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Abstract

Inthisshort paper, we present two constructive decompositionsfor any mapping between | attices
intermsof the elementary mappings of Mathematical Morphology: erosions, dilations, anti—ero-
sions and anti—dilations. This decomposition result extends the ones already known for transla-

tion invariant mappings.

1. INTRODUCTION

Nowadays, Computer Vision is object of
intense researches because of its large number
of potential applications. Mathematical
Morphology (MM) seemsto bewell adapted to
solve alarge class of problemsin thisfield.

Until the publication of volume 2 of Serra’s
book (1988), MM has been, essentialy,
restricted to tranglation invariant transforma-
tions. Thefield of applicationsof MM became
larger with the introduction of a more general
definition of erosion and dilation that uses the
lattice notion.

In this paper, we introduce two constructive
decompositions for any transformation or
mapping between complete lattices that gen-
eralize the already known decompositions for
trandation invariant mappings (Matheron,

1975; Maragos, 1985; Banon and Barrera,
1991).

In Section 3, we recall the definitions of the
four elementary mappings of the MM: ero-
sions, dilations, anti—erosions and anti—dila-
tions. In Section 4, we give the decomposition
theorem and therefore we answer the question:
doestheM M elementary mappingscan beused
to represent any mapping between complete
lattices and in what way this is possible?

2. MAPPINGSBETWEEN LATTICES

Let (£, <), or smply £, be acomplete |attice
(Birkhoff, 1967). The infimum and the supre-
mum of a subset 36 of £ will be denoted,
respectively, A% and V%. The least and
greatest element of £ will be denoted, respec-
tively, Oand I.



Let £, and £, be two complete lattices. We
denote by (!Lz“ﬁl the set of all functionsfrom £,

to £.,. Theelementsin £.,"* (and 4£,"2) will be
called mappings. A generic element of £, will
be denoted by X and one of £, by Y. A generic

mapping in &2‘&1 (or aﬁl‘y“Z) will be denoted by
lower case Greek letters a, j, etc. Finally, the
two constant mappingsin £1‘£2 that assumethe

valuesO and | will be denoted, respectively, by
Oandl.

In image processing, the most usua trans-
formations on binary images can be repre-
sented by the trandation invariant set map-
pingsfrom P(E) toitself, wherethe set Eisan
Abelian group and P (E) isthe collection of all
parts of E. The collection P(E) is an example
of complete lattice.

3. EROSIONS AND DILATIONS

Lety € Jgfl and let % be asubset of £,. We
will denote by (%) theimage of 9 through .

A mapping y € £2£1 is increasing (or
isotone) iff

X< X=ypX <ypX) XandX € 4).

Since £, and £, arecompletelattices, thenthe
aboveaxiomisequivalent to any oneof thefol-
lowing statements:

P(AB) < Ap(%) (%6 C Ly); 1)
V(%) < p(VE) (6 C Ly); (2

Following Serra(1988), if theequality holdsin
(), theny iscalledanerosion. If it holdsin (2),
theny is called adilation.

Let @ and © be, respectively, the Minkowski
addition and subtraction (Hadwiger, 1950)
between subsets of an Abelian group E. The
tranglation invariant set mappings from P(E)
toitself, X — X @ B and X — X © B, where
B isasubset of E, are, respectively, examples
of a dilation and an erosion (Heijmans and
Ronse, 1990).

A mappingy € £2£1 isdecreasing iff

X< X =pX) <pX) XadX € L)

Since £, and £, arecompletelattices, thenthe
aboveaxiomisequivalent to any oneof thefol-
lowing statements:

Vy(%) < p(AE) (%6 C Ly); ©)
Y(VE) < Ayp(%) (% C Ly); (4)
Following Serra(1987), if theequality holdsin

(3), theny iscalled ananti—erosion. If itsholds
in (4), theny is called an anti—dilation.

The trandation invariant set mappings from
PE) to itself, X—>XGB)° and
X~ (X & B)S, where © denotes the set com-
plementation, are, respectively, examplesof an
anti—dilation and an anti—erosion.

We will denote by E, A, E2and A2 respec-
tively, the set of erosions, dilations, anti—ero-

sions and anti—dilationsin Jil"o“z.

4. MAPPING DECOMPOSITION

Let a, B € 4,"2 We define the mapping af
and aff € Jﬁ{al by setting, for any X € £,

ap(X) = V{Y € L5 a(Y) < X < (M)},
ap(X) = N{Y € £,:a(Y) < X < ()}
Let P(4,)*2betheset of thefunctionsfrom £,

to P(4£,). We extend the partial order relation
C on P(4£,) to apartial order relation < on

P(L)% by seting, for any F and
F e P(Ly)2
F<SFSFY)CFY) (YE L.

Foranyy € 4,™, let «36(y) andIoe () bethe
two functions in P(4.,)*2 defined by, for any
YE 4,

Jo)M={X € LY < y(X)},
He)={X E Li9(X) < Y}
Thefunction «3¢(y) iscalled theleft kernel (or,

simply, kernel) of y and the function Jce (y) is
called the right kernel of .
These kernel definitions generalize the one

given by Matheron (1975) for trandation
Invariant set mappings.



A subset % of £ isaclosed interval of £ (Birk-
hoff, 1967, p. 7) iff there exist two elements A
and B in £ such that, for any X € 4,
A< X < B< X & %. We denote by [A, B]
such closed interval.

We say that afunction J isan interval function
from £,t0 P(L,) iff, forany Y € £,, I(Y) is
the empty set of P(£,) or aclosed interval of
P(Ly)-

To each par (a,f), such that VY € £,,
(a(Y) < B(Y)) or (exclusive) (a(Y)=1 and
B(Y) = 0)), we can associate a unique interval
function [a, ] € €P((£1)£2 given by, for any
YE 4,

[a(Y), B(Y)]

mmm={ AO0) 100 =

otherwise.

We call the mapping a and  the extremities of
the interval function [, A].

Finally, let A42and E°E be the sets of pairs
(a, B), respectively, in4 x A2and E X E?

L4 a

suchthat VY € 4£,, (a(Y) < B(Y)) or (exclu-
sive) (a(Y) =1 and 5(Y) = O).

We are now ready to state the following
decomposition theorem.

Theorem 1 —Any mapping y from £, to 4,
has the following sup—inf constructive decom-
position
y=V{al A OB: (a,B) € A4%and

[a, f] < «Fe(y)}-
The proof of Theorem 1isgivenin (Banonand
Barrera, 1993) and it lies upon very nice prop-
erties of what we have called a morphological
connection.

Let y € .;inl and a,f € Jlliz. The pair
(¥, (@,B)) is a morphological connection
between £, and £, iff

aY) < X < f(Y) = Y< y(X)
(X,Y) € 44 X 4,).

Figure 1 illustrate for a given pair (X, Y) the
above morphological connection property.

Y

L2

Figure 1. Morphological connection (y, (a, )).

For complete lattices, the notion of morpho-
logical connection can be seen asageneraliza-
tion of the notion of Galois connection (Birk-
hoff, 1967, p. 124).

In Theorem 1, the mappings al and Of are,
respectively, erosions and anti—dilations. We
say that al and OB are derived from the extre-
mities of theinterval function [a, B]. Actually,

the pair (al A OB, (a, B)) isamorphological
connection between £, and £.,.

From Theorem 1, we see that any mapping y
is the supremum of a set of mappings that are
theinfimum of an erosion and an anti—dilation.
Such erosion and anti—dilation are derived
from the extremities of an interval function
that islessthan or equal to the kernel of v and



whose extremities are a dilation and an anti—
dilation.

For atrangdlation invariant set mapping v, the
sup—inf decomposition of Theorem 1 can be
written as

Y=V{(+ ©A) A (s ®B"
[A B] C {X:0 € y(X)}},
where Blisthe transpose of B relatively to the

origin o. For a direct proof, see (Banon and
Barrera, 1991).

Inthe sameway, any mappingy from £,to £,
has the following inf—sup constructive decom-
position
yp=/Nal v Of: (a,p) € E¥ and

[a, f] < Foe(y)}

In the above decomposition, the mappings al
and Of are, respectively, anti—erosions and
dilations.

For atrangdlation invariant set mapping v, the
aboveinf—sup decomposition can bewritten as

Y=N{(s @AY Vv (« © B9

[A B] C {X: o0& y(X)}},
or, equivaently, by using the definition of dual
mapping ¥ (" (X)=(y(X?))) and changing,
respectively, A and B into B€and A€,
w=MN(®A) v (« ©B9"

[A B] C {X:0 €y (X)}},
For anincreasing trand ationinvariant set map-

ping v, we get the well known Matheron's
decompositions (1975),

Y =V{e & A 0€E yA)}
= N{« ® At 0 € p*(A)}.

5. CONCLUSION

In the previous sections, we have presented
two constructive decompositionsfor any map-
ping between lattices in terms of the elemen-
tary mappings of MM: erosions, dilations,
anti—erosions and anti—dilations.

Actualy, the proposed decompositions are
redundant in the sense that smaller families of
such elementary mappings can be involved in
the decompositions. The problem of aminimal
decomposition (or minimal decompositions)
have been studied in (Banon and Barrera,
1991, 1993) and can be related to the well
known problem of Boolean function simplifi-
cation.

The proposed decompositions apply to map-
pings between different lattices and so can be
used to decompose many kinds of imagetrans-
formations (not only transation invariant set
mappings). For example, they apply to trans-
formations between grayscale and binary
images.

By choosing a partial order relation between
the pixel positions, the proposed decomposi-
tion can beused, aswell, to decomposethedig-
ital images themselves.
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