, “What is the ontological status of the information content of remote
sensing imagery?” This paper examines answers to this question, from a GIScience
perspective.

The motivation for this paper is two-fold: First, in order to grow into a full-fledged
scientific discipline, GIScience [1] will have to develop a sound conceptual basis for
all of the different types of computer representations of geographic space including
images, vector data, locational information, and digital terrain models. Second,
understanding the ontological status of remote sensing imagery is germane to the
design of GIS technology that can integrate images seamlessly into a spatial database
environment. Integration is particularly relevant in the context of a new generation of
spatial information systems that is expected to provide support for capturing,
representing, and using ontologies [2].

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction to the use of ontologies for spatial data, followed by an examination of
field vs. object properties of images (Section 3). Section 4 formulates the
requirements for an ontology of images, followed by a multi-level ontological
perspective for a more complete description of the information content in images
(Section 5). Section 6 presents a representational framework for future
implementations of this multi-level ontology. Section 7 concludes with the
consequences of our findings for the design of integrated GIS.

2 Ontologies and Spatial Data Types

The most widely accepted conceptual data model for spatial information considers
that the geographic reality is represented as either fully definable entities (objects) or
continuous spatial variation (fields) [3]. The object model represents the world as a
surface occupied by discrete objects, with a geometric representation and descriptive
attributes. The field model views the geographic reality as a set of spatial distributions
over geographic space. Although this simple dichotomy has been subject to criticism
[4], it has proven to be a useful frame of reference and has been adopted, with some
variations, in the design of the current generation of GIS technology [5].

The field-object dichotomy is a very generic concept [6], with no support for
specific semantics of the different types of spatial data. This problem has led many
researchers to consider the use of ontologies as a means of knowledge sharing
amongst different user communities thereby improving interoperability among
different geographic databases [7] [2].

Ontologies are content theories, which contain a general set of facts to be shared,
and whose main contribution is to identify specific classes of objects and relations



that exist in some domain. Thus, informally defined, ontologies are agreements about
shared conceptualizations. A formal definition would be that ontology is a (possibly
incomplete) axiomatization of the possible models of a logical language [8].
Representation of user domain ontologies, in this context, is considered an essential
part of capturing the specialist’s conception of the information space [9].

The investigation of the ontological status of spatial data types is a major ongoing
research effort in the GIScience community [10] [11]. Fonseca and Egenhofer [2]
introduced the concept of Ontology-Driven Geographic Information Systems
(ODGIS) to support users of geographic information to achieve an agreement on the
basic entities of the geographic world. Smith and Mark [7] also argue that these
models of the geographic world will converge on each other and that a formal
description of those entities would create an ontology of geographic kinds. ODGIS is
a framework in which ontologies from different user communities can be combined,
leading to the integration of different sources of geographic information.

Researchers and GIS practitioners are increasingly recognizing the importance of
ontologies as a practical means of knowledge sharing. A recent example is the land-
cover classification scheme of the Food and Agriculture Organization of the United
Nations (FAO/UN), which is intended as a common vocabulary to be used by the
remote sensing community [12]. This scheme defines a large number of different land
cover types (with a strong emphasis on vegetation types), which could be identified in
remote sensing images. Given the importance of monitoring changes on land use and
land cover worldwide, the FAO proposal is a major step towards knowledge and
information sharing in the remote sensing domain.

3 Fields or Objects?

The application of the concepts of ontologies of spatial types to the characterization of
images has not been extensively studied in the literature. Câmara et al. [13] consider
images to be a subset of digital terrain models (DTMs) and, therefore, subclasses of
fields. In this view, an image is a 2-dimensional function, arising from the sampled
response of a region of the Earth to an external energy source (the sun or a radar
beam) as measured by a passive or active sensor, respectively. Since a number of
geometric algorithms can be applied to DTMs as well as images (e.g., filtering,
enhancement, differentiation, or warping), this view has a large practical usefulness.
The simplicity of the raster representation has certainly helped in the development of
a large theory of image processing algorithms, based purely on the geometric
properties of images [14, 15].

However, the conception of images as a strict specialization of fields is inadequate
for capturing the full nature of their informational content. There is a fundamental
difference between digital terrain models and images as representations of continuous
phenomena. Most DTMs are derived from either field surveys organized for
hypothesis testing (as in the case of ecological studies) or from standardized data
collection missions (as in aerial photogrammetry). The process of measurement is
directly linked to an ontological commitment made by the researcher a priori, where



the collected values should capture the phenomena under study (e.g., samples of the
oxygen content in a lake).

By contrast, in remote sensing, the properties of each sensor (i.e., the number of
bands as well as the spectral, temporal, and spatial resolutions) are the results of a
compromise between the needs of various research communities and the availability
of sensor technology. The continuous variation of the spectral response of the land
cover, which is the specific phenomena captured by the pixel values, often misses
what a domain scientist considers as relevant. These measurements are merely
components of the more complex information content of an image. Most image
classification techniques do not rely explicitly on the conversion between digital
counts and the actual energy captured by the sensor, but they use the digital counts to
extract features. As a consequence, viewing images as fields of values of reflected
energy is insufficient for their ontological characterization.

The limitations of the field perspective to the ontology of images have led some
researchers to view a remotely sensed image as a container of an implicit set of
objects, which are extracted by manual or semi-automated analysis procedures.
Following the terminology used by Smith and Mark [7], this view proposes that the
spatial analysis procedures creates fiat objects, which correspond to objects that exist
only in virtue of demarcations effected cognitively by human beings, as opposed to
bona fide objects, whose boundaries exist independently of human cognitive acts.

The object perspective is taken by Bittner and Winter [16], who view the image as
a set of individual objects that can be identified by means of manual or automated
interpretation procedures. They make the important distinction between fiat objects
created by spatial analysis and objects in the world to which these fiat objects are
supposed to correspond. A spatial analysis fiat object owes its existence to (1) the
notion of a corresponding object in the world, (2) an act of measurement (in this case,
the remote sensing process), and (3) a creative human act of spatial analysis. This
perspective is motivated by a number of situations, most notably in the case of high-
resolution images.

 Although the object perspective captures a fundamental component of the
ontology of images and forms a basis for a large set of image classification
techniques, it is still incomplete. In many cases, there is no corresponding object in
the world, since we deal with purely physical phenomena. Figure 1 shows a set of
Normalized Difference Vegetation Index (NDVI) images derived from the AVHRR
sensor of the NOAA-12 satellite. These images are snapshots of the temporal
evolution of the land cover over South America, related to the seasonal variations of
the vegetation. NDVI images present the variation of a continuous variable, shown in
Figure 1 as a color presentation where ranges of the variable are assigned to different
colors. Since the image is not composed of fiat objects, the concept of corresponding
objects in the world is not useful to convey the ontological contents of the image. As a
result, NDVI images are better modeled as a continuous field that evolves over time.



Figure 1: Normalized Vegetation Index Images derived from AVHRR sensor (NOAA-12
satellite) for South America. Left January 2000, center May 2000, and right June 2000 (source:
CPTEC/INPE).

4 Requirements for an Ontology of Images

The preceding discussion has outlined why it is impossible to give a simple answer to
the question “What’s in an image?” We have examined two distinct (and
complementary) approaches to the ontological description of remotely sensed imagery
and argued that neither is sufficient by itself to support the full process of knowledge
representation for image data. The underlying reason is that images have a dual
nature: Images are fields at the measurement level, but fiat objects at the classification
level. It is, therefore, possible to talk about the image paradox: while the domain
scientist may believe she recognizes objects in a remotely sensed image, she is
actually measuring fields. To account for this dual use, a more complete
understanding of the role of images as sources of geographic information is needed.

We propose that remotely sensed images are ontologically instruments for
capturing landscape dynamics. This approach considers that geographic processes
occur in a multi-scale space and result from the temporal and spatial interactions of
different spatial phenomena over a physical landscape. This view leads to the
following requirements for an ontology of images:
•  Intrinsic properties: Remotely sensed imagery cannot be reduced to the case of a

single-date, single-band raster geometry, since most real-world uses of remotely
sensed data rely on their temporal and multispectral nature. Image ontologies
should consider their intrinsic properties: periodical data acquisition, multispectral
capability, and spectral resolution.

•  Non-specific, periodical data capture: Unlike most field surveys associated with
DTMs, where measurement is strongly linked to the phenomenon under study,
images are general-purpose data capture devices. Within the limits of their intrinsic
properties, they capture responses from different types of objects and geographic
phenomena.



•  Focus on trajectories of change: A geographic landscape is an ever-changing
scenario, and the process of data capture by remote sensing satellites implies that
an image is a measurement that captures snapshots of change trajectories.
Therefore, the focus of the ontological characterization of images should be on the
search for changes instead of the search for content. The emphasis of such
ontologies should not be placed on simple object matching and identification
procedures, but on capturing dynamics over a finite landscape.

•  Reuse of algorithmic knowledge: There is a significant amount of reusable
knowledge for different applications in the form of image processing algorithms,
such as principal components, maximum-likelihood classifier, and texture
measures.

•  Dependence on measurement: Image content is strongly dependent on the
measurement process. This observation is particularly important when comparing
data acquired by different sensors. Figure 2 shows an area in the Brazilian Amazon
forest obtained by LANDSAT TM (optical) and RADARSAT L-band (radar). In
the LANDSAT image it is possible to claim the existence of world objects (e.g.,
forest, as well as deforested and regrowth areas), whereas in the radar image is it
more appropriate to consider the existence of land cover patterns, which result in
different textures in the image. In fact, a large number of radar image classification
algorithms are texture-based relying on the detection of statistical and structural
texture measures.

Figure 2: Two images of the same area of the Amazon forest. Left a LANDSAT-TM image,
and right a JERS-1 radar image (source: Corina Freitas and Eymar Lopes, INPE).



5  Knowledge Representation on Images

In this section, we propose a multi-level ontology for images, based on the concept
of action-driven ontologies for GIS [17]. The idea behind action-driven ontologies is
that a significant part of geographical knowledge is captured by the procedures that
extract information from spatial data sets. The idea is to derive ontologies not only for
the objects of the domain (the “nouns”), but also for the intended actions (the
“verbs”), which are expressed by the procedures applied to the original data set for
knowledge extraction. An additional conceptual framework is Marr’s theory of vision
which proposes a three-level approach for computer vision, consisting of an
information processing strategy level, an algorithms and data structures level, and a
physical mechanisms level [18].

We consider that images have an ontological description of their own, distinct and
independent from the domain ontology a domain scientist uses to extract information
from them (Figure 3).

Figure 3: Ontological context for image information extraction
The ontological domain for the images (called phenomenological domain

ontology) is measurement-dependent. It has three distinct, but interrelated
components:
•  A physical ontology¸ which describes the physical process of image creation. Here

we are interested in expressing knowledge about the relation between energy
reflected by the Earth’s surface and the measurements obtained by the sensor.
Typical concepts here include spectral response, backscatter, and
Lambertian target.

•  A structural ontology, which includes the geometric, functional, and descriptive
structures that can be extracted from or detected in the image by means of feature
extraction, segmentation, and classification techniques. Typical concepts for this
ontology include geometries as lines and regions, and functional descriptions
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such as spectral response curve, optical flow, and light
intensity gradient.

•  A method ontology, consisting of a set of algorithms and data structures, which
represent reusable knowledge in the form of image processing techniques that can
be used to transform the image from the physical level (e.g., by filtering or
enhancement) or to perform feature extraction and classification.
The algorithms that are part of the method ontology, perform transformations from

the physical level to the structural level, a process than can be called structural
identification. When applied to an image (or a set of images), this process results in a
set of structures strongly related to the measurement device properties and its
interaction with the physical landscape. These structures may be geometric (e.g.,
regions extracted by a segmentation procedure) or functional (e.g., NDVI estimates
obtained from NOAA/AVHRR series of images).

While this phenomenological ontology is observer-independent, the domain
scientists operate using concepts from their knowledge domains. Following Guarino
[19], we distinguish between a application domain ontology, which describes the
vocabulary related to a generic domain (e.g., geology or ecology), and application
task ontologies, which are specializations of the domain ontology, describing a task or
activity within such domain, such as water pollution assessment for ecological
studies.

For example, research on land use and land cover change uses such concepts as
forest, grassland, cropland, wetland for land cover and logging,
ranching, and agriculture for land use [20]. These concepts belong to the
application domain ontology, and their relation to the image (phenomenological
domain) ontology is strongly dependent on the spatial-temporal analysis scale. Large-
scale surveys, such as global change mappings, usually preclude the identification of
individual objects in the set of images used. In this case, the applicarion task ontology
might be very similar to the application domain ontology. Small-scale analysis of
limited geographic areas might require the identification of objects from the
application task ontology in the image. For example, areas that are classified in the
large-scale survey as type agriculture might be assigned to specific types of
agricultural use (e.g., soybeans, rice, and coffee) in the task ontology used by
the small-scale survey.

The application ontologies include two different types of spatial entities: classes of
identifiable objects (that can be related to fiat objects in the image) and classes of
spatial continuous phenomena (that can be related to temporal series of images that
are modeled as fields). The relation between the image ontology and the application
ontology is achieved by means of a semantic mediator, which performs two basic
functions:
•  Identify what specific image processing and pattern recognition algorithms

(described in the method ontology) are needed to extract the desired structures from
the image or to transform the physical (i.e., pixel) values to obtain the desired
information.

•  Map from concepts on the domain ontology (i.e., objects and fields) onto
structures extracted from the image set. For example, a domain ontology may



contain a concept of a road. Using the semantic mediator, we may look for
identifying roads among the linear structures that are part of the
structural ontology of the image.
The proposed multi-level ontology allows different application domains to be

related to the same phenomenological domain, a perspective that reflects the fact that
the same image (or set of images) can be used in many knowledge domains. For
example, the same set of images can be used for land use and land cover mapping or
for geological studies.

There are many different possibilities for building a semantic mediator. In this
paper, we consider the constructive approach: an external observer builds the
semantic mediator by forming a correspondence between concepts in the application
domain and concepts in the phenomenological domain. We call one such relation a
matching (by analogy with the matching concept in Image Understanding systems). In
a single time-instance, the set of matchings of a concept from the application domain
onto an instance of a concept on the phenomenological domain is called a spatial
configuration. Given a temporal sequence of images, the set of spatial configurations
is called a spatio-temporal pattern.

Consider the example of mapping deforestation on a tropical forest, as shown in
Figure 4. In this image (a LANDSAT/TM color composite for the Brazilian state of
Rondonia), a segmentation algorithm has extracted regions from the pixel values [21].
Two distinctly different types of deforestation can be observed: regular square-like
patterns (resulting from large cattle ranches) and irregular patterns, resembling fish
bones, which result from colonization projects.

In this case, the application domain ontology may distinguish generic types of
concepts, such as forest, non-forest vegetation, and deforested
areas. This latter concept could be specialized into cattle ranches and
small farms. At the structure ontology level, we may distinguish such concepts as
region and its specializations fishbone region and regular region. In
the image, each region will be described by a set of statistical and morphological
properties.

Figure 4: Deforestation mapping with a LANDSAT image (source: Eymar Lopes,
INPE).



A mapping between an instance of a concept on the application domain  (e.g.,
small farm) and an instance of a concept on the structure domain (e.g., one
instance of fishbone region) defines a matching. The set of all matchings
between instances of fishbone regions to small farm defines, for this
specific image, a spatial configuration. If we perform this set of matchings in a time-
series of images containing deforested regions, we can call the set of spatial
configurations of (fishbone region, small farm) matchings a spatio-
temporal pattern.

By using mediation between the image and application ontologies, we create a
framework that emphasizes the detection of spatial-temporal configurations of
geographic phenomena, taken here as identifiable structural elements present in an
image. This idea is consistent with the identity-based modeling of change [22], where
object identity is proposed as a central notion for modeling spatial-temporal change.
The framework allows an object, identified as part of the user ontology, to be related
to different descriptions in an image time series. Consider, for example, mapping
urban sprawl for a city by analyzing a 20-year time series of LANDSAT images. The
geometries that describe the evolution of the urban boundaries of the city change
yearly, yet the identity of the object remains the same.

Another important consequence of the separation of image and application
ontologies is the possibility of the same structures be reused by different applications.
A simple example is the case of detecting or extracting line segments from a
series of images. Line segment is a concept that is part of the structural ontology
of the image. It has clearly defined geometric properties. These lines can take
different roles in domain ontologies of different user communities.

6 A Representational Framework for the Ontology of Images

In order to translate the concepts proposed above into a computable model, a
representational framework is needed to capture the essential dimensions of the
ontological model. We consider the case of detection and monitoring of the spatial
temporal evolution of objects, as defined in the application domain ontology. The
case for the detection of fields would be similar.

In our framework, data and operations are referenced on an embbeding space,
mapped to a homogenous 2-dimensional point set S   [23]. Images are acquired at
discrete instances of time in a linear time sequence. To simplify our formulation, we
shall consider the granularity of our time sequence to be equal to the acquisition
period for an individual image in our data set. We shall denote the union of all
discrete time intervals it∪ as T .

Our representational framework consists of the following:

•  Image: Given a physical ontology PO , an image is defined as

image
2: [ , , { }], : , ,n

i i i if t po f S R R t T po PO⊂ → ∈ ∈ ,



where:

ƒ is a mapping between the embedding space S and a set of real values,

it is the image acquisition interval, and

{ }poi is the set of concepts that defines the physical features of an image.

•  Image sequence: is a set of images defined over S ,

image_sequence: [{ }]iI

•  Geometric structure: given an embbeding space S , a structural ontology SO
and a set of attributes A1,…,An, a geometric_structure is defined as

  geom_str ( ): [{ , , ,{ }], , , ,} { } i i i ii i i i iP t a P S T s SO a dom Aso t o⊆ ∈ ∈ ∈

where

{ iP } is the set of spatial locations (the union of closed point sets),

it is a time interval, corresponding to the image acquisition reference,

{ }soi is the set of concepts that define the geometric structure,

{ }ia is a set of attribute values a1,…,an whose domains are D(A1),…,D(An).

•  Image processing function: Given a method ontology MO , an image
processing function maps an image into another image. The signature of these
functions is

proc_funct: [ , { }], : ,i if mo f I I mo MO→ ∈ ,

where

{ }imo  is the set of concepts that define the features of the function.

•  Image classification function: These functions perform a mapping between an
image and a set of  geometric structures in S . One example is a maximum-
likelihood pixel classifier. The signature is:

class_funct : [ ,{ }], : { },i i if mo f I gs mo MO→ ∈

•  Landscape object: Given an application domain ontology AO , and a set of
attributes A1,…,An, a landscape object is defined as

landscape_object ( ): [{ },{ }], ,i i i i iao a ao AO a dom A∈ ∈
where

{ }iao  is the the set of concepts that defines the landscape object.

•  Similarity Measure: we consider two types of similarity measures. The first
( 1sm ) finds matches between concepts in the application domain



ontology AO and concepts in the structural ontology SO , and the second
( 2sm ) finds matches between concepts in the application domain
ontology AO , concepts in the method ontology MO  and concepts in the
physical ontology PO .

sim_meas1 : [ ], :f f SO AO× →!
sim_meas2 : [ ], :f f MO PO AO× × →!

•  Spatial configuration: given a landscape object lo, a spatial configuration is a
tuple

spt_config: [( ,{ }, )]i ilo gs t
where

{ }igs  is a set of geometric structures in an image I

it  is a time reference, which is the same as the set { }igs
•  Structural matching: given a landscape object, a structural matching generates

a set of spatial configurations, by applying a similarity measure:

struct_matching 1: [ , ], :{ } { }ism f f gs lo sc× →
where

1sm  is a similarity measure of type-1,

{ }igs  is a set of geometric structures in an image I,

lo is a specific landscape object,

{ }isc is the set of spatial configurations produced by M.

•  Functional matching: given a landscape object and a method ontology MO , a
functional matching is able to choose an appropriate image classification
function, by applying a similarity measure:

funct_matching 2: [ , ], :sm f f MO lo cf× →
where

2sm  is a similarity measure of type-2,

lo is a specific landscape object,

cf is the selected image classification function which will produce an
appropriate set of geometric structures.

•  Spatio-temporal pattern: given a landscape object and an image sequence, a
spatio-temporal pattern is the set of all spatial configurations for a specific
landscape object in this image sequence.

spt_time_pattern: [ ,{ , }],i i ilo I sc I Is∈



where:

lo is a specific landscape object,

iI  is an image which is part of an image sequence Is ,

isc is a spatial configuration defined over iI .

To give one exemple in the case of deforestation mapping, a landscape object
would be an instance of an object defined as deforested_area; an image
classification procedure would be defined the algorithm defined as
isodata_clustering; a geometric structure would be the set of points defined
by one cluster obtained by the classification procedure; a spatial configuration
would be the set of clusters which are mapped to the concept of
deforested_area, in one specific image; and a spatio-temporal pattern would
be the set of all spatial configurations mapped as deforested_area  for an image
sequence defined over a 10 year period.

A knowledge base built with this framework is flexible enough to integrate
different types of sensors, to include new concepts of the application domain, and to
incorporate new image processing algorithms. It emphasizes remote sensing images
as a support for the dynamical analysis of the landscape and has as a central
component a set of spatial-temporal patterns. The knowledge base could be used by
an information retrieval system for extracting patterns in a large remote sensing image
database, or by a semantic mediator as a basic guidance for finding similar patterns in
new images.

7 Conclusions

This paper has examined an ontology of images. We argued that images have an
observer-independent ontological status. Thus, procedures for knowledge extraction
on images require a semantic mediator, which establishes a correspondence between
instances of concepts in the domain ontology (used by an application researcher) and
concepts on the phenomenological ontology (which describes how the image
represents the real world). With a clear separation between image and user ontologies,
two key benefits are achieved: (1) the support for multiple perspectives for the same
image; and (2) an emphasis on using images for the detection of spatial-temporal
configurations of geographic phenomena.

In an early paper on integrated GISs, Ehlers et al. [24] presented a three-level
integration process to be progressively achieved by GIS [25]. They distinguished
between a level for simultaneous display of vector and raster data and conversion of
pre-processed results, a level for dynamic data exchange with a single user interface,
and a level for total integration. The latter would consist of a unique system based on
a single model of the world.

Our work has significant consequences for the concept and implementation of such
integrated GISs. With images having a separate ontological status from the user
domain ontology, some type of semantic mediator will always be needed as a



interface between the two ontologies. As a result, the quest for total integration, in the
sense that a unique ontology would be used by an IGIS, would be inadequate. Instead,
an integrated GIS needs to be  based on multiple ontologies so that it could be flexible
enough to combine different sets of concepts.
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