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Abstract 

This dissertation concerns the estimation of missing values arising in remotely 

sensed from optical systems. Missing values in this kind of data usually arise 

from the failure of one, or more, of the system detectors, or from the presence 

of thick clouds at the time of imaging. A through investigation of ali the known 

existing methods to estimate missing remotely sensed data is carried out, and new 

approaches, and methods, are suggested. The estimates obtained from simple 

methods, which can be implemented on a routine basis to replace missing values 

on the imagery, are contrasted with those from more complex methods, to see if 

the implementation of more sophisticated methods is warranted. The methods 

are applied to real TM Landsat 5 data, from two distinct areas in Brazil, and 

their performances evaluated for a set of statistical measures, and visually. These 

results give a good insight into where the methods fail to perform well, which 

may be useful in the development of other methods. The estimation of missing 

values arising from the presence of thick clouds has received very little attention 

in the literature. Several methods are proposed and evaluated in the estimation 

of a clumped set of missing sites, such as occurs with thick, small, cloud cover 

in rernote sensing with optical sensor systems. The results here might be useful 

to clarify the extent to which good estimates of the missing values occurring 

in clusters, can be expected. The loss of information on the parameters for a 

Gaussian univariate process on a rectangular lattice is also discussed, and exact 

and approximate formulae for this loss given for some spatial processes. 
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Chapter 1 

Introduction 

This investigation addresses the estimation of missing values arising in remotely 

sensed data from optical systems. In particular, this study uses real data from 
the satellite Landsat 5, which is one of the remote sensing satellites presently in 
operation. 

Broadly speaking, there are two main reasons for the occurrence of missing 

values in this kind of data. The first one is related to a fault in one (or more) 
components of the imaging system (detector failure), and the other is the presence 

of clouds, at the time of image acquisition. 
The two causes have different effects on the image. The failure of one, or more 

detectors, for instance, causes the image to have systematically missing scan lines, 
which show as black horizontal lines across the image. An example of simulated 

detector failure is given in Figure 5.2, in Chapter 5. The presence of these missing 
lines on the imagery disrupts the visual observation (and interpretation) of the 

imaged objects, and leads to unreliable statistics of the image, if these are based on 

pixel values. Considering that most agencies that receive, and process, remotely 
sensed data, normally use them for commercial purposes, it is important that 
these imperfections be corrected, and that the user be provided with as good 

data as possible. In other words, it is important that good estimates of the 
missing values be obtained. 

Commonly, the missing values arising in remotely sensed data are estimated 
using linear interpolation, or by replacing the missing values with those in the 

fine immediately above. Since Landsat 5 provides multispectral data, some more 

sophisticated methods have been developed, exploring this additional available 
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information, to improve the estimation of missing values arising from detectar 

failure, or other causes that rnay have the same result on the image. 

The effect of the presence of eloud cover in the imagery varies according to the 

cloud extent, its shape, and thickness. Most discussion in the literature concerns 

the `correction' of the data distorted by the presence of thin clouds. In this case, 

some information from the objects on the ground is still available, but needs to 

be corrected (usually by the application of some sort of filter), to remove the 

interference (noise) of the cloud. 

The presence of thick clouds ha,s a much more profound effect on the image. 

Since clouds are highly reflective, they show in the image as bright areas, which 

are normally scattered across the image. Moreover, clouds `usually have an asso-

ciated congruent darker arca at a certain specific distance and orientation - their 
shadows' (Haralick SI Fu, 1983), which can cause as much (clamage' to the image 

as the clouds themselves. As an example, Figure 1.1 displays a colour composite 

(bands 3, 4, and 5) TM Landsat 5 image of Phuket Malaya (Thailand), acquired 

in August 1989, where the effects of clouds (shown in white) and their shadows 

(shown in black), can be clearly seen. 

Few approaches exist for the estimation of missing values arising from the 

presence of thick clouds (or their shadows). For some types of applications of 

remotely sensed data, such as classification and mapping, it may be important 

that accurate estimates of the missing values be obtained. At present, the only 

known approach for replacing missing values arising from the presence of thick 

clouds, suggests their replacement by the corresponding values in another passage 

(Hord, 1982). 

In this investigation, the estimation of missing values arising from detector 

failure, and from the presence of thick, small clouds, is considered, using real 

Landsat 5 data from two distinct areas in Brazil. Due to the specific characteris-

tics of this kind of data, some generalities about Landsat 5 remotely sensed data 

are presented in Chapter 2. Details about the data used in this research, and the 

two test sites, are given in Chapter 3. 

In Chapter 4, ali the existing methods suggested in the literature for esti-

mating missing values arising from detector failure, are evaluated. Other new 

approaches are also proposed in that chapter. Ali the methods in the chapter 

are relatively simple ones, which can be implemented on a routine basis, to re- 
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place missing scan lines on the imagery. Considering the large amount of remotely 

sensed data that needs to be processed, it is important that the proposed methods 

be easily implemented, and relatively fast. 

In Chapter 5, more compIex methods, which use spatial modelling, are eval-

uated in the estimation of missing values occurring from detector failure. Due to 

the fact that the implementation of these methods is more difficult, and much 

more computing demanding than the sirnple methods in Chapter 4, it is impor-

tant to see if they give significantly better estimates of the missing values than 

the simple approaches, to warrant their routine implementation. 

In Chapter 6, the estimation of missing values occurring in small clusters, as 

if arising from the presence of thick, small clouds, is addressed. Simple methods, 

as well as more complex ones using spatial modelling, are considered in the esti-

mation of the missing values, and their performance evaluated when applied to 

some simulated 'clouded' areas in images from both data sets. 

Chapter 7 is of a more theoretical nature, and addresses the loss of information 

on the mean, and on the dependence pararneter, for some of the spatial processes 

introduced in Chapter 5. Exact, as well as approximate formulae for the loss 

on the mean are given, and evaluated, for some of the processes. From the 

approximate formulae, a good insight into how the loss on the mean varies over 

the different configuration of the missing values is obtained. 
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Figure 1.1: An example of the effect of clouds (and their shadows) on a TM 

Landsat 5 image (Courtesy of Dr. Chris Clark, Geography Department, The 

University of Sheffield). 
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Chapter 2 

Some Principies of Remote 

Sensing 

Since this research is concerned with remotely sensed data from a satellite, and 

in view of the specific characteristics of this kind of data, a general introduction 

of remote sensing is given in this chapter, emphasizing only those a.spects which 

seem relevant to this study. 

2.1 Introduction 

Amongst definitions of remote sensing, the one given by Rees (1990) seems 

to be the most appropriate: 

'Remote sensing is, broadly but logically speaking, the collection of 

information about an object without coming into physical contact 

with it. This definition is too wide to be useful, so we shall impose 

a number of restrictions. The first is that the object is located on 

or near the Earth's surface, and the sensor is more or less above the 

object, and at a `substantial' distance from it. The second restriction 

is that the information is carried by electromagnetic radiation, some 

property of which is affected by the remotely sensed object.' 

This research uses data from the sensor that is currently being operated from 

the Landsat 5 satellite, which is one of a series of satellites devised to provide in-

formation about the Earth's surface. Landsat 5 carnes a Thematic Mapper (TM) 
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sensor that provides multispectral data, which are recorded `simultaneously' in 

seven regions of the electromagnetic spectrum. These regions are usually referred 

to as bands. 

The recorded data correspond to the average 'brightness' or radiance measured 

electronically over an area on the ground. This area, which is usually referred 

to as a ground cell resolution, corresponds to a pixel (picture element) in the 

image, and is equal to 30 metres by 30 metres for six of the TM bands (1-5,7) 

and 120 metres by 120 metres for the thermal band (band 6). Table 2.1 (from 

Curran, 1985) shows the spectral bands recorded by the TM Landsat 5, and gives 

a brief summary of the principal characteristics of each band, for remote sensing 

applications. 

Table 2.1: The wavebands recorded by the Thematic Mapper sensor carried by 

Landsat 5. 

Band 
number 

Band 
name 

Band 
width(m) 

Points 

1 Blue/Green 0.45 — 0.52 Good water penetration 
strong vegetation absorbance 

2 Green 0.52 — 0.60 Strong vegetation reflectance 

3 Red 0.63 — 0.69 Very strong vegetation 
absorbance 

4 Near infrared 0.76 — 0.90 High land/water contrast 
very strong vegetation 
reflectance 

5 Near-middle 
infrared 

1.55 — 1.75 Very moisture sensitive 

6 Therrnal infrared 10.4 — 12.5 Very sensitive to soul 
moisture and vegetation 

7 Middle infrared 2.08 — 2.35 Good geological discrimination 

From Curran (1985). 

The availability of multispectral data can aid in the identification of the oh-

jects on the ground, since different materiais have a specific reflectance in each 
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band. 

The radiation from objects on the ground is sensed by the detectors, which 

are defined by Harris (1980) as: 

`devices formed from substances known to respond to energy over a 

defined wavelength interval, generating a weak electrical signal with 

a strength related to the radiance of the features in the field of viewa 

of the sensor. The electrical current is then amplified, then used to 

generate a digital signal that can be used to form a pictorial image.' 

The TM uses 16 detectors for ali nonthermal bands and four detectors for the 

thermal band (100 detectors in ali). Thus, 16 lines of each nonthermal band and 

four lines of the thermal data are acquired with each sweep of an oscillating scan 

mirror, which collects data in its forward (west-east) and reverse (east-west) mo-

tion — see Figure 2.1, which shows the projection of the detector's instantaneous 

field of view (IFOV) on Earth surface. 

Scan mirro( 

z  

Ground projection 
of 100 detectors 

Direcnon of 
mozion 

Figure 2.1: Projection of detector IFOVs on Earth surface. (Adapted from  Lilie-

sand (4/ Kiefer, 1987). 

aThe smallest solid angle through which a detector is sensitive to radiation (Thomas, 1987). 
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Landsat 5 generates data in digital form, with each element in the image 

representing the radiation of an area on the surface. This radiation is expressed 

by a non-negative integer (digital number or grey levei), which for the TM ranges 

from O to 255. A definition of digital data is given in Bernstein (1983) as 

`... a sampled and quantized numeric representation of a scene. The 

scene is spatially partitioned by the sensing device into a regular array 

of numbers whose values represent the radiance or brightness of the 

sarnpled region in one or more spectral ba.nds.' 

Ali the TM Landsat data are transmitted to Earth through a ground receiving 

station. The analog signal from each detector is converted to digital form by an 

onboard converter, and recorded on high density tapes at the receiving station. 

Each Landsat scene is `framed' from the continuous TM data so that it covers 

an area of approximately 185 km by 185 km. The data is processed, transferred 

to a CCT (computer compatible tape), and then distributed amongst the users. 

Figure 2.2 illustrates the Landsat TM operating configuration, showing the square 

instantaneous field of view of the scanner, which results in a ground resolution 

cell of side approximately 30 metres. 

The choice of the orbit for Landsat 5 allows for multitemporal sensing, where 

data about the same area on the ground are collected at every 16 days. According 

to Lillesand & Kiefer (1987): 

`each Landsat satellite passes over the same area on the Earth's surface 

during daylight hours about 20 times per year. The actual number 

of times a given ground area is imaged depends on amount of cloud 

cover, the Sun angle, and whether or not the satellite is in operation 

on any specific pass.' 

The availability of multitemporal imagery usually improves classification of 

ground cover, 'as single-date images rarety possess suificient spectral differentia-

tion between crop types for accurate classification' (Jewell, 1989). 

The use of multispectral and/or multitemporal remotely sensed data requires 

the proper registration 6  of the data recorded in different bands, or at different 

bThe process of geometrically aligning two or more sets of image data so that the resolution 

cell for a single ground area can be digitally or visually superposed (Curran, 1985). 
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Figure 2.2: Landsat TM operating configuration. (Adapted from Lillesand Sz 

Kiefer, 1987). 

times. From the analysis of 8 TM images, Wrigley et ai. (1985) reported that the 

band-to-band registration of the TM was within the satellite specification (less 

than 6 metres). In contrast to band-to-band specification, which is a pre-launch 

specification of the imaging system, registration of multi-date imagery, to correct 

for any spatial displacement between passages, is usually carried out as part of 

the data preprocessing manipulations performed at the ground receiving station. 

The registration process usually consists of superimposing the different images, 

to make geographic control points (e.g. rivers, roads, lakes, etc.) coincide. 

2.2 Data Quality 

Many factors may limit the quality of the remotely sensed data, for example, 

the imaging system itself, the performance of the recording equipment, and errors 

in the transmission of the data to the ground receiving station. Other factors, such 
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as the rough topography of the area being imaged, may also introduce distortions 

in the image data. These distortions need to be removed before the data can be 

effectively used. The raw' remotely sensed data is usually corrected for certa.in 

random geometric distortions, and for the effects of variations in radiation caused 

by changes in atmospheric conditions, scene illumination, and viewing geometry. 

Data from different dates, for instance, are corrected to account for the different 

solar illumination at the different times of data acquisition, a procedure which is 

important when joining images from adjacent tracks, or when comparing annual 

changes in land cover. 

Besides the geometric and radiometric corrections applied to the data, other 

manipulations may also be necessary to account for the presence of systematic 

and/or random noise which may be present in the image data. These unwanted 

fiuctuations may either degrade or totally mask the true radiometric information 

content of the digital image, and are caused by such factors as malfunction of a 

detector, interference between sensor components, and errors in the transmission 

and reception of the data (Lillesand & Kiefer, 1987). If the pattern of the noise 

is known, then appropriate modifications can be made at the receiving station to 

diminish its effect. 

Several types of noise can be identified in an image, some of them of known 

origin. For the TM, which sweeps 16 scan fines at the same time in six of its 

spectral bands, variations in the response of an individual detector within a given 

band may result in relatively higher or lower values every 16 th  line in the image 

data, causing striping effects. To correct for this defect, data in the defective lines 

are usually normalized with respect to their neighbouring observations. 

Noise may also be introduced in the digital data when a detector partially (or 

entirely) fails. This causes a number of adjacent pixels along a line (or an entire 

line) to contam n spurious digital numbers, which shows as systematic black stripes 

across the digital image. This problem is usually referred to as Une dropout or 

Une drop. The defective lines are usually replaced by those immediately above it. 

However, some types of application, such as classification and mapping, require 

a more refined analysis of the data, and in this case more sophisticated methods 

than adjacent line replacement may be warranted. 

For the images degraded by noise, the usual approach for noise removal con-

sists of postulating a model for the data, where noise is usually introduced as 
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an additive component. Approaches to remove striping effects can be found in 

Mather (1987), Horn & Woodham (1979), and Moik (1980), whilst for the removal 

of noise using data modelling see, for instance, Woods et al. (1987), Combettes 

& Trussel (1989), Liu & Caelli (1988), and Friedel) (1980). 

The quality of remotely sensed data from optical systems may also be affected 

by the presence of clouds, which do not allow the `true' information on the Earth's 

surface to reach the sensor. Thick clouds completely block the radiation from the 

objects on the ground, and show in the image as bright areas. Their shadows may 

also appear on the image, but as darker areas, which 'are often harder to identify 

since the observed reflectance depends both upon the extent to which the ground 

is obscured and ou the nature of the ground surface' (Gurney, 1982). Since grey 

leveis within and between shadows may vary considerably, they are also easily 

confounded with other classes of ground cover. 

Few efforts have been made to recover the information distorted, or blocked 

by the presence of clouds. Hord (1982), for instance, suggests the simple replace-

ment of the missing values in the image, due to the presence of clouds, by the 

corresponding values in another passage. There are obvious limitations to this 

approach, for even if the proper corrections to account for the different atmo-

spheric conditions and the varying behaviour of the sensors at the times of data 

acquisition are made, there is still the problem of changes in land cover which 

Hord (1982) completely ignores. 

It lias been suggested that data from other remote sensing systems, such as 

radar, can be used to improve the recovery of the missing data in the TM imagery, 

due to clouds. Radars are not optical systems, and can in fact `see' through clouds. 

However, because of the different spatial and spectral specification of each system, 

data are not readily comparable. In order to account for the different spatial 

resolution of different sensors, for instance, it may be necessary to resample data 

from one system, to register with data from another. In this process, the 'originar 

information from one of the systems is completely lost. 

The use of data from SPOT 1, the Frendi satellite operating since 1986, can 

also be used to improve the recovery of missing TM data. SPOT 1 revisits the 

same area on the ground more frequently than Landsat 5, and this increases its 

potential for providirtg cloud-free imagery. However, Landsat and SPOT 1 record 

data in different bands, besides having incompatible spatial resolutions. SPOT 
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1 ha,s different spatial resolutions (pixel) for the panchromatic (0.5 - 0.9 sim), 

and the multispectral bands (10 and 20 metres, respectively), whereas the TM 

Landsat has a spatial resolution of 30 metres for ali but the thermal band. 

Although in this investigation only TM Landsat 5 data are used, the methods 

proposed in the next chapters are not restricted to this kind of data, and can 

be applied to data from other remote sensing systems which provide multispec-

tral, multipolarised, and/or multitemporal data (e.g. SPOT 1, ERS-1, airborne 

platforms, systems on the Space Shuttle, etc.). 
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Chapter 3 

Data Sets 

3.1 Introduction 

The investigation carried out on missing values in this dissertation uses TM 

Landsat data from two distinct arcas in São Paulo State, Brazil. The images have 

been provided by the Instituto de Pesquisas Espaciais, INPE, a Brazilian govern-

ment agency that receives, digitally processes, and makes available commercially 

Landsat data for Brazil, and other parts of South America. 

In view of the high demand for remotely sensed data in agriculture, data 

from a previous study over an arca of high wheat production, by Rudorff & 

Batista (1989), were made available in the most informative bands for agricultural 

purposes (bands 3, 4, and 5 — refer to Table 2.1). 

In order to investigate the consistency of the methods to different image con-

tents, data from another area were also used. The data have been used previously 

by Novo & Braga (1991), in a project ou aquatic systems, and were available in 

bands 4 and 5. 

The data have been submitted to the usual radiometric and geometric correc-

tions at INPE, and any defective scan une, if detected, has been automatically 

replaced by the une immediately above. This is the current practice adopted by 

INPE, when confronted with any spurious data from detector fallure, or from 

errors associated with the transmission and reception of remotely sensed data. 

In view of the impracticality of working with data from a whole image, a 

sub-arca comprising different patterns was selected from each image, to allow the 

evaluation of the replacement methods under a number of different situations. 
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Because the images were available at different dates, data from corresponding 

areas in images acquired at different times were registered using several control 

points in one image and finding the equivalent points in the others. This was done 

manually as well as digitally, using the facilities provided at a SUN workstation. 

The results from both procedures were very similar. 

In section 3.2 some notation is introduced. Section 3.3 presents the data sets, 

providing descriptive statistics of the data, as well as visual interpretation of the 

corresponding sub-images. 

3.2 Notation 

Remotely sensed data in band k, acquired at time t, can be thought of as 

observations 	j), on an n1  by n2  rectangular lattice, where rows are indexed 

by i = 1, 	, n 1  and columns by j = 1, 	, n2 . Let Z5 be the set of ali sites (i, j) 
in the lattice. 

Let the sa.mple autocorrelations at lags g,h, for the data in band k, acquired 

at time t, rl(g, h), be defined here as gc(g, h)/C 0  where, for gh > 0, 

C(g, h) = {(ni— 1 g 1)(n2 —  1 li 1)} -1 E[4(i , i) ültc][ult`(i 	+ h) — 4}; 

C(g, —h) = 	1 g 1)( 7/2 —  1 h I)} -1 	+ h) - iti;114(i + 

and iLite is the mean of the data. 

The correlation between data in different bands (say, k and 1), acquired at 

time t, is henceforth denoted by rbtkl  (or simply rbki ), and is the usual bivariate 

correlation. Similarly, the correlation between the data in band k, acquired at 

different times (say t 1  and t2 ), is the usual bivariate correlation, and is henceforth 

referred to as rditeit2  (or simply rdtit2 ). 

3.3 Descriptive Statistics of the Data and Vi-

sua! Interpretation 

In this section some descriptive statistics are provided for both data sets. 

The discussion of these statistics is usually followed by visual interpretation of 

the corresponding sub-images. 
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3.3.1 First Data Set 

3.3.1.1 Introduction 

Data for the first data set, henceforth referred to as D 1 , were made avail-

able in bands 3, 4 and 5 of the TM Landsat, on three consecutive passages 

(08/06/86, 24/06/86, and 10/07/86), over an area in São Paulo State, Brazil. 

The data in each band and date correspond to an arca of 92 x 92 pixels mainly 

cultivated with wheat, which is usually planted between the end of April and 

the beginning of May. The average cycle between sowing and harvesting for the 

different varieties planted in this region is 110 days (Rudorff & Batista, 1989). 

Unfortunately, due to the fact that the data correspond to an area selected 

from a much larger image, the details about the exact location of the area, and 

the type of ground cover present, could not be precisely identified. However, from 

the technical report by Rudorff and Batista (1989), who used data over the whole 

image, and the visual interpretation of the sub-'images in bands 3, 4 and 5, many 

details could be deduced about the arca. 

Figure 3.1 indicates the approximate location of the test site ou the map of 

Brazil. 

o 

22 30' 

22 45' 

Figure 3.1: Approximate location of the test site for the first data set. 
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3.3.1.2 Deseriptive statistics of the data 

Descriptive statistics for each of the nine sub-images in D 1  are now provided. 
Each image is coded, to facilitate its identification in the text. Let D/ (tb) refer to 
the sub-image acquired at time t ia band b, where the subscript t . 1,2, 3 refers 
to dates 10/07/86, 24/06/86, and 08/06/86, respectively, and b . 3, 4,5 refers to 
bands 3, 4 and 5, respectively. Henceforth, the relevant information about the 
sub-images in either data set, are always presented in order of increasing band, 
and decreasing date. 

Table 3.1 gives the mean, median, standard deviation (stdev), minimum and 
maximum am,M)1, and the range of the data ia each sub-image in D 1 . 

Table 3.1: Summary statistics of the sub-images in D1. 

Code Mean Median Stdev (m,M) Range 

D1(13) 25.2 26 5.3 (10,46)'  36 
D1(23) 24.2 24 5.0 (11,43) 32 

D1(33) 23.1 22 4.9 (11,45) 34 
D1 (14) 43.2 42 10.6 (6,76) 70 
D1 (24) 46.9 45 10.8 (8,82) 74 
D1 (34) 48.9 48 10.3 (8,76) 68 
D1 (15) 60.0 58 17.7 (5, 106) 101 
D1 (25) 56.6 54 16.0 (7, 100) 93 
D1 (35) 55.9 52 15.9 (7, 101) 94 

From the standard deviations and the ranges ia Table 3.1 it is noted that data 
in band 3 are m.uch more homogeneous than data ia either bands 4 or 5. This 

characteristic is also evidenced in the sub-images corresponding to data in band 

3, shown ia row (a) of Figure 3.2. Rows (a), (b) and (c) of Figure 3.2 display 
the sub-images ia D1 in bands 3, 4 and 5, respectively. Each column in Figure 
3.2, from left to right, gives the sub-images acquired at dates 10/07, 24/06 and 

08/06, respectively. This figure, and ali others to follow, show the sub-images ia 
false colour. The histogram shown below the range of colours, at the right hand 

side of the figure, corresponds to the data over ali nine sub-images displayed. A 
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compact version of the entire frame is shown above the range of colours. Most 

of the photographs in this dissertation include the compact version, the colour 

range, and the histogram, at the right hand side. 

a 

C 

Figure 3.2: From left to right: frame with sub-images acquired at 10/07/86, 

24/06/86. and 08/06/86, respectively, in bands (a) 3; (b) 4; and (c) 5. 

Note that the colours in any sub-image, depend both on the range of the data, 

and on the com pression adopted for the range of the colours. The maximum range 

of the colours is 256 [0,255], and comprises varying intensities of the colours 

magenta, blue (cyan), green, yellow, orange, and red, which are associated, in 

this order, with increasingly higher digital numbers (radiance values). The range 

of each individual colour can be observed in Figure 3.3 (a). An example of a 

compressed range of colours (from 64 to 208) is shown in (b). 

By compressing the range of the colours, the images can be displayed with 

more contrast, thus being more informative. For example, the range of colours 

in Figure 3.2, has been compressed to 128 [0,127], which is essentially the range 

of the data over ali sub-images displayed in the figure (see the corresponding 

histogram). If the range of colours is smaller than the range of the data, the 
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Figure 3.3: (a) Full range of the colours; (b) Compressed range of colours (from 

64 to 208). 

pixels at the tails of the distribution shown in the histogram are displayed in 

black (left tail), or white (right tail). Thus. the compression of the range of 

colours needs to be controlled, to be approximately the same as the range of the 

data, if the images are to be displayed with the maximum informative content 

possible. If the range of colours is approximately the same as the range of the 

data, then the colour red is associated with the highest values of the data, whilst 

the colour magenta indicates the lowest ones. If the range of colours is greater 

than the range of data, then the contrast is reduced, and the observed colour will 

only be a subset of those possible. For instance, the range of colours in the image 

corresponding to the Figure 3.3 (a) would be from blue to orange. A similar 

effect is observed in Figure 3.2 (a),where only magenta and cyan are used. These 

sub-images can be displayed in a different contrast, if the range of the colours is 

compressed to [0,63], for example, since the range of the values encompass a large 

number of colours. The sub-images shown in Figure 3.4 correspond to those in 

Figure 3.2 (a), when the range is compressed to the interval [0,63]. 

The sub-images displayed in Figure 3.2, especially those acquired in different 

bands, give valuable information about the main features of the test site, which 

are indicated in Figure 3.5, on the sub-image acquired at 10/07/86 in band 5. 

Light intensities of the grey levels in this figure correspond to high digital values 

on the corresponding sub-image shown in Figure 3.2 (c), whereas the dark ones 

are associated with low digital values. 

Since the original image is over an area of intense wheat cultivation, it has 

been inferred that the areas above and below the road correspond to two wheat 
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fields (A), which are bordered, at the left, by areas of greater moisture (B). At 

the bottom of the sub-image, two areas of intense moisture (C) can be observed. 

Part of the remaining area is bare sou l (D), and sou l covered with low density 

vegetation (E). 

Figure 3.4: From left to right: sub-images in band 3 acquired at 10/07, 24/06, 

and 08/06, shown in a different contrast. 

The most heterogenous area in ali sub-images in D 1  is that delimited by 

lines 76 and 90, which contains the regions of intense moisture, as indicated by 

C in Figure 3.5. The sub-images in band 5 are the most heterogeneous ones. 

For example, the minimum and maximum values [(m,M)] of the data in each of 

columns 33 to 36, which intersect lines 77 and 85, in sub-image D 1 (15), are (8,51), 

(5,59), (7,63), and (7,62), respectively. The minimum values are the radiance from 

the portion of the diagonal moisture stripe that is contained in the area delimited 

by these lines and columns. 

It is especially in the sub-images in band 5 that large variations are observed 

between pixel values at sites which are geographically close. Figure 3.6 displays 

the plot of the data in lines 76, 77, and 78, in sub-image D 1 (15), from where the 

decrease in the pixel values between sites (76,14) [value 78] and (76,15) [value 

52] can be observed. Another example is the difference between the pixel values 

between sites (76,33) [value 39] and (77,33) [value 8]. Note that a constant, shown 

in the legend of the figure, has been added to the data in lines 77 and 78, to better 

discriminate the data in the different lines. Other examples for D 1  are given in 
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Figure 3.5: Representation of the sub-image acquired at 10/07/86 in band 5. 

Figures 5.8, 5.9, and 5.10, in Chapter 5. 

The large variations in the pixel values at sites that are dose geographically 

can also be deduced from visual observation of sub-images, and the corresponding 

histogram. For example, in Figure 3.2 (c), the area shown in yellow and orange, 

at the top right of the sub-image acquired at 10/07, is contiguous to an area 

shown in cyan. From the range of colours, it can be inferred that the difference 

between the values of the pixels shown in cyan, and those shown in yellow, is 

approximately 25 to 40 grey levels. In fact, the pixel values in sub-image D 1 (15), 

in lines 22 and 23, intersected by columns 79 to 84, are: 

Column 

Line 79 80 81 82 83 84 

Line 22 : 60 66 74 77 71 57 

Line 23 : 87 92 101 101 103 97 
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Figure 3.6: Piot of the data in fines 76, 77 and 78, in the sub-image acquired in 

band . 5, at 10/07. 

and variations, from 24 to 40 gTey leveis, occur. 

Note that even larger variations than the ones given above, may occur. For 

example, in sub-image D 1 (15), the pixel values in the intersection of lines 26 and 

27, with column 88, are 43 and 102, respectively, corresponding to a variation of 

59 grey leveis. 

The small variation amongst the means and standard deviations of the sub-

images acquired at different dates, for any fixed band, as shown in Table 3.1, 

suggests that few changes in ground cover have occurred between the dates of 

imaging. However, the larger variation amongst the means and standard de-

viations of data in the three bands, for any fixed date, indicates a significant 

difference in brightness, from the same objects on the ground, to distinct wave-

lengt hs . 

These variations can be also be seen in Figures 3.7 and 3.8, which display 

the difference images for sub-images acquired at different times, and in different 

bands, respectively. The difference image for two images is obtained by subtract-

ing corresponding pixel values, and adding a constant value of 128, to ensure 

250 

200 

160 

100 

50 
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values are non-negative. 

Note, from the range of values in the histogram displayed in Figures 3.7 and 

3.8, that larger differences are observed between the data acquired in different 

bands, than between those acquired at different times. Although the histogram 

in these figures correspond to the data over ali difference images displayed, it 

is nevertheless useful and informative. From the histogram it can be seen that 

the largest differences are a,ssociated with the colour red, and the smallest with 

dark magenta [note that although magenta shows very distinctively in the frame 

displayed in Figure 3.8, suggesting large changes between bands 4 and 5, the 

colour is associated with pixels with small differences, as is cyan (both colours 

are near dark blue, which is associated with differences of approximately zero)]. 

The differencing process ou images acquired ou different dates, and in different 

bands, allows an evaluation of the degree of change in land cover that hos taken 

place between different passages, and the difference in response from the same 

targets to different wavelengths, respectively. For instance, from the presence of 

red and yellow in the difference images in Figure 3.7 (b) (corresponding to band 

4), it can be inferred that significant differences have occurred in the arcas that 

display these colours, between passages acquired at 10/07 and 24/06, and 10/07 

and 08/06. As band 4 has high land/water contrast (refer to Table 2.1), these 

changes may have been caused by the occurrence of rainfall, or the application 

of irrigation ou, or shortly before 10/07. Note that these changes do not show as 

pronouncedly in the sub-images in either bands 3 or 5. 
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a 

C 

Figure 3.7: Difference images for data acquired at different times in bands (a) 

3 (b) 4 (c) 5. From left to right: 21/06 data from 10/07 data (+128); 08/06 

data from 10/07 data (+128); 08/06 data from 24/06 data (+128). 

a 

c 

Figure 3.8: Difference images for data acquired in different bands at (a) 10/07: 

(b) 24/06; and (c) 08/06. From left to right: band 3 data - band 4 data (+128); 

band 3 data - band 5 data (+128); and band 4 data - band 5 data (+128). 
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Figure 3.9: Plot of the fine means and fine standard deviations for the sub-images 
in band 3, acquired at dates 08/06, 24/06 and 10/07. 

The plots of line means and line standard deviations for images acquired in dif-

ferent bands and the same date, and for images acquired at different times in the 

same band (Figures 3.9, 3.10, and 3.11), may also provide valuable information 

about the differences in response, and changes in land cover, respectively. 

Figures 3.9, 3.10, and 3.11 display the 1:dots of fine means and line standard 

deviations of the sub-irnages acquired at the three dates, in bands 3, 4 and 5, re-

spectively. A constant has been added to each set of fine means and une standard 

deviations, to better discriminate these pIots. The constant, if added, is shown in 

parenthesis in the legend of each figure, alongside the symbol used to represent 
the corresponding means, or standard deviations. The notation SD in Figures 
3.9, 3.10, 3.11, 3.18, and 3.19 stands for standard deviation. 

The uniform behaviour of the fine means and fine standard deviations in sub-

images at different dates in ali bands, displayed in Figures 3.9, 3.10, and 3.11, 
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Figure 3.10: Piot of the line means and fine standard deviations for the sub-

images in band 4, acquired at dates 08/06, 24/06 and 10/07. 

suggests that few changes in land cover have occurred between the different dates 

of imaging. The progressive decrease in homogeneity from band 3, to band 5, can 

also be inferred from these figures. 

The increase in the means, in the first 15 lines of Figure 3.10, for band 4, 

corresponding to a decrease in the corresponding fines in Figure 3.11, for band 5, 

suggests a progressive replacement of bare sou l by vegetation, since bands 4 and 

5 are respectively sensitive to vegetation and sou l reflectance. 

From the plots in Figures 3.9, 3.10, and 3.11, and also from Figures 3.7 and 

3.8 it is expected that data ou sub-images acquired at different dates but in the 

same band have a stronger correlation than data in sub-images in different bands 

but at the same date. This is confirmed by the correlations given in Tables 3.2 

and 3.3, respectively. Table 3.2 gives the correlation rd ii between data acquired 

at different dates for each band. The subscripts i and j, i , j = 1, 2, 3 refer to the 
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Figure 3.11: Piot of the line means and line standard deviations for the sub-

images in band 5, acquired at dates 08/06, 24/06 and 10/07. 

dates 10/07/86, 24/06/86, and 08/06/86, respectively. 

These correlations show that the data at the different times are ali well corre-

lated, especially those in band 5, due to the greater heterogeneity of data in this 

band. This greater heterogeneity is explained by the presence of different types 

of ground cover which respond very distinctively in this wavelength. 

The correlation between bands, for each date, is given in Table 3.3, where 
rbki , k,1= 3,4,5 refers to bands 3, 4 and 5, respectively. 

Table 3.3 indicates that data in bands 3 and 5 are well correlated, and that 
data in band 4 are poorly correlated with data in both bands 3 and 5. The higher 
correlation between bands 3 and 5 in this data set may be justifled ou the grounds 
that these bands are more sensitive to sou l reflectance, whereas band 4 is more 
sensitive to sou l absorbance. 
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Table 3.2: Correlation between data acquired at different dates in bands 3, 4, and 
5. 

rd ii  Band 3 Band 4 Band 5 

rd12  0.864 0.834 0.937 
rd13  0.764 0.710 0.913 
rd23  0.817 0.853 0.920 

Table 3.3: Correlation between data in different bands on the 3 dates. 

rbkl DATES 
10/07 24/06 08/06 

rb34  0.081 0.012 —0.126 
rb35  0.719 0.705 0.760 
rb45  0.146 —0.016 —0.122 

The fact that pixels in TM imagery are spatially autocorrelated, i.e., sites 

closer in geographical space tend to have similar reflectance values, has been 
reported before (e.g. Labovitz et ai., 1982; Ulaby, 1986; Mather, 1987). The plots 
of the sample autocorrelations, which are now presented, confirm this observation. 

The sample autocorrelations at lags g, h, where g = —3, ... 3, and h = 
O, ... , 19 for the data acquired at 10/07/86 in bands 3, 4 and 5 are displayed in 

Figure 3.12 (a), (b) and (c), respectively. Tables A.1, A.2, and A.3 in Appendix 

A give these autocorrelation values, and some additional ones, for data in bands 
3, 4 and 5, respectively. Values for h < O are not provided since rg ,h  = r_g ,_h  for 
all g, h. 

The sample autocorrelation values for the data acquired at other dates in 

bands 3, 4 and 5, are very similar to the ones presented in Figure 3.12, and so 
are not given here. 

From Figure 3.12 it can be seen that Lhe sample autocorrelations are slow 

decaying in ali bands. However, the autocorrelations in the most homogeneous 

band 3 decay faster than those in the more heterogenous bands 4 and 5. Although 
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the autocorrelations in band 3 decay more rapidly than those in band 4, this role 

is reversed at larger lags. Figure 3.13 shows the plot of r_ i , h , r_h,i , r_ 2,h and r_h, 2 , 
for h ---. O, ... , 19, for the data acquired on 10/07/86 in bands 3, 4 and 5. From 

the figure it can he observed that the sample autocorrelations at small lags are 

approximately symmetric about both axes, that is, r9 ,hR,' r9 ,_h --n-:, T- g ,h ',"■".% r-g,-h. 

This is also observed on the data acquired at the other two passages. 
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Figure 3.12: Sample autocorrelations, r9,h, g = —3, ... , 3 and h = O, 	, 19, for 
the data in the sub-images acquired at 10/07/86 in bands (a) 3; (b) 4; and (c) 5. 
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3.3.2 Second Data Set 

3.3.2.1 Introduction 

Data for the second data set, herewith referred to as D2, were made available 

in bands 4 and 5 of TM Landsat 5 on thirteen dates of imaging between 1984 

and 1990. The area is in São Paulo State, Brazil. Its approximate location on 

the map of Brazil is given in Figure 3.14. 

0 

22 00 

22 Ilfr 

Figure 3.14: Approximate location of the test site for the second data set. 

As for D 1 , the impracticality of working with data from a whole image made 

the selection of a sub-area necessary. In this case one was chosen, correspond-

ing to a sub-image of 100 by 100 pixels. The land cover was identified from a 

classification map of the area, provided by INPE, and consists mainly of refor-

estation and low density vegetation. The classification map was produced using 

the sub-images acquired at 04/07/89 and 20/07/89. 

Despite the availability of a large number (13) of images, most of them are 

months, or even years apart. Since some of the methods proposed in Chapter 4 

for the replacement of defective scan lines in an image require information over 

corresponding areas on images acquired at dose passages, only the 6 images in 

D2 that fulfill this requirement are considered. Each sub-image in D2 is hence-

forth coded D2 (ij), where i = 1,2,3,4,5,6 refers to dates 09/09/90, 08/08/90, 

20/07/89, 04/07/89, 17/07/88, 01/07/88, respectively, and j = 4,5, refers to 

bands 4 and 5, respectively. The relevant pairs of sub-images, for j = 4,5, are 
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i = 1 and i = 2, i = 3 and i = 4, and i = 5 and i = 6, which are respectively 32, 

16 and 16 days apart. 

The statistics for the selected sub-images from D2 are now given. As for Di, 

these statistics are usually followed by visual interpretation of the corresponding 

sub-images. 

3.3.2.2 Descriptive statistics of the data 

Table 3.4 gives the mean, median, standard deviation (stdev), minimum and 

maximum [(m,M)], and the range of the data on the selected sub-images. 

Table 3.4: Summary statistics of the selected sub-images from D2. 

Code Mean Median Stdev (m,M) Range 

D2 ( 14) 53.4 54 6.3 (28, 79) 51 

D2(24) 42.8 43 5.4 (17,65) 48 

D2(34) 39.8 40 5.4 (17, 59) 42 

D2 (44) 36.6 36 5.2 (21,62) 41 

D2 (54) 41.6 42 6.2 (22, 64) 42 

D2(64) 38.5 38 6.1 (15, 61) 46 

D2 (15) 96.6 104 27.2 (32,192) 160 

D2 (25) 76.5 85 24.8 (18,138) 120 

D2 (35) 74.7 84 25.4 (18,129) 111 

D2 (45) 63.0 70 20.8 (14,115) 101 

D2 (55) 66.3 72 21.9 (15,131) 116 

D2(65) 62.8 68 20.6 (14,126) 112 

From the ranges and the standard deviations given in Table 3.4, it is seen 

that data in band 4 are more homogenous than those in band 5, and that with 

the exception of D2 (15) and D 2 (25), ali the statistics displayed in Table 3.4 do 

not change significantly from passage to passage. The sub-images in band 4 and 

band 5, at the different dates, are displayed in Figures 3.15 and 3.16, respectively. 

Large variations between the values of pixels that are geographically dose also 

occur in the sub-images in D2, especially those in band 5. For instance, the values 
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of the pixels in sub-image D 2 (15), in lines 59 and 60. intersected by column 1, are 

100 and 49, respectively: those in the same Unes. intersected by column 2, are 86 

and 37. Other examples are given in Chamei' 5. in Figures 5.19. 5.20. and 5.21. 

The greater homogeneity of data in band 4. in contrast to those in band 5. is 

clear from the sub-images displayed in Figure 3.15 for band 4, and Figure 3.16 for 

band 5. Note that the range of the colours, in Figure :3.15. has been compressed 

to approximately 16-88. to enhance the contrast of the sub-images. 

Figure 3.15: Frame of the selected sub-images in band 4. au different times of 

acquisition: 1. D 2 (14) 2. D 2 (24) 3. D2(34) 4. D2(44) 5. D 2 (54) 6. D2 (64). 

From Figure 3.15 it is seen that the colours cyan and magenta dominate in 

ali sub-images, except D 2 (14). In band 4, the reforested areas show as magenta, 

thus being associated with low grey levels. The cyan colour indicates either the 

presence of bare sou. or sou l covered with low density vegetation. 

On the other hand. the greater sensitivity of band 5 to sou l reflectance asso-

ciates relatively high grey levels with bare sou. Thus. the presence of yellow in 

the sub-images shown in Figure :3.16 indicates bare sou l whereas cyan also sug-

gests sou l with low density vegetation. Magenta in this band indicates the areas 

of reforestation, with predominance of green biomass (vegetation absorbance). 
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Figure 3.16: Frame of the selected sub-images in band 5, at different times of 

acquisition: 1. D 2 (15) 2. D2 (25) 3. D2 (35) 4. D2 (45) 5. D2 (55) 6. D2 (65). 

The contrast between the amount of biomass in the arcas of reforestation and the 

areas of low density vegetation (grass) explains the bimodal distribution of the 

grey leveis in this band. 

Figure 3.17 is a representation of the sub-image in band 5, acquired at 09/09/90, 

and indicates the land use described above. Both letters A and B correspond 

to reforested areas, but B is associated with reforestation in an early stage: C 

denotes arcas of sou l covered with low density vegetation. whilst D represents the 

areas of very low coverage. E indicates bare sou. 

The difference in mean grey levei in sub-images D 2 (14) and D 2 (24), and 

D2 (15) and D2 (25), is possibly due to differences in sou l moisture between the 

two dates of imaging. A possible explanation based on changes in land cover 

between the two passages is rejected when the sub-images from the two passages 

are compared visually. The plots of line means and line standard deviations for 

ali selected sub-images also agree with the explanation of differences in soil mois-

ture. rather than changes in land cover. These plots are given in Figures 3.18 

and 3.19 for the six sub-images in band 4. and the six sub-images in band 5, 

34 



respectively. A constant has sometimes been added to a set of 1.ine means or line 

standard deviations. to better discriminate the plots corresponding to different 

passages. The constant, if added, is shown in parenthesis in the legend of Figures 

3.18 and 3.19, alongside the symbol used to represent the corresponding mean. 

or standard deviation. 
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Figure 3.17: Representation of the sub-image acquired at 09/09/90 in band 5. 

The plots in Figures 3.18 and 3.19 sttggest that few changes in land cover 

occurred between the passages acquired at close dates (16/32 days apart). 

The different response of the land cover, in different wavelengths, is also clear 

from these plots. The similar pattern displayed by ali curves, for each band, 

indicates that the arca has been used for the same purpose for at least the last 

6 years, and that its main features have been preserved throughout these years. 

Visual inspection of the sub-images acquired at 10/08/85 in bands 4 and 5 (Fig-

ure 3.20), and those gathered at 08/08/90 in these bands [D2(24), D 2 (25) — see 
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Figure 3.18: Piot of the line means and line standard deviations for the six sub-
images in band 4. 

Figures 3.15 and 3.161 shows that the main differences between these sub-images, 

are probably due to the process of deforestation. For in.stance, the top half of the 

sub-image in Figure 3.20 (b), corresponding to band 5, is dominated by the refor-

estation (shown in magenta), whereas the corresponding area on the sub-image 

in the same band, acquired at 08/08/90, has reduced arcas with reforestation, 

low density vegetation, and small patches of bare sou l (shown in magenta, cyan, 
and green, respectively). However, it is interesting to note that the structures 

on the ground are reasonably preserved, despite the 5 year gap between the two 

sub-images. The man-made features, stressed by the linear geometry of the pat-

terns ou the ground, change very little between ali the images made available, 

and especially on those selected for this study. 

The difference images obtained from sub-images acquired at dose dates (16/32 

days apart), in bands 4 and 5, are given in Figure 3.21 (a) and (b), respectively. 
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Figure 3.19: Plot of .the une mea.ns and une standard deviations for the six sub-

images in band 5. 

Figure 3.22 shows the difference images obtained for each of the relevant pairs of 

sub-images acquired in different bands, on ali six dates of acquisition. 

From the difference images displayed in Figure 3.21 it is observed that few 

changes in land cover occurred between the passages at dose dates (16/32 days 

apart). However, the distinct response of the same targets on the ground, to the 

different wavelengths, is very clear in the difference images shown in Figure 3.22. 

The correlations, rdii , between data in sub-images acquired at different dates, 

given in Table 3.5, also indicate the dose association between the data in the 

sub-images acquired at different dates. The subscripts i , j = 1,2,3, 4,5, 6 refer to 

the dates as given previously. 

From Table 3.5 it is noted that data in sub-images from consecutive passages 

(i = 1 and i = 2; i = 3 and i = 4; i = 5 and i = 6) are well correlated, and that 

the correlation is still good between data on sub-images 32 days apart [D 2 (14) & 
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Figure 3.20: Sub-images acquired at 10/08/85 in bands (a) 4 (b) 5. 

D2 (24); D 2 (15) Sz D2 (25)]. The correlations are always higher for data in band 

5 than in band 4. Even images which are one year apart [D 2 (25) <54 D2 (35)] are 

fairly well correlated (rd 23  = 0.81). This may be justified by both the fairly 

constant type of land cover, and the greater heterogeneity of data in band 5. 

The correlations, rbki , between data in bands 4 and 5 are given in Table 3.6, 

for ali six chosen dates of imaging. The subscripts k,1 = 4, 5 refer to bands 4 

and 5, respectively. From these correlations it is seen that there is a moderate 

correlation between data in bands 4 and 5 at ali passages, and that for any given 

pa,ssage the highest correlation between bands occurs between data in D 2 (14) and 

D2 (15) (rb45  = 0.58). Comparison of the correlations displayed in Tables 3.5 and 

3.6 shows that temporal information may provide a relevant source of knowledge 

when considering methods for the estimation of missing values in remotely sensed 

data. 

The similarity of the sample autocorrelation functions of sub-images acquired 

at consecutive passages also supports this suggestion. The sample autocorre-

lations r90 , g = O, , 19, for ali sub-images in D2 are shown in Figure 3.23. 
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Table 3.5: Correlation between data acquired at different dates in bands 4 and 5. 

rd i;  
i 

D2 0 24 34 44 54 	I 	64 	i D2 25 35 	I 	45 55 65 

14 0.81 0.54 0.45 0.54 0.50 15 0.96 0.77 0.74 0.70 0.69 
24 0.44 0.38 0.39 0.38 25 0.81 0.77 0.74 0.73 

j 34 0.90 0.65 0.56 35 0.97 0.85 0.84 
44 0.62 0.57 45 0.81 0.81 
54 0.89 55 0.95 

Table 3.6: Correlation between data in bands 4 and 5, at ali passages. 

rbki 

1 

D2 14 24 34 44 j 	54 64 

15 0.58 0.62 0.60 0.58 0.47 0.49 
25 0.39 0.44 0.55 0.53 0.43 0.46 
35 0.44 0.52 0.32 0.29 0.34 0.31 

k 45 0.36 0.42 0.21 0.17 0.24 0.21 
55 0.56 0.56 0.40 0.37 0.30 0.30 
65 0.44 0.43 0.28 0.25 0.15 0.14 

The similarity between pairs of consecutive sub-images, or sub-images acquired 

a month apart, is very clear in this figure. This similarity is also observed at lags 

ro,k, h . 0, ... , 19. 

As for D1 , the sample autocorrelations for ali sub-images in D2 are slow 

decaying, with those for sub-images in band 4 decaying faster than those in band 

5. The sample autocorrelations at lags (g,h), g = -3, ... , 3 and h . O, ... , 19 

are presented in Figure 3.24 (a) and (b) for the sub-images acquired at 09/09/90 

in bands 4 and 5, respectively. The values are given in Tables A.4 and A.5 in 

Appendix A. These tables also include correlations at greater lags. It is interesting 

to note that for the sub-images in this data set, the sample autocorrelations in the 

south east direction decay fa,ster than those in the north east direction, especially 

for the data in band 5. Thus, r9 ,h  O '1. g ,h for ali g, h. 

For some of the sub-images in band 4 [D2 (14) and D2(24)], r9,hR-', rh ,9  for 
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Figure 3.21: Difference images for the relevant pairs of sub-images acquired at 

different dates in bands (a) 4 (b) 5. 

1. D2 (14) — D2 (24)(+128); 2. D2 (34) — D2 (44)(+128); 3. D2 (54) — D2 (64)(+128); 

4. D2(15) — D2(25)(+128); 5. D2(35) — D2(45)(+128): 6. D2(55) — D2(65)(+128). 

< g < 19 and O < h < 8. The plots of the sample autocorrelations, rg ,h , at 

some selected lags (g = —2, —1 and h = O, ....19), are presented in Figure 3.25 

for the sub-images acquired at 09/09/90 in bands 4 and 5, respectively. For ali 

other sub-images in band 4. and ali sub-images in band 5, r9 .h  is not similar to 

rh ,9 . 

Ali sub-images in D2 have been corrected at INPE for a systematic defect 

that affected lines 33, 65 and 97 of the TM images in ali bands. The cause 

of the defect has not yet been discovered. The intriguing fact is that it affects 

data in ali bands, and exactly the same lines on ali six sub-images available 

between 1988 and 1990. In some of these sub-images the defect shows as a whole 

sequence of spurious values, which have been replaced at INPE by the values in 

the line immediately above. In others the defect shows as intermittent sequences 

of spurious values, and in this case only the spurious pixel values have been 

replaced by the corresponding ones in the line immediately above. 

linfortunately, this problem was identified very late in the course of this re- 
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Figure 3.22: Difference images for the relevant pairs of sub-images, acquired in 

different bands. 1. D 2 (14) — D 2 (15)(4-128); 2. D 2 (24) — D2 (25)(+128); 

3. D2(34) — D2(35)(+128); 4. D2 (44) — D2 (45)(+128); 

5. D2 (54) — D2 (55)(-1-128); 6. D2 (64) — D2 (65)(-F128). 

search, preventing the possibility of a more sensible treatment of the data on 

these `defective' lines. Throughout this dissertation these data have been treated 

as correct, and ali the analysis of the data include them as such. However, it is 

not expected that these repeated lines will introduce too much bias in the results 

in Chapters 4 and 5, for the following reasons: in Chapter 4 the results are the 

average performance of the methods using ali lines in the sub-images (a total of 

10000 pixel values), and 300 values represent too small a fraction of values to 

have any significant role in the overall results; in Chapter 5, when a different 

approach is used to evaluate the perfomance of the methods, data in line 33 are 

never used. whereas those in lines 65, or 97, are included with data from 9 more 

lines. Moreover, in most sub-images, line 97 is not entirely defectivei, and only 

a few pixel values are replaced by those in the line immediately above. 
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Figure 3.23: Sample autocorrelations, r9 ,0 , g = O, ... , 19, for the data in the 
relevant pairs of sub-images from D2, in bands 4 and 5, acquired at (from left to 
right): (a) 08/08/90 and 09/09/90; (h) 04/07/89 and 20/07/89; and (c) 01/07/88 
and 17/07/88. 
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Figure 3.24: Sample autocorrelations rs„h , g --,- —3, ... , 3 and h . O, ... , 19, for 
the data in the suh-image acquired at 09/09/90 in bands (a) 4 and (b) 5. 

43 



Date: 09/09/90 - Band 4 

et-aed —F 'Mem 

0 	4 IR 	10 1$ 14 18 IS 	 014 e 8 10 IR 14 10 

h (a) 

Date: 09/09/90 - Band 5 

Figure 3.25: Piot of sa,mple autocorrelations for the data on the sub-images ac-

quired at 09/09/90 in bands (a) 4 and (b) 5. Left: r_ i ,h and r_h,i; Right: r-2 1 11 
and r_h,2 , h = O, ,19. 
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Chapter 4 

Estimation of Missing Values 

from Line dropout 

4.1 Introduction 

In this chapter the estimation of missing values due to detector failure is 

addressed using relatively simple methods. As already described in Chapter 2, 

noise can be introduced in the digital data when a detector partially (or entirely) 

fails, causing a number of adjacent pixels along a line (or an entire fine) to contamn 

sequences of spurious values of zero, which show as systematic black stripes across 

the digital image. The problem is commonly referred to as Ene dropout (or line 

drop), and may also arise due to errors associated with the transmission and 

reception of data, or in the reproduction of compatible computer tapes (CCT's). 

As the TM Landsat has 16 detectors in each of its spectral bands, which 

record data simultaneously for 16 scan lines, the failure of one detector causes 

the TM imagery to have a systematic defect every 16th line, until the detector is 

fixed. 

If caused by other types of error, data from the affected scan lines may contamn 

intermittent sequences of spurious values, which show as segments of black stripes 

on the digital image. 

Whatever the cause, line dropout disturbs the visual examination and inter-

pretation of the image, and leads to unreliable statistics of the image, if these 

are based on pixel values. The inclusion of spurious values of zero in the compu-

tation of the image statistics causes the overall mean to be underestimated, and 
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the overall variance to be overestimated. This is less evident in images over areas 

of low radiance ground cover, in view of their low pixel values. 

The estimation of missing values from fine dropout is usually addressed by 

replacing the missing values in the faulty une with the values from the une im-

mediately above it. This practice was adopted at NASA, and is currently in use 

at INPE. Although computationally simple, the duplication of the une above the 

`faulty' one may not be the most appropriate method, and can cause very ob-

servable distortions in the final image products, especially images of high contrast 

cultural features' (Bernstein et ai., 1984). 

In this chapter the performances of this, and other methods for the replace-

ment of the missing scan lines on an image are evaluated. Some of these methods 

have already been proposed in the literature, and are introduced in section 4.2. 

Other new approaches are presented in section 4.3. They are ali computationally 

simple methods that can be implemented on a routine basis, during the pre-

processing stage of digital image processing. In Chapter 5 other approaches are 

proposed, which use spatial statistical models. 

For certain types of application, accurate estimation of the missing values 

may be important. However, factors such as computational complexity, easiness 

of implementation, and speed cannot be overlooked, in view of the large quan-

tities of remotely sensed data that need to be processed. Also, some methods 

might require information that is not readily available, as when multitemporal 

information is used. In any case, it seems important to contrast the estimates 

obtained from relatively simple methods with those obtained from more complex, 

statistical methods, to see if more complicated methods are significantly better. 

There hos not been a thorough investigation of ali the existing methods on 

the same image. Bernstein et ai. (1984), for instance, carried out an investigation 

using TM data in bands 1 and 2 from two Landsat-4 subimages, one that includes 

a stadium, and the second an airport. They show the replacements obtained from 

duplication of the une above a failed detector in band 2, in a 16 by 16 pixels sub-

scene comprising the stadium, and note that the `donut-shaped' stadium appeared 

as a `horseshoe'. They report the observation of similar distortions on the airport 

subimages. 

They also note that: 

has been suggested that the ground processing, instead of merely 

46 



replacing the failed detector with the fine above, should linearly inter-

polate between the line above and the line below to calculate the failed 

detector fine. This does not solve the problem... Even interpolation 

with higher order curves, such as quadratic fit, are of no help.' 

In view of the unsatisfactory results obtained from the single band methods 

of adjacent line replacement and linear interpolation, Bernstein et ai. (1984) 

suggested three methods that use information from another band. They imple-

mented the algorithms on the sub-images containing the stadium, and the airport, 

and reported that excellent results were obtained. In their paper, only the visual 

replacements obtained from line replacement, linear interpolation, and their three 

methods are presented for the sub-image containing the stadium. Bernstein et 
ai. (1984) do report that a detailed examination of the replacement of the failed 

detector lines still showed some defects with the template algorithms, but that 

they axe not as extreme as the defects observable with adjacent line replacement. 

Finally, they conclude that: 

you wish to replace a failed detector with another detector's output 

and are concerned with maintaining the shape of geometric features, 

you are better off using the same detector's output from a nearby 

band than a nearby detector's output from the same band.' 

Fusco & Trevese (1985) discuss the effects of the application of line replace-

ment, linear interpolation, and one of the methods proposed by Bernstein et al. 
(1984) (algorithm 2) in the replacement of missing scan tines in several 64 by 64 

sub-scenes extracted from two Landsat-4 TM images: one containing fields and 

a portion of river, and another of the centre of Rome. They also proposed two 

alternatives to algorithm 2, which were applied to reconstruct entire sub-scenes, 

where every line was sequentially replaced by the values estimated from their 

methods. The root mean square residual was used as a performance indicator for 

these methods, although Fusco & Trevese (1985) note that their conclusions were 

not drawn solely on the results obtained for this measure. One of other measures 

investigated was the correlation between the data in the entirely reconstructed 

sub-scenes, and those in the original sub-scenes. 

With respect to the methods of line replacement, linear interpolation, and 

algorithm 2 of Bernstein et al. (1984), Fusco & Trevese (1985) note that: 
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• 'the replacement of the missing line with the contiguous fine ... 

destroys some geometric structures'; 

• 'the average of two contiguous pixels improves the radiometry 

but still destroys some structures'; 

• 'the addition of a second (correlated) band reduces the error and 

preserves the geometric structures present'. 

One of the methods they propose is only slightly different, in form, from al-

gorithm 1 in Bernstein et a/. (1984), and uses the slope (P) of the straight fine 

regression of corresponding values on the sub-image and on the template band (a 

band that is fairly well correlated with the defective band). They concluded that 

the use of P, as defined in their method, `always gives an error closer to the mini-

mum', based on the values they have obtained for the root mean square residual, 

and the correlation between the reconstructed sub-scenes, and the original ones. 

Their second method uses the slope (p) of the straight fine regression of the 

3 values above and the 3 values below the `missing one', on corresponding values 

in a template band. If the local variance of the values on the template band are 

dose to zero, this slope is set equal to P. They investigated the effect, on the root 

mean square measure, of the use of different thresholds for the local variations 

of the values in the template band, below which p was set equal to P. In one of 

the thresholds defined by Fusco & Trevese (1985) the difference between the pixel 

values in the template band, which are above and below the one corresponding to 

the missing value, was set equal to zero; in another, this difference was set equal 

to 8. They concluded that the values of the root mean square residual, under 

both assumptions, did not differ much. 

Fusco & Trevese (1985) reported that this algorithm generally reduces the 

error with respect to their previous method, but that: 

`in the presence of uniform terrain, the local calculation of the incli-

nation p does not improve the error with respect to the case in which 

the indination of P is appropriately fixed, while it could significantly 

reduce the error where large locai variances occur. Therefore, by 

choosing an appropriate threshold, also function of the signal/ noise 

ratio of the band, we can obtain an improvement in reconstruction 
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with respect to the methods until now proposed, still limiting the 

computing resources.' 

Finally, Guindon (1984), in a little known publication, considers two classes of 

algorithms for the estimation of missing data: the first one involves interpolation, 

whose principal disadvantage, as he points out, 'is the potential distortion of the 

image spatial frequency spectrum introduced by the interpolation process'. The 

second class utilizes the observed grey levei modulation in adjacent bands, to aid 

the estimation process. Guindon (1984) notes that the success of these techniques 

depends on the levei of interband correlation. 

Besides using linear interpolation, Guindon (1984) also examined interpo-

lation using a 4-point cubic spline, and the method of Ene replacement. His 

investigation was carried out on three Landsat-4 TM images and on two simu-

lated TM images (by degrading an airborne MSS scanner), and the test areas 

included a range of surface types (forest, ocean, mountains, agriculture, and ur-

ban coverage). The images were of much larger size than those used by Fusco 

Sz Trevese (1985), with an approximate size of 400 by 400 pixels. Data for the 

three Landsat-4 TM images were available in ali six non-thermal bands, and in 

4, and 5 bands for each of the simulated TM images. Guindon (1984) used the 

mean residual, residual standard deviation, and the largest absolute residual as 

performance indicators to evaluate the methods, and concluded that his method, 

in general, outperformed all other methods except in band 4, which is a band 

that is not strongly correlated with either of its adjacent bands. 

He noted that although computationally simple, the methods of linear inter-

polation and interpolation using cubic splines have spatial smoothing effects. 

In this chapter, ali the existing methods proposed for the replacement of 

missing scan lines are evaluated using the sub-images from data sets D 1  and D2. 

Other new, similar, methods are also investigated. The study is limited to bands 

3, 4 and 5 of the TM, and the data sets include only areas of agricultural use, 

reforestation and low density vegetation (pasture, grass). 

In order to evaluate each of the methods, the failure of detectors is simulated, 

thus allowing the true values to be contrasted with those estimated from the 

various methods proposed. This is discussed in detail in section 4.4. The perfor-

mance of each method is evaluated using several measures that are computed for 

some sub-images from D 1  and D2. Numerical results are presented in §4.5, and 
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are discussed in §4.6. In section 4.7, a visual evaluation of the methods is carried 

out. In view of the results in sections 4.5 and 4.7, other alternative methods for 

the estimation of missing scan lines on the imagery are proposed, and evaluated 

in §4.8. The conclusion follows in §4.9. 

4.2 Existing .Approaches 

In this and the next section it is assumed that any information required by 

a method is both available and non defective. The methods given here can be 

applied to the cases of partially, or entirely missing scan lines. 

Assume that the missing values on the ith  une of an ni  by n2  sub-image 

correspond to pixels (i, j), j E Ai C {1, 2, ... , n2 }. If ali values are missing in une 

i, then Ai  = {1,... , n2 }. Note that this notation extends to the case of several 

missing scan lines, say i i , i2 , .... Let fi tic(i, j) denote the estimated value of pixel 

(i, j) on the image acquired in band k, at time t, for j E A. 

The formulae given below, for the existing, and the proposed methods, apply 

for the estimation of individual missing pixel values occurring in isolated missing 

scan Tines on the imagery. 

The usual and simplest approach for estimating a missing value in a une 

consists of replacing its value by that of the corresponding pixel on the une 

immediately above it. If the une above is not available, or if its values are also 

missing, then the usual practice consists of replacing the missing values in the 

`faulty' line by those in the une immediately below it. 

The method, usually referred to as adjacent une replacement and henceforth 

addressed to as LR, is simply 

ill c  ( i  j) — k  (. 	.) 	. t , 	— Ut 'i — 1  )1 5 .1 E A. 

Another simple procedure, which only utilizes data from neighbouring detec-

tors of the band containing the failed detector is linear interpolation, herewith 

referred to as LI. The method consists of replacing the missing values on a defec-

tive une by the average of the corresponding pixel values in the lines immediately 

above and below the defective one, that is 

= [t4(i — 1, j) -I- T4(i +1, j)1/2 , j E A. 

50 



Another single band method, henceforth referred to as CSP, is the 4-point 

cubic spline interpolation defined in Guindou (1984) as 

= 	j — 1) -I- tt(i,j 1)] — 	[4(i, j — 2) -I- tt ite(i,j -E 2)], :7 E A. (4.1) 

Although Guindon (1984) refers to CSP as a 4-point cubic spline interpolation, 

it is questionable that this is really what the method is. Cubic splines require at 

least 5 points for fitting, whereas the method in equation 4.1 uses only 4. 

It is not clear from Guindon (1984) how the coefficients of the cubic spline in 

equation 4.1 have been found. He only points out that: 

should be noted that the coefficients of the cubic spline algorithm 

have been derived based on the assumption that a gap of two lines 

exists between samples ultc(i,j - 1) and uitc(i, j 1).' 

It might be worth mentioning that the coefficients for interpolating the mid-

point using a third-order polynomial fit to 4 points (2 above, and 2 below the 

missing one) are the same as those for a quadratic fit, and approximately the 

same as those given in equation 4.1 e and -1, instead of-1- 1à and 

Since the purely spatial methods, LR and LI, proved to be inefficient when 

applied to an area cif high contrast, Bernstein et al. (1984) suggested three 

methods that incorporate information from a `template' band - a band that is 

fairly well correlated with the defective band, with no failed detectors. 

Their first method, template replacement, henceforth referred to as TB-1, 

replaces the failed fine with the corresponding scaled line (after mean adjustment) 

from another band. The adjustment of the mean and the scaling are performed 

on each value in the line corresponding to the defective one in a template band, 

say I, through the simple linear equation 

= A {u lt (i,j)- 	, j E A 	 (4.2)i 

where A = 

Here, fé; and si: are the mean and standard deviation, respectively, of the 

values in the image acquired at time t in band k, except those on the defective 
fines if  , f = 1, . .. , F; while f4 and s are the mean and standard deviation of all 

values in the template band acquired at time t, in band I. 
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This approach is very similar to that used to correct the images for radiometric 

mismatches among the sensor detectors, causing the banding effect discussed in 

Chapter 2. Algorithms to correct for this defect usually assume that the output 

from a detector is a linear function of the input (or received radiance value) 

according to the expression: value out = offset gain valuei n . The standard 

deviation (s) and the mean for the whole image (ft) are usually considered to be 

equivalent to the gain and offset characteristics of the sensor system. The values 

for an unbalanced detector d are adjusted so that its mean, 2-4, and its standard 

deviation, sd , are equal to the overall mean and overall standard deviation. This 

is usually achieved by means of the expression 

udi  (i, j) 	ad {u d (i, j) — 

where u td (i, j) and ud (i, j) refer to the corrected and the `unadjusted' values for 

the unbalanced detector d, and ad = slsd . 

The unsatisfactory destriping results sometimes obtained from the use of the 

above expression are justified in the observation by Horn & Woodham (1979) 

that `... it appears that different gains and offsets are appropriate for áfferent 

scene radiance [valuein l ranges, i.e., the sensor transfer curves are sornewhat 

non-linear'. 

Method TB-1 is based on the assumption that the output from a detector 

in any given ban.d is approximately a linear function of the output from the 

corresponding detector in a neighbouring band. If every pixel value on the sub-

image is replaced by the value obtained from TB-1, the mean and variance of the 

sample distribution of these replaced values correspond to those over the entire 

original sub-image. 

The second method proposed by Bernstein et al. (1984), template replace-

ment with error adjustment, herein referred to as TB-2, differs from the previous 

method by the inclusion of an adjustment term, C, which gives a measure of the 

difference between the faulty and the template images in a neighbourhood of the 

failed line. This adjustment term is the average of the difference between each 

mean corrected and scaled value in the template band and the value in the defec-

tive image, in the lines above and below the faulty one. The method is expressed 

as 

ft itc (i,i) = A ult(i,i) 	((i,i) ,j E Ai 	 (4.3) 
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where 

C( , j) = 	— 
1, j) 	uitc(i 1,j)} — A {u lt (i — 1,j) u lt (i -I- 1,j)}]/2, 

and A is as defined for TB-1. 

Equation 4.3 can a1so be expressed as 

ft( i, j) = 	j E A. 

(4.4) 

Thus, method TB-2 is simply linear interpolation with an additional component 

to adjust for possible non-homogeneity in band I. 

Their last method, quadratic vertical fit with template data, here referred to 

as TB-3, consists of fitting a quadratic equation to a vertical slice consisting of 5 

pixels (2 above and 2 below the failed one), after the replacement of the central 

pixel value by the value estimated from TB-1, say 

Although Bernstein et al. (1984) note that `new coefficients must be calculated 

for each páel that needs to be replaced', and that `algorithm 3 requires per pixel 

multiplications and divisions (to perform the least squares fit)', it is not really 

necessary. The missing values can be estimated from 

j) = {34 ti(i, j)+24[4(i-1, j)+4(i+1,j)] 	j)+ulig(i+2, j)]}/70, j E A. 

(4.5) 

Note that the coefficients in equation 4.5 are the same as those for a cubic fit. 

Subsequently, Fusco & Trevese (1985) proposed some possible improvements 

to TB-2, as this method had been noted to yield `slightly off-colour pixels near or 

on the man-made features' in fiat, low contrasted regions (Bernstein et al., 1984). 

Their first suggestion is to replace TB-2 by a method which estimates the 

missing values from the regression line of the values in the entire `defective' image 

in band k, on the corresponding values in a template band, say /. The method, 

herein referred to as TB-4, is 

UI; (i, j) = P 	j) 	-F iz it̀  , j E Ai 	 (4.6) 

where P = rbtk 'i  sit ; and rej is the correlation between the values in the `faulty' 

image acquired at time t in band k, except those on the `defective' lines, and the 

corresponding values on a template band 1, acquired at time t. 
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Note that the sarnple distribution of the values estimated from equation 4.6, 

when all the values in the original sub-image are replaced, has the same mean as 

the original sub-image, but a smaller standard deviation, unless rbP = 1. The 

standard deviation of the image obtained from equation 4.6 is rb l  stk  Hence, 

when the correlation between the original and the template images is poor, the 

variance of the sample distribution of the estimated values is very small, and the 

estimates of the missing values are very dose to the mean of the distribution of 

the original sub-image. 

The second method proposed by Fusco 45J Trevese (1985) is again based on 

linear regression of the values on the `defective' image on the values on a template 

band, but now using only a 'local' neighbourhood of the `faulty' pixel, instead of 

the whole image, as in their first method. 

The method, as interpreted here, replaces the value of P in equation 4.6 by 
the slope p of the linear regression of 4 on u , using data in a neighbourhood 

of the failed une, consisting of 3 lines above and 3 lines below. However, their 

description is unclear, and it was realised at a late stage that the neighbourhood 

can be interpreted differently, as a 'local' neighbourhood of the `missing' pixel 

(consisting of the 3 pixel values above, and 3 below). 

The method, as applied in this study, and henceforth referred to as TB-5, is 

Ui; (i , j) 	p{u lt (i, j) — u it } 	u i; , j E A. 	 (4.7) 

Here, U tk  and t4 are the means in the neighbourhood of the laulty' line in the 

defective image, and in the corresponding neighbourhood on a template image, re-

spectively. The neighbourhood consists of three lines above and three lines below 

the `missing' one. In the computation of '4, the values in the une corresponding 

to the faulty one in a template image are aliso included. 

Earlier indications by Bernstein & Lotspiech (1983) that the grey levels in an 

adjacent band could be used as additional information to improve the recovery of 

missing values in remotely sensed data led Guindon (1984) to develop his adjacent 
band modulation method, of the form: 

= Utk  (2 -1 ,j)-b0  

	

U lt(i i) {P 1  [ Ult (i -1,j) 	-I-  U4(24-1,3) 

(4.8) 
14. 	} I 2), 	E Ai P2 { 	t4(i-2,j) 	ult (2+2,3) 
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where pi  is a weighting factor for the pixel values in the lines immediately above 

and below the `defective' scan line, and /3 2  = 1 — pi  is a weighting factor for the 

pixels values two lines above and two lines below the `missing' one; and b o  allows 

for a possible difference in offset between bands k and /, which can be estimated 

from a linear least squares fit to grey leveis from both bands, after deletion of the 

values in the template image in band I, corresponding to the missing ones in the 
sub-image in band k. 

The method is ba,sed ` on the assumption that the correlation between adjacent 

band grey leveis can be expressed in a simple multiplicative sense and that this 

correlation is stationary over distances of the scale of the interpolation window 

(i.e. 3 to 5 lines)' (Guindon, 1984). 

Guindon (1984) used his algorithm with two sets of weighting factors: one 

involving only adjacent Tines (p 1  = 1 and p2  = O), henceforth referred to as 

method TB-6, and another involving the nearest 4 lines (two above and two 

below the missing line), equally weighted (p 1  = p2  = 1), to be referred to here as 

method TB-7. He noted, however, that the results from the two sets of weighting 

factors were not significantly different, and that ` accurate estimations ... can be 

achieved using adjacent detector data only ' (Guindon, 1984). 

4.3 New Approaches 

This section introduces other simple methods that can be used to estimate 

missing scan lines in remotely sensed imagery. Most of them are analogous to the 

ones presented in the previous section, but incorporate information from another 

passage, instead of information from another band. 

4.3.1 Methods using a Template Band 

The first method herein proposed, to be referred to as TB-8, is a combination 

of methods TB-2 and TB-6. A method similar to TB-6 had been developed 

before knowledge of the method proposed by Guindon (1984). It was giving 

better results than those proposed by Bernstein et al. (1984), or by Fusco Si 

Trevese (1985), on isolated Tines (see §5.9). Since the results from method TB-

2 were usually better than those given by the other methods using a template 
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band, the method has been incorporated with the original one (similar to TB-6), 

to investigate if further improvements could be achieved. 

The method involves two steps. Firstly, the values on the missing scan line 

are replaced by those estimated using TB-2. Then, using these estimated values, 

the lines above and below the defective one are replaced by those estimated from 

TB-2. At the end of this step, the defective line and those adjacent to it carry 

information from both the `faulty', and the template images. 

In the second step, each value in the `missing' line is estimated similarly to 

method TB-6, using the pixel values above and below the `defective one, in the 

`defective' and the template sub-images. 

The method is 

k 	•
) 	

k e. 

2'i ltc (i)j) = 	{ Ut
* I 	

1 )3  4.  "t (2 + 1,3) 
Ult (i 	1,i) 	" It(i + 1, :7) 	E Ai- 	(4.9) 

where ur refers to the estimates obtained from method TB-2. 

Two further methods use a linear regression of the values in the `defective' 

image acquired at time t in band k, on the corresponding values in the same 

passage, but from two other neighbouring bands, say 1 and h. The methods use 

.2̂4(i,j) = bo + Nu(i,j), j E Ai  (4.10) 

where bo , b1  and b2  in equation 4.10 are the least squares estimates of fi o , 131 , and 

132 in the general linear model 

Utk  = 160 A,U1 132Uth 	 (4.11) 

mffiere e i; is màlite noise. 

Two cases are considered. For the method henceforth referred to as TB-9, 

data from the entire sub-image, with the exception of those ou the missing scan 

lines, are used. For the method henceforth referred to as TB-10, the values of 

bo , bi  and b2  in equation 4.10 are the 'local' least squares estimates, using data 

from 2 lines above and 2 lines below the missing one. Results have also been 

obtained when data from 3 lines, instead of 2, are used. As they are consistently 

inferior than those obtained when using only 2 lines above and 2 lines above, they 

are not presented here. 

56 



4.3.2 Methods using a Template Date 

Ali the previous methods, with the exception of adjacent line replacement, 
linear interpolation, and interpolation using cubic splines make use of the multi-

spectral characteristic of the TM, but do not explore its multitemporal potential. 

Since the TM records information over the same area every 16 days, it seems 

natural to explore this multitemporal potential ia the estimation of missing scan 

lines. The methods proposed in this subsection are essentially the same as those 

introduced in section 4.2 and subsection 4.3.1, but incorporate the information 

contained on another passage, instead of the information in another band. It is 

necessary for the method to be reasonable, that no significant changes in land 

cover have occurred between the two acquisitions. The passage used is referred to 

as a template date — a passage that is well correlated with the defective one and 

that has no corresponding defective detectors. Note also that the methods using 

a template date need that the data from the different passages be well registered 

— refer to §2.1. 

These methods are henceforth referred to as TD-1 to TD-10, and correspond 

to the temporal versions of methods TB-1 to TB-10, respectively. Thus, the 

equations corresponding to methods TD-1 to TD-10 are the same as those given 

for methods TB-1 to TB-10, for tl ik  and uit  replaced by il't̀ i  and 42 , respectively. 

Here, t 1  and t 2  are the respective dates of acquisition of the `defective' image, 

and the template image. 

A brief summary of ali the methods is presented in Table 4.1. 
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Table 4.1: Summary of the methods. 

I 	Method 	II 	 Description of method  
' 	

i LR Replaces the values in Lhe missing scan Une by those in the lime 
immediately above. 

LI Replaces the value in the missing scan lime by Lhe average of the 
corresponding values in Lhe limes above and below. 

CSP Estimates the missing values using cubic spline interpolation. 
TB/D — 1 Bernstein et ai. (1984) algorithm 1: 

replaces the missing une with the corresponding 
scaled une (after mean adjustment) from another band (date).  

TB/D — 2 Bernstein et ai. (1984) algorithm 2: 	 _ 

as TB/D-1, but includes an adjustment term that uses information 
from the une above and Lhe une below the defective one, in both the `faulty' 
image and the template band (date). 

TB1D — 3 Bernstein et ai. (1984) algorithm 3: 
estimates the missing value by fitting a quadratic equation to a vertical 
slice of 5 pixels, after replacement of the central pixel 
in the slice by the values estimated using TB/D-1. 

TBID — 4 Fusco (St Trevese (1985) equation 4: 
straight une regression of the values in the entire image on the 
corrésponding values in another band (date). 

TB/D— 5 Fusco & Trevese (1985) equation 6: 
as TB/D-4, but uses data from 3 lines above and 3 lines below the 
missing one. 

TB/D — 6 Guindon (1984) algorithm ABM(1,0): 
estimates the missing value using information in the lines above and below 
Lhe missing one, in both the 'detective' and a template band (date) images. 

TB1D — 7 Guindon (1984) algorithm ABM(1,1): 
as TB/D-6, but uses information from up to 2 lines above and 2 lines 
below the 'detective' une 

TB1D— 8 Estimates the missing lime, and Lhe limes above and below 	
___ 

the laulty' one using method TB/D-2, and then uses this 
information, and the information in the lines above and below 
the corresponding one in a template band (date). 

TBID — 9 Uses regression on two bands (dates), using data from 
the entire image (excluding those corresponding to Lhe missing 
scan une). 

TBID — 10 As TB/D-9, but uses data from two lines above and two lines below 
the 'detective' one. 
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4.4 Test Images and Measures 

This section introduces the sub-images on which the methods proposed in the 

previous section are to be used, and the set of measures proposed to evaluate the 

quality of the estimates of the missing values, obtained from each method. 

To evaluate the replacement of the missing scan lines by each method, it is 

necessary to simulate the failure of detectors in order to know the true pixel 

values and to contrast them with the estimated values. 

All sub-images from D 1  and D2 are considered, and instead of using only the 

lines corresponding to a particular failed detector, the approach adopted here is 

to individually estimate eadi Ene, as in Fusco & Trevese (1985). Because each line 

on the sub-image is replaced, the final product from this procedure is a completely 

new image, herein referred to as the test image, which, ideally, should resemble 

very closely the original sub-image. This procedure makes it easier to visually 

detect the properties of the methods. 

For each sub-image from D 1  and D2, and a particular template (band or date), 

three test images are generated from purely spatial methods (LR, LI, and CSP), 

eight are obtained from methods using a template band (TB-1 to TB-8), and 

eight from methods using a template date (TD-1 to TD-8). When necessary, 

adjustments were made to methods on the first and last few lines, but these 

adjustments will only slightly affect the results. 

Test images are also obtained for sub-images from D 1  from methods TB/D-9 

and TB/D-10. Due to the unavailability of data from two other bands, and the 

lack of two `reasonable' template dates (two images acquired at dose dates), these 

methods are not applied to the sub-images from D2. 

The use of sub-images from two distinct data sets provides the opportunity to 

investigate the consistency of the methods when applied to different types of land 

cover, which may form distinct geometric patterns on the image. The sub-images 

in band 5, from D2, for example, have several well-defined, strong, linear features, 

whereas those in band 5, from D 1 , have less pronounced characteristics, which 

are reasonably consistent over the entire image. 

The set of measures introduced in §4.4.2 is used to evaluate the test images 

from each method. 
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4.4.1 Sub-images and Templates 

4.4.1.1 Using D1 

As described in Chapter 3 (§3.3.1), the first data set comprises nine sub-images, 

corresponding to data on three consecutive passages, in three neighbouring bands. 

Ali nine sub-images are estimated from single band methods, methods using in-

formation contained in other bands (template band methods), and from methods 

using the information provided by one, or more images acquired at other dates 

(template date methods). For the methods using a template band, each sub-

image is estimated using information from either remaining band, whereas for 

the methods using a template date, the information usually comes from the tem-

plate with the higher correlation with the sub-image. Thus, for each sub-image 

in D1 , there are two test images from each method using a template band (except 

for methods TB-9 and TB-10), and one from each method using a template date. 

The template date may have been acquired prior to, or after the acquisition of 

the sub-image. 

In just one situation, test images are obtained using a less correlated template 

date. As sub-images from 24/06 in bands 3 and 5 are better correlated with data 

from the sub-image acquired at 10/07, then the sub-image acquired at 10/07 

has aliso been used as template date for band 4, although data in sub-image 

D1 (24) is better correlated with data in sub-image D 1 (34). Thus, the test images 

obtained for sub-image D 1 (24), using D 1 (34) as template, may be superior to 

those obtained from D 1 (14), not only because of the higher correlation between 

D1 (24) and D 1 (34) [rd23  -= 0.853] but also due to the smaller amount of changes 

in land cover that took place between dates 08/06 and 24/06, than between dates 

24/06 and 10/07 — see Figure 3.7(b). 

It is important to note, however, that the use of a template date acquired after 

the acquisition of the sub-image is only viable if the estimation of the missing 

values is not carried out routinely, during the preprocessing stage of digital image 

processing. Also, if data from previous passages are to be used during this stage, 

they need to be well registered with data on the image being processed. This 

care is unnecessary if data from other bands, but the same passage, are used, 

since the band-to-band registration accuracy of the TM has been reported to be 

within the satellite specifications (Wrigley et al., 1985). 
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For each sub-image in D1, one test image is also obtained from each method 

that uses two bands (dates) [TB/D-9 and TB/D-10j. 

For the template band and template date methods, assume that the test 

images are obtained for particular pairs of images, consisting of the original sub-

image and the template (band or date) considered with the methods. Henceforth, 

denote this pair by OT (original/template). Let each pair of sub-images from D 1  

be coded Di (ij)(k/), where i and k refer to the date of acquisition of the original 

sub-image and the template image, respectively, and j and I refer to the band 

of the sub-image and the template image, respectively. For methods using a 

template band, i = k, whereas for those using a template date, j . I. 

Table 4.2 gives the list of ali pairs of sub-images from D 1 , and their code. De-

pending on the template used with the methods, the pairs are listed under Tem-

plate Band Methods, or Template Date Methods for template band, or template 

date, respectively. A number is also assigned to each pair, for easier identification. 

The table also gives the correlations between the sub-images in each pair, that is, 

between the original sub-image and the template. These correlations come from 

Tables 3.2 and 3.3 for the template date and the template band, respectively. 
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Table 4.2: Numbers and codes for the pairs of sub-images from D 1 , and the 
correlations between the sub-images in each pair. 

I 	 TEMPLATE BAND METHODS 
I OT 

-. Number 
OT 

Code 
Sub-Image Template Band rb,1 

' Date Band Date Band 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

D1(13)(14) 
D1(23)(24) 
D1(33)(34) 
D1(13)(15) 
D1(23)(25) 
D1(33)(35) 
D1(14)(13) 
Dl (24)(23) 
D1(34)(33) 
Dl (14)(15) 
D1(24)(25) 
D1(34)(35) 
Dl (15)(13) 
D1(25)(23) 
D1(35)(33) 
D1(15)(14) 
D1(25)(24) 
D1(35)(34) 

10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 

3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 

10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 

4 
4 
4 
5 
5 
5 
3 
3 
3 
5 

5 
5 
3 
3 
3 
4 
4 
4 

0.081 
0.012 

—0.126 
0.719 
0.705 
0.760 
0.081 
0.012 

—0.126 
0.146 

—0.016 
—0.122 

0.719 
0.705 
0.760 
0.146 

—0.016 
—0.122 

I 	 TEMPLATE DATE METHODS 
I OT 

Number  
OT 

Code 
Sub-Image Template Date rd* 

Date Band—  Date Band 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Dl (13)(23) 
D1(23)(13) 
Dl (33)(23) 
D1(14)(24) 
D3(24)(14) 
D1(34)(24) 
D1(15)(25) 
D1(25)(15) 
D1(35)(25) 

10/07 
24/06 
08/06 
10/07 
24/06 
08/06 
10/07 
24/06 
08/06 

3 
3 
3 
4 
4 
4 
5 
5 
5 

24/06 
10/07 
24/06 
24/06 
10/07 
24/06 
24/06 
10/07 
24/06 

3 
3 
3 
4 
4 
4 
5 
5 
5 

0.864 
0.864 
0.817 
0.834 
0.834 
0.853 
0.937 
0.937 
0.920 
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4.4.1.2 Using D2 

As mentioned in Chapter 3 (§3.3.2), the second data set contains only sub-

images in bands 4 and 5, thus leaving no choice for the template band to be used 

with the methods proposed by Bernstein et a/. (1984), Fusco & Trevese (1985), 

and Guindon (1984). The fact that data in bands 4 and 5 are always poorly 

correlated in this data set, and the unavailability of data in other bands, stresses 

the importance of the development of other methods that do not require a well 

correlated template band. 

The selection of the six passages from D2 in Chapter 3 was to ensure the 

existence of a reasonable template date. AH sub-images from D2 are estimated 

from single band, template band, and template date methods. 

Table 4.3 gives a list of the pairs of sub-images from D2. A number and a 

code similar to those used for D 1  are assigned to each pair, which are listed under 

Template Band Methods, or Template Date Methods, depending on the template 

used with the methods (band or date, respectively). The correlations between 

the original sub-image and the template are also provided in Table 4.3, as well 

as in Tables 3.5 and 3.6 in Chapter 3. 
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Table 4.3: Numbers and codes for the pairs of sub-images from D2, and the 
correlations between the sub-images in each pair. 

TEMPLATE BANI) mr-runnq 
OT 

Number  
OT 

Code 
Sub-Image - Template Band 

I 
rb,1 

Date Band Date - Band 
1 D2(14)(15) 09/09/90 4 09/09/90 5 0.579 
2 D2(24)(25) 08/08/90 4 08/08/90 5 0.441 
3 D2(34)(35) 20/07/89 4 20/07/89 5 0.322 
4 D2(44)(45) 04/07/89 4 04/07/89 5 0.172 
5 D2(54)(55) 17/07/88 4 17/07/88 5 0.298 
6 D2(64)(65) 01/07/88 4 01/07/88 5 0.138 
7 D2(15)(14) 09/09/90 5 09/09/90 4 0.579 
8 D2(25)(24) 08/08/90 5 08/08/90 4 0.441 
9 D2(35)(34) 20/07/89 5 20/07/89 4 0.322 

10 D2(45)(44) 04/07/89 5 04/07/89 4 0.172 
11 D2(55)(54) 17/07/88 5 17107/88 4 0.298 
12 D2(65)(64) 01/07/88 5 01/07/88 4 	, 0.138 

1 	 l'EMPLATE DATE METHODS  
1 

OT 	OT 	Sub-Image 	Template Date rda 
Number 	Code 	Date 	Band 	Date 	Band 

13 D2(14)(24) 09/09/90 4 08/08/90 4 0.810 
14 D2(24)(14) 08/08/90 4 09/09/90 4 0.810 
15 D2(34)(44) 20/07/89 4 04/07/89 4 0.903 
16 D2(44)(34) 04/07/89 4 20/07/89 4 0.903 
17 D2(54) (64) 17/07/88 4 01/07/88 4 0.887 
18 D2(64)(54) 01/07/88 4 17/07/88 4 0.887 
19 D2 (15)(25) 09/09/90 5 08/08/90 5 0.956 
20 D2(25)(15) 08/08/90 5 09/09/90 5 0.956 
21 D2(35)(45) 20/07/89 5 04/07/89 5 0.968 
22 D2(45)(35) 04/07/89 5 20/07/89 5 0.968 
23 D2 (55)(65) 17/07/88 5 01/07/88 5 0.951 
24 D2(65)(55) 01/07/88 5 17/07/88 5 0.951 
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4.4.2 Evaluation of the Performance of the Methods 

The methods are evaluated based on their performance ou a set of measures, 

and visually. Let the residuais for the sub-image of size n 1  by n2 , e(i, j),i = 
1, . . . , n1, j = 1, . , n2 , be defined as the difference between the values in the 

original image, u(i, j), and the corresponding values in the test image, tl(i,j), 
that is, e(i, j) = u(i, j) — j). The measures are now described. 

The first is the scaled root mean square residual (SRMS), given by 

1/2 
I1 n2 

SRMS = (4)-1 E E  e2(i,i)/ (n192.2)  (4.12) 
i=i j=i 

where s iì  is the standard deviation of the original sub-image acquired at time t, 

in band k. 

The use of a scaled root mean square residual here, instead of the root mean 

square residual used by Fusco & Trevese (1985), is to contrast the values obtained 

for this measure, for test images in different bands, or in different data sets. 

Note that if the mean value of the residuais is zero, that is, 
ni 

è = E E e(i, j)/(ni n2 ) = 0.0 , 
j=1 

then the mean square residual is equal to the residual variance, 3, 2 , if the divisor 

of the residual variance is n 1 n2 . As previously mentioned, the residual standard 

deviation has been used by Guindon (1984) as a measure of the performance of 

some methods. In the present investigation, the values for the residual variance 

and the mean square residual are very dose. 

The second measure used to evaluate the methods is the compiementary cor-

relation (CCOR), 1— where ru„-, is the correlation between the original image 

and the test image. 

Finally, the third measure, SRAN, is the range of the residuais divided by the 

standard deviation of the original sub-image. Note that since SRAN is a measure 

that uses only the range of the residuais, a large value for this measure may 

only indicate the occurrance of a few large residuais, and may not refiect the 

actual overall performance of the methods. This stresses the importance of the 

visual evaluation of the methods, as a complement to the numerical evaluation. 

The methods are evaluated by their ability to give consistently small values 

of SRMS, CCOR, and SRAN. 
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Initiaily, ali the methods are evaluated for the sub-images from D1. As in this 

data set there are two possible pairs of original and template band sub-images 

to be used with methods TB-1 to TB-8, let TB-mL, m = 1, , 8 designate the 

method that uses a poorly correlated template, and TB-mH the method that uses 

a well correlated template. Hence, the test image obtained for the pair D 1 (13)(14) 

from method TB-1, for instance, is designated by TB-1L, whereas that obtained 

for the pair D 1 (13)(15) is designated by TB-1H. 

For each original sub-image from D 1 , 31 test images are obtained, as follows: 3 

from single band methods (LR, LI, CSP), 8 from template band methods that use 

a poorly correlated template (TB-1L to TB-8L), 8 from template band methods 

that use a well correlated template (TB-1H to TB-8H), 8 from template date 

methods (TD-1 to TD-8), and 4 from methods that use 2 template band, or 2 

template date sub-images (TB-9 and TB-10, TD-9 and TD-10, respectively). 

In order to aid the evaluation of the methods, ranks 1 to 31 are formed for 

each method, in each original sub-image from D 1 . For each measure, the ranks 

are assigned in order of increasing SRMS, CCOR, and SRAN. By averaging the 

individual ranks assigned in each of the 9 original sub-images from D 1 , an average 

rank (AR) is also obtained for each method. 

A similar procedure is adopted for the sub-images from D2. However, as there 

is no choice of a template to be used with the template band/date methods, and as 

methods TB/D-9 and TB/D-10 cannot be `reasonably' used with the sub-images 

in the second data set, then only 19 test images are obtained for each OT. From 

the results obtained for each method, in each of the 12 OT's from D2, the methods 

are assigned a rank from 1 to 19, in order of increasing SRMS, CCOR, and SRAN. 

Fusco & Trevese (1985) have noted that: 

'From the statistical point of view, linear interpolation improves both 
SRMS and ruo:4,  in respect to adjacent fine replacement. However, 

the improvement in respect to adjacent fine replacement is not as 

strong as indicated by the statistical parameters; some structure could 

be altered even more by linear interpolation than by adjacent fine 

replacement'. 

This suggests that the evaluation of the methods should not be based only on 
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statistical measures, but also on the visual results obtained from each method. 

The visual evaluation of the methods is carried out using the following images: 

• the test image obtained for each method; 

e the residual image obtained as the difference between the original sub-image 

and the test image, plus 128; and 

• the `cut' image, which highlights, in the residual image, the values estimated 

exactly. 

Note that as the grey leveis are integers ranging from O to 255, the estimates 

obtained from ali methods have been rounded to the nearest integer, for the visual 

evaluation. No estimates obtained here for any method exceeded 255, or were 

below O. 

Visual inspection of each test image provides an assessment of the perfor-

mances of the methods, by showing the deformations they introduce on the 

particular structures present in the image. The difference image indicates the 

distribution of the residuais, showing the size of the residual in relation to the 

original image. Finally, the `cut' image provides the spatial distribution of the 

pixels estimated exactly, allowing identification of the areas on the image that 

are more accurately estimated. 

4.5 Numerical Results and Discussion 

Before the results from the application of the methods to the sub-images from 

D1 , and D2 are given, it is interesting to note that, for some of the methods, the 

values for SRMS and CCOR are known either exactly, or approximately. From 

this knowledge, it is possible to indicate which methods perform better than 

others, and under what conditions. These theoretical results are now presented. 

4.5.1 Some Theoretical Considerations 

Let u(i, j), 11(i, j), and v(i, j) denote the pixel value at site (i, j) in the original 

sub-image, in the test image, and in the template image, respectively. Let fi, ii, 

and ril, denote their respective means, and su , sú , and s i, their respective standard 

deviations. 
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Here, define the sample autocorrelations at lags g and h, rg,h, as 

rgh  = {ns!} -1  E [ti(i,i)-ü][1(i+ g, j h) — 	(4.13) 

where ft is the set of sites (i, j), i = 1, ... 	— g, j = 1, ... , n2  — h. 
Let rt„„ denote the correlation between the data in the original sub-image, 

and those in the template (band or date). 

• For LR: 

For LR, the estimate of the pixel at site (i,j) is ít(i, j) = u(i — 1,j), and 

ft, sf, s u . The correlation between the values in the original sub-

image, and those in the test image corresponding to LR, r um  can be found 

by substituting il(i,j) and 71 into the formulae for this correlation, giving: 

E(i j)EU[U(i,i) 	- 1 / j)  
ru,u r10. 	 (4.14) 

ns?, 

The approximate expression for SRMS, for LR, can be found by substituting 

into equation 4.12, which gives: 

2rio}
v2  

SRMS 	{ E(u(ni,;2-112  "ri Eru(in-srui2  
(4.15) 

pe.. {2(1 — rio)} 1/2 - 

• For LI: 

Using the same approach as for LR, the approximate expressions for r um 

and SRMS, for the method of linear interpolation can also be found. For 

LI, the estimate of the value at site (i,j) is 

ft( i, j) = [u(i — 1, j ) u(i 1, j)]/2 	 (4.16) 

and 	i and sa  su . 

The approximate expressions for r u,a and SRMS, for L1, are as follows: 

rio  
ru,u  

V(1 -I- r20)/2 	
(4.17) 
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and 

SRMS {(3 4r10  4- r20)/2} 1/2 . 	 (4.18) 

• For CSP: 

Using the same approach as for LR and L1, the following approximate equa-
tions are obtained for 	and SRMS, for method CSP. 

1 1 rio  — 3r2o ru.ti  ' 	{(130 — 66r10  121r20  — 66r30  9r40)/2}1/2 	
(4.19) 

 
and 

SRMS {(258 — 418r10  217r20  — 66r30 9r40 )/128} 112 . 	(4.20) 

• For TB/D-1: 

The estimate of the pixel value at site (i, j), for method TB/D-1, is 	j) 
[v(i, j) — €3], andir.z = i and s = su . 

By substituting these values into the expression for the correlation between 

the values in the original image and those in the test image obtained for 
method TB-1, viz. 

EmEn 	[u(i, i)i) t7i]  = 	 (4.21) n susii 
gives 

= rtuv• 	 (4. 22) 

The value of SRMS for method TB/D-1 can also be easily found, by replac-
ing the value of 	j) into 4.12. The equation is as follows: 

1/2 
SRMS 	{[2.s! — 2s u  E 	- üllv(i,i) -11  } 

. 	(4.23) 
sv n 

By using the correlation between the values in the original sub-image, and 
those in the template image, equation 4.23 simplifies to 

SRMS = {2[1 — rt.„11 1/2 . 	 (4.24) 

Note that equations 4.22 and 4.24 are exact if the estimates are exact, and 
approximate if the estimates are rounded . 
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• For TB/D-2: 

For method TB/D-2, the expression for SRMS involves the cross-covariances, 
c", between the data in the original sub-image and those in the template. 

The equation is as follows: 

(SRMS) 2 	1(3 — 4r1.40  -F r 0 ) + 1(3 — 4ri'o  -F 11) ) 
(4.25) 

— .*{3ctg — 2(cg cru)) -F 1(cg -F ctLy20)}. 

• For TB/D-4: 

The values for SRMS and r„„-, can be also obtained theoretically for method 
TB/D-4, in a fashion similar to that used for TB/D-1. Note that for TB/D-
4, int = and s t-, =I rtuv I e- 

The following expressiong are obtained for r t„,-, and SRMS: 

rutil =I rtu, I . 	 (4.26) 

and 

SRMS = 11 — rt2uvr/2 . 	 (4.27) 

As for method TB/D-1, expressions 4.26 and 4.27 are exact if the estimates 
are exact, and approximate if the estimates are rounded. 

• For TB/D-9: 

For method TB/D-9, it can be easily shown that 

ru,f, = {R2„„,, } 1/2 	 (4.28) 

and 

SRMS = { 1 — 	 (4.29)  uvvJ 

where W 1v2  is the coefficient of multiple determination. uv 
From the expressions given above for SRMS and CCOR, for some of the 

methods, the following conclusions can be drawn: 

• From equations 4.14 and 4.15 (for LR), and equations 4.17 and 4.18 (for 

LI): that LI always has smaller values for SRMS and CCOR than LR. 
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• From equations 4.14 and 4.15 (for LR), and equations 4.22 and 4.24 (for 

TB/D-1): that LR has smaller values for SRMS and CCOR than TB-1, if 

rio > rtuv• 

• From equations 4.17 and 4.18 (for LI) and equations 4.19 and 4.20 (for 

CSP): that CSP has smaller SRMS and CCOR than LI if 22 — 54r10 + 

51r20 — 22r30  -I- 9r40  <0 (which can happen if r io  — r20 > 1 — no). 

• From equation 4.22 (for TB/D-1): that the correlation between the data 

in the original sub-image, and those in the test image is the same as that 

between the data in the original sub-image and the template (band or date). 

• From equation 4.25 (for TB/D-2): that if u and v are similar, and separable, 

SRMS :2:-'.., { 2(1 — rt,)}1 {1(3 — 4rio + r2o)} 1 • 

• From equations 4.26 and 4.27 (for TB/D-4) and equations 4.28 and 4.29 

(for TB/D-9): that method TB/D-9 is better than the better TB/D-4, but 

not by much, unless the second regressor contributes a large amount extra. 

Note also, from equations 4.22 (for TB/D-1) and 4.26 (for TB/D-4), that 

the correlation between the data in the original sub-image and the test image, 

obtained for methods TB/D-1 and TB/D-4 are the same, in absolute value. 

Hence, from equations 4.24 and 4.27 it can be concluded that TB/D-4 always 

has smaller SRMS than TB/D-1, and that TB/D-1 is approximately .N/ bigger, 

for low I rtu, I. 

For ali methods, the numerical results for SRMS, and CCOR, in the next 

section, are obtained by running the corresponding programs, instead of using 

the formulae presented in this section. 

4.5.2 Numerical Results for D 1 , for SRMS, CCOR, and 

SRAN. 

The numerical results are now presented for D1 , for each of the measures 

introduced in §4.2.2. When discussing these results, emphasis is placed on the 

methods that perform well in general. 

Besides the interest in detecting which of the methods usually gives the best 

results, several other questions also seem relevant to be investigated. For instance, 
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the consistency of the methods when applied to the same TM band in different 
sub-images, or their consistency when applied to different bands of the same 
original sub-image. Also of interest is the consistency of the methods over the 

different measures introduced in §4.4.2. 

The values for SRMS, CCOR, and SRAN, obtained from the application of 

the 31 methods to the sub-images from D 1 , are given in Tables B.1, B.2, and 

B.3, in Appendix B, respectively. These results are presented in two separate 

parts in the tables, one for the template band, and another for the template date 

methods. Note also that results for the template band methods that use a poor, 

or a well correlated template, are presented separately [e.g. results for sub-image 

D1 (13), using a poorly correlated template are shown for the pair D 1 (13)(14), 

whereas those obtained when using a well correlated template are presented for 

D1 (13)(15)]. 

Each of the 31 methods is assigned a rank from 1 to 31, for each measure, 

in each of the 9 sub-images from D 1 . These ranks are then averaged, to give 

the average rank of each method (AR), to two decimal places, for each of the 

measures. These are presented in Table 4.4. The table also includes the absolute 

value of the difference, to one decimal place, between the average ranks of each 

method for: (1) SRMS & CCOR; (2) SRMS & SRAN; and (3) CCOR 84 SRAN. 

To clarify the overall performance of the methods for the three measures, 

new ranks from 1 to 31 are assigned to each method in Table 4.4, according to 

its position in the table (rank 1 for the method at the top). Thus, three new 

ranks are formed for each method, one for each of the measures, SRMS, CCOR, 

and SRAN. These new ranks are subsequently averaged (resulting in new average 

ranks, NAR), to give the results in Table 4.5 (under D 1 ), where fa  and sra  are the 

mean and standard deviation of the new ranks, respectively. The minimum and 

maximum values of the new ranks [(m,M)], for each method, are also presented. 

From the differences between the average ranks of each method, for SRMS 

and CCOR, given under difference (1) in Table 4.4, it can be seen that ali meth-

ods are reasonably consistent for measures SRMS nad CCOR. However, only a 

few methods are consistent for SRMS and SRAN (18 of the differences in (2) 

exceed 3, the maximum difference being 10.9), or for CCOR and SRAN (19 of 

the differences in (3) exceed 3, the maximum difference being 11.9). 

From Table 4.4 it can be noted that LI has the smallest values for SRMS, 
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and CCOR, whereas CSP performs best for SRAN. It can also be seen from the 

table that smaller values for SRMS, and CCOR, are first obtained for some of 

the template date methods (TD-7, TD-6, TD-3, TD-2, TD-8), than for template 

band methods. Amongst the template band methods, those which perform bet-

ter, for SRMS, and CCOR, are TB-6H, TB-6L, TB-2H, and TB-7H. Since most 

methods are not reasonably consistent for SRMS and SRAN, or for CCOR and 

SRAN, a different performance of the methods, for SRAN, is expected. Note 

that the template date methods which performed well for SRMS, and CCOR, 

are outperformed by other template methods, for SRAN. Contrast, for instance, 

the average ranks of methods TD-7, TD-6, and TD-8, for SRMS and CCOR, and 

for SRAN. This is also observed amongst the template band methods - see, for 

example, the average ranks of methods TB-6H and TB-6L, for SRMS, CCOR, 

and SRAN. Since SRAN is a measure that uses the range for the residuais, it 

penalizes the methods for which some few, but large, residuais occur. Hence, for 

a method that performs well for SRMS, and CCOR, a large value for SRAN may 

only indicate the occurrance of a few, large, residuais. 
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Table 4.4: Average rank (AR) of each method, for SRMS, CCOR, and SRAN, 

and differences between AR's for (1) SRMS-CCOR; (2) SRMS-SRAN; (3) CCOR-
SRAN. 
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Table 4.5: Mean and standard deviation of the new ranks assigned to each 

method, for D 1  and D2. 

-131 D2 
Method 	IT 	F., 	1 	Sr. 	I 	(m,M) Method il 	'7 .a Sr. (M,M) 

LI 1.33 0.58 (1,2) LI 1.17 0.41 (1,2) 
CSP 2.33 1.16 (1,3) CSP 2.17 0.75 (1,3) 

TD - 3 4.33 1.16 (3,5) TD - 7 4.00 1.67 (2,6) 
TD - 7 4.67 4.62 (2,10) TD - 6 4.33 1.51 (3,7) 
TD - 2 6.00 1.00 (5,7) TD - 2 5.33 1.51 (3,7) 

- TD - 6 6.33 4.04 (4, 11) TD - 3 5.83 1.94 (3,8) 
TD - 10 8.67 - 0.58 (8,9) TB - 6 7.17 2.71 (4,11) 
TB - 2H 8.67 4.04 (4, 11) TD - 8 7.33 1.37 (6, 10) 
TD - 8 9.33 4.93 (6, 15) TD - 5 8.83 1.94 (5, 10) 
TD - 9 10.67 4.04 (6, 13) TB - 7 10.33 2.34 (9, 15) 

TB -6H 11.00 5.20 (8, 17) TD - 4 - 11.75 2.14 (8, 14) 
TD - 5 11.00 3.61 (7,14) LR 12.00 1.79 (9, 14) 
TB - 6L 13.67 6.35 (10,21) TB - 2 12.17 1.94 (11, 16) 
TB -7H 15.33 '4.16 (12,20) TD - 1 13.42 0.49 (13, 14) 
TD - 4 17.17 2.02 (16, 19.5) TB - 8 15.83 1.33 (15, 18) 

LR 17.67 0.58 (17, 18) TB - 3 15.83 2.14 (12, 18) 
TB - 3H 18.33 8.14 (9,24) TB - 5 16.67 0.82 (16, 18) 
TB - 7L 19.00 6.93 (15,27) TB - 4 17.00 1.76 (14, 18.5) 
TB - 5H 20.00 6.08 (13,24) TB - 1 18.83 0.26 (18.5, 19) 
TB - 8H 20.33 3.21 (18, 24) 
TB - 9 20.67 7.51 (12,25) 
TD - 1 20.83 1.89 (19.5, 23) 

TB - 2L 21.00 7.81 (16, 30) 
- TB - 10 21.33 2.08 (19, 23) 
TB - 4H 22.50 7.40 (14, 27.5) 
TB - 8L 23.67 4.62 (21, 29) 
TB - 5L 27.00 1.00 (26, 28) 
TB - 3L 27.00 4.36 (22, 30) 
TB - 1H 
TB - 4L 
TB - 1L 

27.17 
28.17 
30.83 

1.04 
2.84 
0.29 

(26,28) 
25, 30.5 
30.5, 31) 
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4.5.3 Numerical results for D2 9  and comparison with the 

results for Di 

Results for the sub-images from D2 are obtained for 19 methods only, (3 single 

band, 8 using a template band, and 8 using a template date), since the template 

band methods only have available templates that are poorly correlated with the 

original sub-images, and since methods TB/D-9 and TB/D-10 cannot be sensibly 

applied to the sub-images in this data set. 

The values for SRMS, CCOR, and SRAN, for the sub-images in D2 are given 

in Tables B.6, B.7, and B.8, in Appendix B. As for D l , the results in these tables 

are presented in two separate parts, one for the template band, and another for 

the template date methods. 

Each of the 19 methods is assigned a rank from 1 to 19, for each measure, 

in each of the 12 sub-images in D2. These ranks are then averaged, to give 

the average rank of each method (AR), to two decimal places, for each of the 

mea,sures. These results are presented in Table 4.6. The table also includes the 

absolute value of the difference, to one decimal place, between the average ranks 

of each method for: (1) SRMS & CCOR; (2) SRMS & SRAN; and (3) CCOR & 

SRAN. From these differences, the methods that are reasonably consistent for the 

different measures are readily identified (those for which the difference between 

their average ranks, for both measures, is small). 

In order to see if the methods are consistent using sub-images in different 

data sets, only the results in Tables B.1, B.2, and B.3, for D i , corresponding to 

the methods that are applied to the sub-images in D2, are examined. Hence, the 

results for methods that use a well correlated template, and for methods TB/D-9 

and TB/D-10 are excluded from the investigation. The methods are assigned 

a rank, from 1 to 19, and their average rank, for the 9 sub-images in D l , is 

obtained. The consistency of the methods, for different data sets, is examined by 

contrasting the average ranks of each method, in D l , and in D2. 

The average ranks of the 19 methods, in each data set, are presented in 

Table 4.6. The absolute value of the differences between the average ranks of 

each method are also presented for: (1) SRMS-CCOR; (2) SRMS-SRAN; and 

(3) CCOR-SRAN. As before, these differences indicate the methods that are 

reasonably consistent for the different measures. 
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Table 4.6: Average rank (AR) of each method, for SRMS, CCOR, and SRAN, 

and differences between AR's for (1) SRMS-CCOR; (2) SRMS-SRAN; (3) CCOR-
SRAN: D1  and D2. 

D2  
SRMS  CCOR 	11 	SRAN 	11 	DIFFERENCES 

Method 1 AR  Method 1 AR 11 Method AR 11 Method (1) (2) (3) 
LI  2.46 LI 2.38 LI 3.54 LR ' 0.2 2.0 2.1 - CSP 2.50 CSP 2.58 CSP 3.83 LI 0.1 1.1 1.2 TD - 6 3.71 TD - 6 3.29 TD - 2 4.54 CSP 0.1 1.3 1.3 TB - 6 4.50 TB - 6 4.67 TD - 7 5.54 TB - 1 0.5 0.8 1.4 TD - 7 4.96 TD - 7 4.79 TD - 6 5.63 TB - 2 0.7 0.1 0.8 TD - 2 5.25 TD - 2 4.88 TD - 3 6.08 TB - 3 0.4 2.2 1.8 TD - 8 6.75 -TD - 8 6.54 TD - 8 6.25 TB - 4 0.5 3.3 3.8 TD - 3 8.08 TD - 3 8.33 TB - 6 7.79 TB - 5 0.3 0.0 0.4 TB - 7 9.21 - TB - 7 9.33 TB - 7 9.62 TB - 6 0.2 3.3 3.1 TD - 5  10.29 TD - 5 10.25 TD - 5 9.96 TB -7 - 0.1 0.4 0.3 - TB - 2 10.83 TB - 2 11.54 TB - 2 10.75 TB - 8 0.0 2.4 2.3 TD -  4 12.25 LR 12.08 TD - 4 10.96 TD - 1 0.2 0.7 0.5 LR  12.25 TD - 1 _ 12.54 TD - 1 12.04 TD - 2 0.4 0.7 0.3 TD -  1 12.75 TD - 4 12.54 LR 14.21 TD - 3 0.3 2.0 2.3 TB - 8 14.21 TB - 8 - 14.25 TB - 3 14.54 TD - 4 0.3 1.3 1.6 TB - 5 16.33 TB - 3 16.33 TB - 4 14.71 TD - 5 0.0 0.3 0.3 TB -  3 16.71 TB - 5 16.67 TB - 5 16.29 TD - 6 0.4 1.9 2.3 TB - 4 17.19 TB -1 18.50 TB - 8 16.58 TD - 7 0.2 0.6 0.8 TB - 1 17.96 TB - 4 18.50 TB -1 17.13 	, TD - 8 0.2 0.5 0.3 

D1  
SRMS  CCOR SRAN DIFFERENCES 

Method 1 AR Method 1 AR Method 1 AR Method 1 (1) 1 (2) [ (3) 
LI  2.22 L1 2.89 CSP 2.17 LR - 0.2 2.1 1.8 - TD - 7 3.06 TD - 7 3.06 LI 2.44 LI 0.7 0.2 0.4 

CSP  - 3.33 CSP 3.11 TD - 3 2.72 CSP 0.2 1.2 0.9 TD - 6 4.22 TD- 6 4.00 TD - 2 6.00 TB -1 0.5 0.2 0.3 TD - 3 5.00 TD - 3 5.22 TD - 5 6.89 TB - 2 0.2 1.9 2.1 TD - 8 6.00 TD - 2 5.50 TE - 7 7.50 TB - 3 0.8 5.9 5.1 
TE - 2 '6,28 TD - 8 5.61 TD - 6 8.11 TB - 4 1.3 - 3.7 5.0 TB - 6 7.22 TB - 6 7.39 TD - 4 9.83 TB - 5 0.0 1.8 1.8 TD - 5 9.17 TD - 5 9.78 LR 9.94 TB - 6 0.2 4.6 4.4 - TB - 7 10.67 TB - 7 10.67 TD - 8 10.33 TB - 7 0.0 2.9 ' 2,9 
TE - 4 11.39 LR 11.78 TB - 6 11.78 TB - 8 0.0 0.9 0.9 TB - 2 11.94 TB - 2 11.78 - TB - 3 11.94 TD - 1 0.5 0.2 0.3 

LR 12.00 TD - 1 12.22 TD -1 12.50 TD - 2 0.8 0.3 0.5 TD - 1 12.72 
14.78 

TD - 4 
TB - 8 

12.22 
14.78 

TB - 4 
TB - 7 

13.50 
13.61 
13.83 
13.89 

TD - 3 
TE -  4 
TD - 5 
TD - 6 

0.2 
0.8 
0.6 
0.2 

2.3 
1.6 
2.3 
3.8 

2.5 
2.4 
2.9 
4.1 

TE - 8 
TB - 5 16.00 TB - 5 16.00 TB - 2 

- TB - 4 17.17 TB - 3 - 17.00 TB - 8 
- TB -  3 17.83 TB - 4 18.50 TB - 5 14.22 TD -7 0.0 4.4 4.4 _TB - 1 19.00 TB - 1 18.50 TB -1 18.78 TE - 8 0.4 4.3 4.7 
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Similarly to the procedure adopted for D 1 , and in order to clarify the overall 
performance of the methods, new ranks are formed from 1 to 19, for each of 
the measures, according to the the position of the methods in Table 4.6 (rank 1 
for the method at the top). Here, 6 new ranks are formed (2 for each measure, 
one for D1  and another for D2). These new ranks are averaged, to produce new 
average ranks, which are presented in Table 4.5, under D2, where fa  and s,.. are 
the mean and standard deviation of the 6 new ranks, respectively. The minimurn 

and maximum values of the new ranks f(m,M)] are also presented for each method. 
From the differences under (1) and (2), in Table 4.6, given for D 1  and D2, 

it can be seen that ali methods are reasonably consistent for SRMS and CCOR 
(the maximum difference between the average ranks of the methods, for SRMS 
and CCOR is 1.3, for D 1 , and 0.7, for D2 ). However, for some of the methods, 
larger differences between their average ranks for SRMS and SRAN, or CCOR 
and SRAN may be observed. In D 1 , for instance, 6 methods have average ranks 
for SRMS and SRAN (or for CCOR and SRAN) which differ by more than 3; in 
D2, the number of methods for which the difference between their average ranks, 
for SRMS and SRAN, exceeds 3, is 2. This number is also 2, for CCOR and 
SRAN. 

From Table 4.6 it can be noted that LI, on average, performs better than the 
other methods, for SRMS, CCOR, and SRAN, in D 1 . However, although LI has 
the best average performance for SRMS and CCOR, in D2, method CSP performs 
best for SRAN, in this data set. 

The absolute value of the differences between the average ranks of the methods 
(DAR), for SRMS, CCOR, and SRAN, in D1 , and D2, are given in Table 4.7. 
From the differences for SRMS and CCOR, it can be seen that most methods are 
reasonably consistent between data sets, for these two measures (only for method 
TD-3 the difference between the average ranks for SRMS (and CCOR), in one 

data set, and another, exceeds 3). However, most methods are not reasonably 
consistent for SRAN, in one data set and another. 
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Table 4.7: Differences between the average ranks of the methods in D 1  and in 
D2, for SRMS, CCOR, and SRAN. 

[Method 11 	DAR 
11 SRMS f CCOR 1 SRAN 1 

LR 0.25 0.31 4.27 
LI 0.24 0.51 1.10 

CSP 0.83 0.53 1.67 
TB - 1 0.00 0.00 1.65 
TB - 2 1.11 0.24 3.08 
TB - 3 1.13 0.67 2.60 
TB - 4 ' 

. 	
0.79 	'.. 0.00 1.21 

TB - 5 0.33 - 0.67 2.07 
TB - 6 2.72 2.72 3.99 
TB - 7 1.46 1.33 3.99 
TB - 8 -0.57 0.53 2.69 
TD - 1 0.03 0.32 0.46 
TD - 

2 . 
1.03 0.63 1.46 

TD - 3 3.08 3.11 3.36 
TD - 4 0.86 0.32 1.13 
TD - 5 1.13 0.47 3.07 
TD - 6 

- 
0.51 0.71 2.48 

TD -7 1.90 1.73 1.96 
TD - 8 _ 0.75 	_ 0.93 4.08 

4.5.4 Results for Single Band and Template Band Meth-
ods 

Since information from the different bands reaches the Earth almost si-

multaneously, and as the multispectral data are reasonably registered, template 

band methods can be implemented routinely to replace missing scan lines in the 

imagery. This is not as simple using template date methods, since data from 

different passages may not be readily availa,ble, and may need to be registered 

before they can be effectively used. Thus, it seems interesting to investigate the 

sort of results that only the template band methods give, in contrast to the results 

obtained for the single band methods. An evaluation of the results obtained only 

for the single band methods, and the template date methods, is a]so carried out. 

In this subsection, only the single band, and the template band methods are 

evaluated for each of the measures in §4.2.2. To accomplish this evaluation using 
the sub-images in D 1 , the results from the 21 methods (3 single band methods, 8 
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from the template band methods that use a poor correlated template (TB-mL), 

8 from the template band methods that use a well correlated template (TB-mH) 

and 2 using two template bands) are independently grouped, for each measure. 

Recall that the results for these methods are given in Tables B.1, B.2, and B.3, in 

Appendix B, under Template Band, for SRMS, CCOR, and SRAN, respectively. 

For the OT's from D2, only 11 methods are evaluated, since the original sub-

images in this data set are always poorly correlated with the template band (which 

excludes investigation of methods TB—mH), and as data from two template 

bands are not available (which excludes investigation of methods TB-9 and TB-

10). The values for SRMS, CCOR, and SRAN, for D2, are given in Tables B.6, 

B.7, and B.8, in Appendix B, respectively. 

In order to investigate the consistency of the methods for sub-images from 

different data sets, results are also obtained for D l , only for the methods that 

are applied to the sub-images from D2, and using only the sub-images in corre-

sponding bands (bands 4 and 5), which are poorly correlated with the template 

[OT's (7,8,9),(16,17,18) in Table 4.1]. 

The results for SRMS, CCOR, and SRAN are first presented for D l , and then 
for D2. Since the methods have a similar performance for SRMS and CCOR, as 

indicated in §4.5.2 and §4.5.3, the results for these two measures are presented 

together. Although the average performances of the methods are presented for 

SRMS, those obtained for CCOR are only slightly different, and do not warrant 

being presented separately. 

4.5.4.1 Results for SRMS and CCOR, using 

Since the performances of the methods, for SRMS and CCOR, are similar, 

their results are presented in a single section. 

To provide more readily an evaluation of the performances of the methods for 

SRMS, the plot for this measure is given in Figure 4.1, for some of the methods, 

for OT's 1 to 18 in Table 4.2. From the figure, the results for methods TB-mL 

and TB-mH can be easily contrasted. Also, as the results are first given for the 

sub-images in band 3 (OT's 1 to 6), followed by those in band 4 (OT's 7 to 

12), and finally by those in band 5 (OT's 13 to 18), the results for SRMS, for 

sub-images in different bands can also be contrasted. The results for some of 

the methods have been deliberately omitted from the plot, due to their similarity 
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with those for other methods (e.g., LI and CSP, TB-6 and TB-7), or to their 
consistent inferior performance (e.g., TB-1, TB-4). 
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Figure 4.1: Piot for SRMS for single band methods, and the methods using a 
template band: Di. 

From Figure 4.1 it can be seen that, in general, the methods perform better 

(have lower values for SRMS and CCOR), when the original sub-image, and the 

template, are well correlated [e.g. OT's (4,5,6) and (13,14,15)]. However, it seems 

that some of the methods are more affected than others by a low correlation 

between the two sub-images. Note, for instance, the small difference between 

the values for SRMS for methods TB-2, TB-6, and TB-8, and TB-10, in OT's 

(13,14,15) and (16,17,18). For these OT's, the correlations between the original 

sub-image and the template are, respectively, (0.719, 0.705, 0.760) and (0.146, 
-0.016, -0.122). 

The average rankings of the single band, and the template band methods, for 
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SRMS, are as follows: 

LI 
1.3 

CSP 
2.5 

TB -811 
3.3 

TE -6L 
4.3 

TB -211 
5.8 

TB -7II 
6.7 

TB -7L 
6.8 

TB -811 
8.1 

LR 
8.1 

TB -2L 	TB - 8L 
6.4 	11.8 

TB - 10 TB - 511 TB-3H TB -9 TB-4H TB - 5L TB -1H TB-4L TB - 3L TB -1L 
12.4 13.3  13.6 15.8 15.8 18.7 18.2 18.3 19.2 20.8 

Note that, on average, the single band methods LI and CSP perform better 

than the template band methods, even when there is a good correlation between 

the original sub-image and the template. Although LI performs better than the 

other methods in almost ali sub-images (has rank 1 or 1.5 in 7 out of 9 cases, 

and rank 2 in the remaining 2), CSP works well for the sub-images in bands 4 

and 5, while it is consistently outperformed by method TB-6H in the sub-images 

in band 3. Methods CSP and TB-7H perform similarly in the sub-images in this 

band. 

A closer observation of the residuais obtained for methods CSP and TB-7H, 

and for TB-6H, using OT 1 [D1 (13)(14)] shows that large residuais occur for ali 

these methods in the arcas of intense moisture shown in Figure 3.5 (C), and that 

these residuais are larger for methods CSP and TB-7H, than for TB-6H. 

The observation that the purely spatial methods, LI and CSP, perform better 

than methods TB-6H or TB-7H, in sub-images in more heterogeneous bands 

(bands 4 and 5) can possibly be explained from the following: since varying 

degrees of moisture can be observed even within small areas, and since different 

bands respond differently to the presence of moisture on the ground, the basic 

assumption of Guindon (1984), that 'the correlation between adjacent band grey 

leveis can be expressed in a sim ple multiplicative sense and that this correlation 

is stationary over distances of the scale of the interpolation window (i.e. 3 to 5 

lines)' fails, and the methods do not perform well (especially in more heterogenous 

bands). Since the areas of intense moisture indicated by C in Figure 3.5 cross 

diagonally the area delimited by lines 78 and 92, and columns 27 and 44, in ali 
uk 	 , 	(i,j) 	/ 	(i+1,j) sub-images, and as they are narrow (±3 pixels) ut (i-1,3 ) 	4(:,2 ) 

which may explain the `poor' performance of methods TB-6 and TB-7 in the 

area. For instance, the ratios between the pixel values in the original sub-image 

and the template, in line 88, 89 and 90, intersected by column 41 are 1.27, 0.84, 

and 0.49, indicating the variation in the response of the same area in the ground, 

in different bands. 

Note also the similar performance of methods TB-6L and TB-6H. A closer 
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investigation of the results for these two methods shows that TB-6L performs 

better than TB-6H in the sub-images in band 4, and similarly in the sub-images 

in band 5, whilst for the sub-images in band 3, method TB-6H (which uses band 

5 as template) performs significantly better than TB-6L (which uses band 4 as 

template). The average rank of methods TB-6L and TB-6H for sub-images in 

bands 3, 4 and 5 are respectively 6.2 and 1.6; 3 and 4.5; and 3.7 and 3.7. 

By contrasting the difference images displayed in the first and second columns 

of the frame displayed in Figure 3.8, corresponding to bands 3 and 4, and 3 and 5, 

respectively, it can be seen that more gradual shifts in colour are observed in the 

difference images for bands 3 and 5, than between bands 3 and 4, which explains 

the superior performance of Guindon's method using band 5, rather than band 

4. For instance, the estimates of the pixel values along the road, from method 

TB-6H, are much better than those obtained for method TB-6L, as are those in 

the arcas of intense moisture. Note that not only are the areas of intense moisture 

in the difference images for bands 3 and 5 narrower than those for bands 3 and 

4, but also smaller variations in the grey levels of the neighbouring pixels occur 

in the area. 

Despite the fact that more differences are observed in Figure 3.8 between 

the sub-images in bands 4 and 5, than between those in either bands 3 and 4, 

or 3 and 5, note that they concentrate in reasonably large, homogenous arcas, 

where no great variations are expected to occur between neighbouring pixels. 

Although 4(i - 1, j) uit (i - 1, j) 	1, j) ult (i + 1, j) does not imply that 

.!(i-1,3 ) 
	nt(i+i,i)  it may be an indicator that Guindon's assumption holds, 

in which case good estimates from methods TB/D-6, and TB/D-7 would be 

expected. 

Note that despite the poor correlation between the sub-images in band 5 

and those in band 4 (maximum correlation is 0.146), method TB-6B performs 

similarly to TB-6H, for which the minimum correlation between the original sub-

image and the template is 0.705. Thus, it seems that Guindon's methods are not 

as sensitive to a poor correlation between the sub-image and the template, as 

they are to 'local', contrasting, differences in response of the objects, in the two 

bands (original and template). 

As mentioned at the beginning of this section, the methods have a similar 

performance for SRMS, and CCOR. To give an idea of how consistent the methods 
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are, for the two measures, the differences between the ranks assigned to each of 

the 21 methods, for SMRS and for CCOR, were computed for the 9 sub-images 

in Di . The mean and standard deviation of these differences are 0.59 and 0.79, 

respectively, which clearly shows the similarity of the results obtained for the 

methods, for both measures. 

4.5.4.2 Results for SRAN using 

Results for SRAN have been obtained in a manner similar to that used for 

SRMS and CCOR. Recall that the values for this measure are given in Table B.3 

in Appendix B. The minimum and maximum [(m,M)] values for the residuais are 

also presented in Table B.5, in Appendix B. 

The methods are in general not consistent for SRAN and SRMS, or SRAN and 

CCOR. Hence, methods which have small values for SRMS and CCOR, may have 

large values for SRAN, indicating the presence of some `localized' large residuais 

in the corresponding test image. 

The average rankings of the single band, and the template band methods, for 

SRAN, are given below. 

LI 	CSP 	TE -CL TB -2H TB -3H TE -9 TE - 7L TE -5L 	LR 	TE -10 TB - 4H 
2.3 	 2.4 	8.5 	 7.3 	 7.3 	 9.1 	 9.5 	 9.8 	10.4 	10.7 	10.8 

TB - 4L TB - 3L TB - 8L TB - 5H TB - 2L TB - 1H TB - 6H TB - 8H TB - TH TB - 1L 
11.1 	12.0 	12.9 	13.1 	13.9 	14.8 	15.3 	15.4 	18.7 	19.8 

It is interesting to note that in the list above, some of the methods that use a 

better correlated template have an inferior performance than others using a poor 

correlated template. In particular, methods TB-6H, TB-7H, and TB-8H have, 

on average, larger values for SRAN than most single band, and template band 

methods. 

4.5.4.3 Results for SRMS and CCOR, using D2. 

The similar performance of the methods, for SRMS, and CCOR, observed in 

(§4.5.4.1), is also observed in D2. Hence, these two measures are also treated 

together here. 

Figure 4.2 gives the plot for SRMS, for some of the methods, for OT's 1 to 12 

in Table 4.3. 
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Figure 4.2: Piot for SRMS for the single band methods, and the methods using 

a template band: D2 

Figure 4.2 shows the similar performances of the methods, in the different 

OT's. Recall that the sub-images in D2 are, in general, not well correlated with 

the template (the minimum correlation is 0.138, and the maximum is 0.579). 

Note, as for D 1 , that methods TB-2, TB-6, and TB-8, seem to be less affected 

by the correlation between the original sub-image and the template than others 

(TB-3, TB-5). Note also that method TB-8 performs consistently better than 

method TB-2, in OT's 7 to 12 (when ali original sub-images are in band 5). A 

possible explanation for this is the fact that method TB-8 first applies method 

TB-2 to the data in the fines above and below, and then uses an approach similar 

to TB-6. In the first step, method TB-2 `smooths' the data in the lines above 
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and below, making them more similar to the data in the template. Hence, after 

this first operation, the data at the boundaries between the reforested area, and 
sou l with low density vegetation, are not as contrasting as they are in the original 

sub-image (note that the boundaries between these two types of land cover, in 

the sub-images in band 4, are not as well defined as in band 5). 

The difference between the ranks assigned to each method, in each of the 

12 OT's from D2, are always less than 1.5, except for methods TB-2 and TB-8, 

and even for these two methods, the difference is not large (3 for TB-2, and 2.5 

for TB-8). This indicates that the niethods are reasonably consistent for this 

measure. 

The average ranks of the methods, for SRMS, are given below: 
LI CSP TB - 6 TB - 7 TB - 2 LR TB - 8 TB - 5 TB- 3 TB - 4 TB - 1 
1.5 	1.8 	2.9 	4.5 	5.5 	5.6 	6.4 	8.3 	8.7 	9.9 	11.0 

For methods LI and CSP, the minimum and maximum [(m,M)] ranks in the 

12 OT's are (1,2), indicating the consistently better performance of these single 

band methods, in contrast to the methods using a template band. Due to the 

usually poor correlation between the original sub-images and the templates, in 

OT's 1 to 12, and from the different response of the objects on the ground, in 

bands 4 and 5, (see Figure 3.22), it was not expected that the template band 

methods would perform better than LI or CSP. 

The performances of the methods, for SRMS, are also consistent in OT's 

(7,8,9) [band 4] and (16,17,18) [band 5], from D 1 . In these 6 OT's, the range 

of the ranks of any of the methods never exceeds 1. As for D2, the minimum 

and maximum [(m,M)] ranks of methods LI and CSP, in ali 6 OT's are (1,2), 

indicating the consistent superior performance of these single band methods, in 

contrast to the methods that use a template band. Note that the maximum 

correlation between the original sub-images and the templates, in OT's (7,8,9) 

and (16,17,18), is 0.146, and this might explain the failure of the template band 

methods. 

When contrasting the average ranks of the 11 methods, for SRMS, using OT's 

1 to 12 in Table 4.3 (for D 2 ), and OT's (7,8,9) and (16,17,18) in Table 4.2 (for 

D1 ), it is observed that the maximum difference between these average ranks, for 

each method, never exceeds 1.1, thus indicating that the methods are consistent 

between both data sets. 
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The similar performance of the methods, for SRMS and CCOR, is indicated by 

the small difference between the average ranks of the methods, for both measures. 

For D2, the maximum difference between the average ranks of the 11 methods, 

for SRMS a.nd CCOR is 1 (using OT's 1 to 12 in Table 4.3); and it is 1.4 for Di 

[using OT's (7,8,9,16,17,18) in Table 4.2]. 

4.5.4.4 Results for SRAN using D2* 

Although it has been observed that more methods are reasonably consistent 

for any combination of any two of the three measures, using the sub-images from 

D2, than using those from D l , their performance is not as consistent as for SRMS, 

or CCOR. For instance, the minimum and maximum ranks of methods LR and 

TB-7, using the 12 OT's from D2, are (3,10) and (4,10), respectively, whilst they 

are (7,11) and (3,6.5) for SRMS, and (7,11) and (2.5,5.5) for CCOR. 

The average ranks of the methods, for SRAN, using OT's 1 to 12 from D2 
are: 

LI CSP TB - 6 TB -7 TB - 2 LR TE- 4 TB - 3 TB 5 TB- 8 TB - 1 

	

1.5 	1.9 	3.8 	5.1 	5.2 	6.9 	7.2 	7.5 	8.4 	8.8 	9.6 

and using OT's (6,7,8,16,17,18) from 

LI CSP LR TB -3 TB 4 TB - 6 TB - 8 TB - 5 TB - 2 TB-7 TB -1 

	

1.0 	2.0 	4.0 	5.1 	6.4 	6.4 	6.5 	7.7 	7.8 	8,3 	10.9 

Contrasting the average ranks of the methods, using OT's 1 to 12 in Table 

4.3, with those obtained for OT's (7,8,9,16,17,18) in Table 4.2 indicates that the 

largest differences between the average ranks (DAR) for SRAN, in both data 

sets, occur for methods TB-2 (DAR=2.6), TB-6 (DAR=2.6), LR (DAR=2.9), 

and TB-7 (DAR=3.2). 

4.5.5 Results for Single Band and Template Date Meth-

ods 

In this section, the single band, and the template date methods are evaluated, 

using OT's 19 to 27 in Table 4.2, and OT's 13 to 24 in Table 4.3. 

The fact the original sub-images, and the template date, are always well corre-

lated, leaves only 13 methods to be investigated (3 single band, 8 using a template 
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date, and two using two template dates). Recall that the results for these meth- 

ods, for SRMS, CCOR, and SRAN, are respectively given in Tables B.1, B.2, and 

B.3, in Appendix B, under Template Date. In Table B.5, in Appendix B, the 

minimum and maximum values [(m,M)] for the residuals are also presented. 

As two reasonable template dates are not available for the sub-images in D2, 

methods TD-9 and TD-10 are excluded from the investigation for this data set, 

leaving only 11 methods to be examined. The values for SRMS, CCOR, and 

SRAN, for these methods, are respectively presented in Tables B.6, B.7, and B.8, 

in Appendix B. Table B.10, in Appendix B, gives the minimum and maximum 

[(m,M)] values for the residuals. 

In order to evaluate the performances of the methods for sub-images in dif-

ferent data sets, the results for the 11 methods, using OT's 13 to 24 in Table 4.2, 

are independently considered. 

The methods are now evaluated for each of the measures. 

4.5.5.1 Results for SRMS and CCOR, using 

Figure 4.3 gives the plot for SRMS for some of the single band, and the 

template date methods. As in §4.5.4.1, some of the results have been deliberately 

deleted from the plot, due to their similarity with the results from other methods 

(LI and CSP, TD-6 and TD-7), or their consistent inferior performance (TD-1, 

TD-4). 

The fact that in OT's (25,26,27) [band 5], the original sub-images and the 

template date are highly correlated (the minimum correlation is 0.920), might 

explain the better performance of ali methods in these OT's, as can be seen from 

Figure 4.3. 

The average performances of the template date methods, for SRMS, is indi- 

cated by their average rank using ali OT's from D 1 . These average ranks are 
given below. 

LI TD -7 CSP TA - 6 TD -3 TD - 8 TD - 2 TD -10 TD - 5 TD - 9 TD - 4 LR TD - 1 
2.3 	3.2 	3.4 	4.4 	4.7 	6.1 	6.4 	6.8 	9.3 	9.3 	11.3 	11.4 	12.4 

Note that, on average, method TD-7 perforrns better than method TD-6. 

A closer investigation of the results obtained from these two methods reveals 

that TD-7 is better than TD-6 in all OT's, except those in band 4 [(22,23,24)]. 
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Figure 4.3: Piot for SRMS for the single band methods, and the methods using 
a template date: D1. 

The average ranks of these two methods, using these 3 OT's are 1.8 and 2.7, 
respectively. 

It has been observed that method TD-6 has an inferior performance in OT's 

(25,26,27) [band 5], than in OT's (19,20,21) [band 3], or OT's (22,23,24) [band 4]. 

The average ranks of this method, for OT's in bands 3, 4, and 5, are respectively 

3.8, 1.8, and 7.5. A closer investigation of the results for method TD-6, for 

sub-images in band 5, indicates that the method has some few, extremely large 

residuais, which also increases the values for SRMS, in OT's (25,26,27). 

The occurrence of these lane residuais can be predicted from the difference 

images in Figure 3.7 (c). Consider, for instance, the difference image for the 
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24/06 data from 10/07 data (+128). The residuais obtained from method TD-6, 

for the pixels which show as yellow spots in the difference image, are ai! large. 

For each of the pixels shown as yellow spots, note the large range of colours that 

separates them from their neighbouring pixels (the one above, and the one below). 

This indicates a large difference between the corresponding pixel values (in the 

difference image), which suggests that Guindon's assumption does not hold. The 

largest residual (54) observed for method TD-6, corresponds to one of the pixels 

shown as a yellow spot, at the top left of the difference image. 

A sequence of large residuais (values between 14 and 27) is also observed at 

the top left of the test image obtained from TD-6, corresponding to the narrow 

strip shown in dark magenta in the difference image (une 1, between columns 9 

and 19). 

It is interesting to note that even when the original sub-images are highly 

correlated with the template (as is the case in OT's 25 to 27), methods TD-1 

and TD-4 are usually outperformed by the other methods. These methods, in 

particular, give poor estimates of the pixels in areas of change (for instance, for 

sub-images in band 4, in the arcas shown in red, yellow, or magenta, in Figure 

3.7). These are also the areas where method TD-3 usually fails. However, as 

this method uses, besides the estimate from TD-1, the information from the 

neighbouring sites of the one that is missing, it is expected to have, at least, a 

better performance than method TD-1. 

As the template date methods usually perform better than the template 

band methods (due to the higher correlation between the original sub-images 

and the template date), note the difference between the average performance of 

the method of adjacent une replacement (AR=11.4), amongst the template date 

methods, and in §4.5.4.1 (AR=8.6), amongst the template band methods. 

In just a few instances, a method using a template band performed better 

than its corresponding method using a template date. Smalier vaiues for SRMS 

have been obtained for methods TB-2H and TB-6H, than for TD-2 and TD-6, 

respectively. This has only been observed for original sub-images in band 3. 

The similar performance of the methods, for SRMS, and CCOR, can be de-

duced from the value of the maximum difference between their average ranks, for 

each of these measures, which does not exceed 0.8. .. 
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4.5.5.2 Results for SRAN, using Di. 

The rankings of the single band, and template date methods, for SRAN, are 
given below. 

CSP LI TD - 3 TD - 2 2'D -9 TD - 5 TD -10 TD 7 TD - 6 LR TD 8 TD - 4 TD - 1 2.4 	2.5 	2.8 	6.2 	7.1 	7.3 	7.4 	7.4 	7.5 	9.4 	9.7 	9.9 	11.2 

By contrasting the average ranks above, with those for SRMS, in 

it can be seen that seen that the largest differences between these average ranks 

(DAR) occur for methods TD-6 (DAR=3.1), TD-8 (DAR.--3.6), and TD-7 (DAR:=4.2). 

This may indicate these methods have some few, large, residuais. For all the other 

methods, the maximum difference between their average ranks, for both measures, 

does not exceed 2.6. 

4.5.5.3 Results for SRMS and CCOR, using D2. 

The plot for SRMS, for some of the methods, for OT's 13 to 24 in Table 4.3, 

is given in Figure 4.4. Recall that the values for SRMS and CCOR, for D2, are 
given in Tables B.6 and B.7, in Appendix B. 

Note that despite the high correlation between the original sub-images and the 

template date in OT's 19 to 24 (the minimum correlation is 0.951), the template 

date methods do not consistently have better results than the purely spatial meth-

ods of LI and CSP. This might be justified by the particular structures present on 

the sub-image, characterized by well defined, man-made linear features. Within 

the regions delimited by the sharp boundaries that separate the two types of 

land cover, the data are reasonably homogeneous, and the spatial methods per-

form well. Obviously, these methods will perform very poorly on those portions 

of the line that lie on the boundary between different types of land cover. As 

the template date methods rely on few changes in land cover occurring between 

the passages, they may perform better on the boundaries between the regions (if 

these are permanent), but poorer than LI and CSP in the homogeneous areas. 

The rankings of the methods, for SRMS, using OT's 12 to 24 are as follows: 

LI CSP TD - 6 TD - 7 TD - 2 TD -8 TD -3 TD - 5 LR TD - 4 TD -1 
1.6 	2.5 	2.9 	3.9 	5.0 	6.2 	6.3 	83 	8.9 	9.6 	103 
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Figure 4.4: Piot for SRMS for the single band methods, and the rnethods using 
a template date: D2. 

The rankings of the methods, for D 1  are similar to those given above for D2. 

For ali methods, except TD-3, the difference between their average ranks, for 

both data sets, does not exceed 1.5. For method TD-3 this difference is 2.1. This 
also appplies for CCOR. 

It might be interesting to point out that method TD-6 performs better in OT's 

(16,17,18) (its average rank is 1.8) than in OT's (19,20,21) (its average rank is 

6.3). From the uniform range of colours ou the difference images in Figure 3.21 (1, 

2, and 3) (corresponding to band 4), Guindon's method can be expected to give 

good estimates. However, the greater contrast of colours in the difference images 

in Figure 3.21 (4, 5, and 6) (corresponding to sub-images in band 5) indicates 
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that large residuais can occur, increasing the value for SRMS. 

4.5.5.4 Results for SRAN using D2. 

The average rankings of the methods, for SRAN, are given below, for D2, and 
D1. 

LI CSP TD -2 TD -7 TD 	TD - 3 TD -8 TD - 5 TD -4 TD - 1 LR 
3.4 	3.5 	3.9 	4.5 	4.7 	4.7 	5.1 	7.9 	8.7 	9.4 	10.3 

and for D1 : 

LI CSP TD - 3 TD - 2 TA - 7 TD - 6 TD - 5 LR TD -4 TD -8 TD -1 
1.2 	2.3 	3.3 	5.3 	6.5 	6.8 	7.3 	7.4 	8.2 	8.9 	9.0 

By contrasting the average ranks of the methods, for SRAN, and SRMS (given 

in §4.5.5.3), it can be observed that, for D2, most methods are reasonably con-

sistent (the maximum difference between the average ranks of the methods, for 

both measures, does not exceed 1.8), whereas for D 1 , larger differences are ob-

served, in particular for methods TD-6 (DAR=2.7), TD-7 (DAR=2.8), and TD-8 

(DAR=3.3). 

Similarly to the template band methods, rnost template date methods are also 

not consistent for SRAN, and large ranges for the ranks assigned to the methods, 

in OT's 13 to 24, are usually observed. 

4.6 Summary of Numerical Results and Dis-

cussion 

From the results presented in §4.5, the following conclusions can be drawn: 

Since ali methods are consistent for SRMS and CCOR, in both data sets, it 

is possible that only one of these measures suffices as an indicator of the perfor-

mances of the methods. The fact that most methods are not consistent for SRMS 

and SRAN (and consequently, for CCOR and SRAN) indicates that possibly an 

evaluation based solely on SRMS (or CCOR) may not be enough to characterize 

the overall performance of the methods. It is important to realize that better es-

timates of the missing values may be obtained for methods that have large SRAN 
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(which may only indicate the presence of some `outlier' residual). Some methods, 

in particular methods TB/D-6 and TB/D-7, are very sensitive to changes in re-

sponse from the objects in the 'local' neighbourhood of the missing pixel, in one 

band and another, or to 'local' changes, from one passage to another, and some 

'local', large residuais are likely to be observed. The occurrence of these large 

residuals is highly dependent on the type of structures that appear on the image, 

and their nature ('dynarnie, or permanent). 

The observation that the purely spatial methods LI and CSP in general mit-

perform the template band methods can be possibly explained by the low correla-

tion between the sub-images and the template band, in both data sets. However, 

to find an explanation for the fact that these methods usually perforrn well, even 

amongst the template date methods, is a more difficult task. For D2, the struc-

ture of the features on the sub-images may have benefited the purely spatial 

methods. For D1 , the fact that differences in land cover may have occurred be-

tween the passages, as indicated in the difference images in Figure 3.7, may have 

contributed to the inferior performance of the template date methods, in contrast 

to the purely spatial methods of L1 and CSP. 

Since methods LI, TB/D-2, TB/D-3, TB/D-6, TB/D-7, and TB/D-8 estimate 

each pixel value in the original sub-image incorporating the information from a 

'local' neighbourhood (1 pixel above and 1 pixel below, except method TB/D-

7, which uses 2 pixels above and 2 below), they in general perform better than 

methods TB/D-1, TB/D-4, or TB/D-5. Note, however, that the estimates of the 

pixel values in `dynamic' areas, where 'local' differences are more likely to occur 

(for instance, pixels which are dose geographically may belong to distinct types 

of land cover, or may be associated to different degrees of sou l moisture), can be 

poorer from the methods that incorporate 'local' information, than from other 

methods (TB/D-1, TB/D-4, and TB/D-5, for instance). Good estimates of the 

pixel values over `dynamic' areas are obtained using LI, if the objects in their 

'local' neighbourhood have a similar response in the band under consideration. 

The extent to which this method performs well depends on the similarity of the 

information in the 'local' neighbourhood of the pixels being estimated. For meth-

ods TB/D-2, TB/D-6, TB/D-7, and TB/D-8, the condition is that the relative 
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changes in the local neighbourhood of the missing pixel be approximately the 

same, in both the original, and the template sub-images. 

Amongst the template band/date methods, Guindon's methods TB/D-6 and 

TB/D-7 usually perform better than the other methods. However, Guindon 

(1984) reported that his methods, in general, performed better than LI, or CSP. 

The fact that his results do not agree with the results found in this study may 

have two explanations: firstly, as the sub-images used by Guindon (1984) are not 

displayed in his paper, it is impossible to know the kind of structures present on 

the image, and their impact on the methods he has investigated; secondly, with 

his methods, Guindon (1984) always used information from neighbouring bands, 

noting that because data in band 4 were not well correlated with data from either 

bands 3, or 5, better results were observed for single band interpolation. Unfortu-

nately, data from other bands are not availa,ble for D 1 , or D2. It is possible that 

by using information from band 2, for instance, better results would be obtained 

for the ternplate band methods, than by using the information from band 5, as 

here (despite the fact that the sub-images in bands 3 and 5 used here are well 

correlated, and that this is the condition for the methods to work well). However, 

observation of the difference images in Figure 3.8 show that the objects on the 

ground respond similarly only in bands 3 and 5, but possibly not similar enough 

to allow methods TB-6/7 to have better results than LI or CSP alone. 

Since for the template band methods the sub-images are usually poorly cor-

related with template, this may have favoured the template date methods which, 

in general, perform better than the template band methods. It has been noted 
that methods TB-2 and TB-6 are the least sensitive to the degree of correla-

tion between the sub-image and the template. In some instances, better results 

(smaller SRMS, CCOR) have been obtained for these template band methods, 

than for their corresponding methods using a template date, despite the lower 

correlation between the original sub-images and the template band. This sug-

gests that besides a high correlation between the sub-image and the template, it 

is also important (if not essential) that few 'local' variations occur, between the 

original sub-image and the template (band or date). 
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4.7 Visual Evaluation of the Methods 

To evaluate the methods visually, photographs of the test images, residual 

images, and `cut' images have been obtained for ali methods (except TB/D-

7 and TB/D-10, due to their similarity with methods TB/D-6 and TB/D-9, 

respectively). The photographs of the test images, residual images, and `cut' 

images are presented separately. However, each of these photographs display the 

results for several methods, which are presented in the following order: 

LI LR T*— 1 

T*— 2 T*— 3 T*— 4 

T*— 5 T*— 6 T*— 8 

where * is either only B, or only D, depending on the template used (band or 

date, respectively). 

The test images, residual images, and `cut' images obtained for method TD-9, 

for OT's 19 to 27 in Table 4.2, are presented separately in Figures 4.38, 4.39, and 

4.40. 

In order to avoid unnecessary repetition, the visual results (test image, residual 

image, and `cut' image) are given here only for some of the OT's from Di , and 
D2. Note, however, that results have been observed for ali OT's, in both data 

sets. The comments below, drawn on the basis of the results presented in Figures 

4.5 to 4.40, are valid for ali OT's. The methods are evaluated by their ability to 

reproduce, as closely as possible, the original sub-image, as indicated by both the 

test, and the residual irnages. 

Since the approach adopted in this chapter is to replace ali the lines in the 

original sub-images, the test images from LR are simply a one une shifted version 

of the original sub-image, and can thus be used as a 'reference' to contrast the 

results for the other methods. Hence, the real effect of LR cannot be properly 

appreciated from simple observation of its test irnages. However, the residual 

images clearly show the deformations introduced by this method on particular 

image structures, especially linear ones, and in more heterogeneous bands — see, 

for instance, Figures 4.6, 4.9, 4.27, 4.30, and 4.36. 

From the `cut' images for the LR method, the systematic and consistent defect 

on ali sub-images in the second data set, mentioned in Chapter 3 (§3.3), can be 
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clearly appreciated — refer to Figures 4.22, 4.25, 4.28, 4.31, 4.34, and 4.37. As lines 

33, 65, and 97 are simply duplicates of lines 32, 64, and 96, ali estimates obtained 

from LR, for those lines, have zero residual. This explains the continuous green 

lines on the `cut' images, on the former lines. Note that the third defective line, 

corresponding to line 97, usually contains intermittent sequences of values which 

have been replaced by the corresponding values on the fine immediately above — 

see Figures 4.22, 4.34, and 4.37. 

The method of linear interpolation, which in general performs well for the 

numerical evaluations carried out in the previous sections, consistently has a 

`blurred' test image, with consequent reduction in resolution see, for instance, 

Figures 4.5, 4.8, 4.11, 4.14, 4.17, and 4.32. Because LI is just a linear filter, it 

tends to have spatial smoothing effects, which especially affects the linear features 

on the image. Fusco & Trevese (1985) have noted that 

'From the statistical point of view, linear interpolation improves both 
SRMS and CCOR in respect to adjacent line replacement. However, 
the improvement in respect to adjacent line replacernent is not as 

strong as indicated by the statistical parameters; some structure could 

be altered even more by linear interpolation than by adjacent line 
replacement.' 

Note: Contents in italics adapted here, from the original text. 

However, for the particular structures on the sub-images investigated here, 

adjacent line replacement has consistently introduced more distortions on the 

image than the method of linear interpolation. 

Note from Figures 4.6, 4.9, 4.27, 4.30, 4.33, and 4.36 (and the corresponding 

`cut' images) that LI estimates with larger error the pixel values at the boundaries 

between regions of contrasting response, such as those corresponding to the road 

that crosses the two wheat fields, on the sub-images in band 5, from D 1 , or 

those at the boundaries between the reforested area and the areas of low density 

vegetation, on the sub-images in band 5, from D2. 

Note, however, that because different bands respond differently to the same 

objects on the ground, the pixel values associated to the road are better estimated 

in the sub-images in bands 3 and 5, than in band 4. Note, from Figure 3.2 that 
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the responses from the road, and the wheat fields, are most different in band 4, 

than in either band 3, or 5, explaining the poorer performance of LI along the 

road, in ali OT's in band 4 (photographs not provided). 

Note from the residual images displayed in Figure 4.9, for LI and TD-6, that 

method TD-6 does not distort the pixels values at the boundaries between the 

different types of ground cover, in the same extent that LI does. From the figure, 

the dose correspondence between the occurrence of large residuais from Guin-

don's rnethod and the areas of contrasting 'local' differences shown in Figure 3.7 

(c) can be appreciated. Observe that the pixel values on the road are estimated 

well using TD-6 [no contrasting 'local' differences are noticed on Figure 3.7 (c) 

for the majority of the pixels along the road], but not LI. However, due to the 

homogeneity of sub-images in band 3, note that LI estirnates well the pixels in 

this feature on the sub-images in this band [D 1 (33), for instance], as can be noted 

on the residual image for this method, in Figure 4.12, and the corresponding `cut' 

image in Figure 4.13. This figure also shows that method TB-6 does not perform 

well along the road, essentially because of the contrasting difference in response of 

this target, in bands 3 and 4 (used as the template band). As the road is narrow, 

and due to the fact that it crosses the sub- image diagonally, 'local' differences are 

more likely to occur, explaining the failure of Guindon's method in this particular 

image, and feature. Note, however, the superior performance of method TD-6 in 

the corresponding residual image in Figure 4.30, for OT 20 [D2(25)(15)]. Due to 

the heterogeneity of the sub-images in band 5, LI does not perforrn well at the 

boundaries between the different types of land cover, when more significant 'local' 

differences occur. The use of information from a template date, if no significant 

changes in land cover occur between the passages, can improve the estimation of 

these pixels, as can be seen in the `cut' image in Figure 4.31. 

Whenever there is a poor correlation between the original sub-image and 

the template, methods TB/D-1 and TB/D-4 tend to reproduce the features in 

the template, completely masking the true features in the original sub-image. 

This can be observed in the test images obtained for these methods, in OT 14 

[D1 (25)(23), in Figure 4.5], and in OT 3 [D1(33)(34), in Figure 4.11]. The corre-

lations between the original sub-image and the template band in OT 14, and OT 
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3, are 0.705 and -0.126, respectively. Note, by contrasting Figures 4.5 and 3.4 
(for OT 14), and Figures 4.11 and 3.2 (for OT 3), how closely the test images ob-
tained for methods TB-1 and TB-4 resemble the template band. For the second 
data set, the `poor' results from methods TB-1 and TB-4 can also be observed in 
Figures 4.20, 4.26, and 4.32, for OT's 2, 8, and 10, in Table 4.3. The correlations 
between the original sub-image and the template band, for each of these OT's 
are 0.441, 0.441, and 0.172, respectively. 

To a lesser extent, the test images for methods TB/D-3 and TB/D-5 show the 

same effect as that observed for methods TB/D-1 and TB/D-4. Note, however, 
the improved results obtained for methods TD-1, TD-3, TD-4, and TD-5, in 

contrast to those obtained for the corresponding template band methods, in the 
following sequence of figures: 

1. 4.5 [Di(25)(23), rb35  = 0.705] and 4.8 [Di(25)(15), rdu = 0 - 931; 

2. 4.11 [Di(33)(34), rba4 = —0.126] and 4.17 [D i (33)(23), rd23  = 0.817]; 

3. 4.20 [D2(24)(25), rb45  = 0.441] and 4.23 [D2(24)(14), rd i2  = 0.810]; 

4. 4.26 [D2(25)(24), rb45 = 0.441] and 4.29 [D2(25)(15), rd12  = 0.956]; and 

5. 4.32 [D2(45)(44), rb45  = 0.172] and 4.35 [D2(45)(35), rd3 4  = 0.968]. 

The improved results obtained from the template date methods can be pos-
sibly explained by the higher correlation between the data in the original sub-

images and the template date, and by the fact that there are fewer differences 
between the sub-images and the template date, than between the sub-images and 
the template band (see difference images in Figures 3.7 and 3.8, for D 1 , and in 
Figures 3.21 and 3.22, for D 2 ). Note that despite the small difference in the 
degree of correlation between the original sub-image and the template, in OT 6 
[D 1 (33)(35), rb35  = 0.760] and in OT 21 [D1(33)(23), rd23  = 0.817], the results for 
methods TD-1, TD-3, TD-4, and TD-5, using OT 21, are much better than those 
obtained for methods TB-1, TB-3, TB-4, and TB-5, using OT 6 — see Figures 

4.14 (for OT 6) and 4.17 (for OT 21). By observing the test images obtained 

for these methods (template band and template date), and the difference im-
ages D1(33) — D1 (35), in Figure 3.8 (c) (second column in the photograph), and 
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D1 (33) D1(23), in Figure 3.7 (c) (third column in the photograph), it can be 

seen that the test images fail to resamble the original sub-image mainly in the 

areas of change, as indicated in the difference images. Thus, the quality of the es-

timates obtained for methods TB/D-1, TB/D-3, TB/D-4, and TB/D-5, depends 

both on the degree of correlation between the original sub-image and template, 
as well as on the amount (and degree) of changes between them. 

From the same sequence of figures indicated above for methods TB/D-1, 

TB/D-3, TB/D-4, and TB/D-5, it can be seen that the results for methods 

TB/D-2, TB/D-6, and TB/D-8, improve as the correlation between the original 

sub-image and the template increases, but that the improvement is not as pro-

nounced as that observed for those methods. Note, for instance, in Figures 4.26 

and 4.29, the small difference between the test images for methods TB-6 and TD-
6, using OT 8 [D2(25)(24) (rb 45  = 0.441)] and OT 20 [D2(25)(15) (rd i2  = 0.956)]. 

The different colours in the `cut' images corresponding to methods TB-1, TB-

3, TB-4, and TB-5 in Figures 4.28 [D2(25)(24), OT 8] and 4.34 [D2(45)(44), OT 

10] are associated with those pixels at the tails of the distribution of the residuais 

(or, equivalently, of the `cut' image). Note, in Table B.10, in Appendix B, the 

large residuais obtained for these methods, in OT 8 [D2(25)(24)]. For instance, 

the minimum and maximum values of the residuais for method TB-1, using OT 

8, are -121 and 100, respectively, corresponding to values 7 (-121+128) and 228 

(100+128) in the residual image. These values are respectively associated to the 

colours biack, and white, as indicated in the range of colours in Figure 4.28. 

Large residuais are also observed for method TB-1, in OT 10 [D2(45)(44)]. The 

minimum and maximum values of the residuais for this method, using OT 10, 

are -102 and 60, corresponding to values 26 (-102+128) and 188 (60 +128) in 

the residual image. In the `cut' image for this method, values 26 and 188 show 

as black and grey, respectiveiy. Note that the colour grey, in the `cut' image in 

Figure 4.34, is associated with the large residuais shown in yellow and orange, in 
Figure 4.33. 

Since the variance of the test irnages obtained for method TB/D-4 depends 

on the correlation between the original sub-image and the template (refer to page 

54), very `poor' test images are generated for this method if the sub-image and 
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the template (band or date) are poorly correlated. In this case, the variance of the 

data in the test image is low, and the test image image shows very uniformly, with 

a colour matching that of the mean of the original sub-image. An example for 

the first data set is displayed in Figure 4.11 [D1(33)(34), rb3, 4  = —0.126], whereas 
Figures 4.20 [D2(24)(25), r6 4,5  = 0.441], and 4.32 [D2(45)(44), rb3,4 = 0.172] con-
stitute examples for the second data set. 

Since method TB/D-5 estimates the missing values in each fine, using the 

data in the region delimited by 3 lines above, and 3 lines below (to compute the 
values of rbki (or rdki), sk, s i , flk, and iii), an interesting effect can be observed 

in some of the test images. Due to the variability of the correlation between the 

data in the original sub-image, and those in the template, from region to region, 

some lines of the original sub-image may be estimated well if this correlation is 

high, whereas other may show the uniform effect described above for method 

TB/D-4, if the correlation is poor. This effect can be observed in the test images 

displayed for this method, in Figures 4.11 [D 1  (33)(34)J, 4.26 [D2(25)(24)], and 
4.32 [D2(45)(44)]. 

Ali the test images obtained from template date methods are visually superior 

to those obtained from template band methods. The methods which seem to be 

least affected by the correlation between the test image and the template are 

TB/D-2, TB/D-6, TB/D-7, and TB/D-8. Contrast, for instance, the test images 

corresponding to methods TB-2, TB-6, and TB-8, with those corresponding to 

TB-1, TB-3, TB-4, and TB-5, in Figures 4.11 [D 1 (33)(34), rb34  = —0.126], 4.20 
[Di(24)(25), rb45  = 0.441], and 4.26 [D2(25)(24), rb45  = 0.041]. 

Regardless of the correlation between the original sub-images, and the tem-

plate, note that methods TB/D-1, TB/D-3, TB/D-4, and TB/D-5, fail to es-

timate well the pixel values corresponding to arcas where changes occur. The 

arcas of changes in the response of the different objects on the ground, in differ-

ent bands, can be observed in Figure 3.8, whereas the areas of change, between 

different dates of imaging, can be seen in Figure 3.7. Note, for instance, the asso-

ciation between the occurrance of the black (or grey) patches in the `cut' images 

in Figure 4.7 [D1(25)(23), rb 35  = 0.705], and the areas of change depicted in the 
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difference image in Figure 3.8. Another example can be seen in the `cut' image 

in Figure 4.31 [D2(25)(15)]. The grey patches at the top of the `cut' images for 

methods TD-1, TD-3, TD-4, and TD-5, correspond to the pixels displayed in ma-

genta, in the difference image in Figure 3.21 (b) (first column in the photograph). 

Although, in general, method TB/D-2 performs numerically better than method 

T13/D-8, the test images for the former method are, in general, visually inferior to 

those obtained for method TB/D-8, especially in more heterogenous bands. The 

test images for method TB/D-2 usually have an `speckled' appearance, which is 

not observed in the test images for method TB/D-8 - see, for instance, Figures 

4.5, 4.8, 4.26, and 4.32. However, method TB/D-8 usually enhances the bound-

aries between the different features in the image (see, for instance, Figures 4.11 

and 4.20). Note that the test images in Figure 4.11, correspond to an original 

sub-image in band 3, using a template in band 4 [D1(33)(34)], whereas those 

in Figure 4.20 correspond to an original sub-image in band 4, and a template in 

band 5 [D2(24)(25)]. As already noted in Chapter 3 (§3.3) bands 3 and 5 are both 
sensitive to vegetation reflectance, whereas band 4 is sou l reflectance. Therefore, 
a sharp contrast in response is expected from bands 3 and 4, and 4 and 5, at the 
boundaries between vegetation and soil. 

The residual images in Figure 4.39, and the `cut' images in Figure 4.40, for 

method TD-9 (for OT's 19 to 27 in Table 4.2) show very clearly the strong as-

sociation between the arcas where this method fails to perform well, and the 

areas of changes shown in the difference images in Figure 3.7 (a), (b), (c) [for 
OT's (19,20,21), (22,23,24) and (25,26,27)], respectively. Better estimates for 

this method are obtained for the sub-images in band 3, which are more homoge-

neous (recall the uniform difference images for sub-images in this band, acquired 

at different dates), and for the sub-images which have a template acquired prior, 

and another acquired after their acquisition (e.g. the sub-images acquired at 
24/06, i.e., D 1 (23), D 1 (24), and D 1 (25), for which there is a template acquired 
at 08/06, and another at 10/07). The improved performance of the method can 

be observed in Figures 4.39 and 4.40, by contrasting the sub-images in the sec-

ond column of the photograph (which correspond to the sub-images acquired at 

24/06), with those in either the first, or third columns (which correspond to the 
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sub-images acquired at 10/07, and 08/06, respectively). 

From the residual images it can be seen that method TB/D-6 usually performs 

better than the other methods, except, in general, LI. However, the smoothing 

effect caused by method of linear interpolation has not been observed on the test 
images for TB/D-6. 

4.7.1 Some Additional Comments 

Observation of the `cut' images may give an idea of the number of pixel values 

estimated with no error, and the areas, on the image, which are better estimated 
from each rnethod. 

Not only can the exact number of pixel values estimated with no error be used 

as an indicator of the performance of the methods, but also the number that are 

estimated within an small error. The proportion of pixel values estimated within 

a small error has also been observed for ali methods, usually assuming an error of 

±4 grey leveis for the original sub-images in the more homogenous bands 3 and 

4, and ±10 grey leveis for those in band 5. The values for the complimentary 

proportion of pixels estimated within a small error, ACC, are given in Table B.4, 

in Appendix B, for ali methods, using OT's 1 to 27 in Table 4.2, and in Table 

B.9 in Appendix B, using OT's 1 to 24 in Table 4.3. 

The same procedure used to evaluate the performance of the methods for 

SRMS, CCOR, and SRAN, in §4.5, is used here to investigate their performance 

for ACC. The average ranks of the 31 methods, using D 1 , and the 19 methods, 
using D2, are presented in Table 4.8. From the results in this table it can be 

seen that, on average, methods LI, TD-6, and TD-7, estimate a larger number of 

values within a small error, than the other methods. 
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Table 4.8: Average ranks (AR) of the single band, template band, and template 
date methods, for ACC, using D1 , and D2. 

Dl D2 
Method AR Method AR 
TD  -  7 3.6 	LI 2.0 

L1 3.9 TD - 6 3.5 
TD  -  8 5.7 TD  -  7 4.3 
TD - 6 5.7 TB - 6 4.4 
TD  -  2 5.9 TD  -  2 4.9 
TD  -  10 7.4 TD  -  8 5.4 
TB  -  6L 8.7 CSP 6.1 

CSP 9.8 TD - 3 8.7 
TB  -  6H 10.9 TD  -  5 9.9 
TB - 7 L 11.6 TB - 7 9.9 
TD  -  3 11.6 TB  -  2 10.7 
TD - 9 11.7 LR 11.9 
TD-5 11.9 TD - 4 12.0 

TB - 8H Eu TD - i Eu 
TB - 2H 12.7 TB - 8 13.6 
TD - 4 14.8 TB - 3 16.5 
TD - 1 15.6 TB - 5 16.9 

TB -7H 15.6 TB - 4 18.1 
TB - 2L 16.3 Til - 1 18.6 

LR 16.6 
TB - 8L 2 0.11 
TB - 10 21.6 	I 
TB - 5H 23.2 
TE - 3H 24.9 
TB - 9 25.4 

TB - 4H 25.8 
TB - 5L 26. 8 
Til - 4L 27.7 
TD - 1H 28.4 
TB - 3L 29.4 	I 
TB - 1L 30.7 
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Figure 4.5: Test images for D 1 (25)(23), for methods: 1. LR 2. LI 3. TB-1 4. 

TB-2 5.TB-3 6.TB-4 7.TB-5 8. TB-6 9. TB-8. 

Figure 4.6: Residual images for D 1 (25)(23), for methods: 1. LR 2. LI 3. TB-1 

4. TB-2 5. TB-3 6. TB-4 7. TB-5 8. TB-6 9. TB-8. 
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Figure 4.7: `Cut' images for D 1 (25)(23) for methods 1. LR 2. LI 

3. TB-1 4. TB-2 5. TB-3 6. TB-4 7. TB-5 8. TB-6 9. TB-8. 

Figure 4.8: Test images for D 1 (25)(15), for methods: 1. LR 2. LI 3. TD-1 

4. TD-2 5. TD-3 6. TD-4 7. TD-5 8. TD-6 9. TD-8. 
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Figure 4.9: Residual images for D 1 (25)(15) for methods: 1. LR 2. LI 3. TD-1 

4. TD-2 5. TD-3 6. TD-4 7. TD-5 8. TD-6 9. TD-8. 

Figure 4.10: `Cut images for D 1 (25)(15) for methods: 1. LR 2. LI 3. TD-1 

4. TD-2 5. TD-3 6. TD-4 7. TD-5 8. TD-6 9. TD-8. 

107 



Figure 4.11: Test images for D l  (33)(34). 

(Displayed in the same sequence as in Figure 4.5). 

Figure 4.12: Residual images for D 1 (33)(34). 

(Displayed in the same sequence as in Figure 4.6). 
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Figure 4.13: `Cut' images for D 1 (33)(34). 

(Displayed in the same sequence as in Figure 4.7). 

Figure 4.14: Test images for D 1 (33)(35). 

(Displayed in the same sequence as in Figure 4.5). 
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Figure 4.17: Test images for D 1 (33)(23). 

(Displayed in the same sequence as in Figure 4.8). 

Figure 4.18: Residual images for D 1 (33)(23). 

(Displayed in the same sequence as in Figure 4.9). 
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Figure 4.19: `Cut' images for D 1 (33)(23). 

(Displayed in the same sequence as in Figure 4.10). 

Figure 4.20: Test images for D 2 (24)(25). 

(Displayed in the same sequence as in Figure 4.5). 
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Figure 4.21: Residual images for D 2 (24)(25). 

(Displayed in the same sequence as in Figure 4.6). 

Figure 4.22: 'Cul,' images for D 2 (24)(25). 

(Displayed in the same sequence as in Figure 4.7). 

113 



Figure 4.23: Test images for D 2 (24)(14). 

(Displayed in the same sequence as in Figure 4.8). 

Figure 4.24: Residual images for D 2 (24)(14). 

(Displayed in the same sequence as in Figure 4.9). 
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Figure 4.25: `Cut' images for D 2 (24)(14). 

(Displayed in the same sequence as in Figure 4.10). 

Figure 4.26: Test images for D 2 (25)(24). 

(Displayed in the same sequence as in Figure 4.5). 
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Figure 4.27: Residual images for D 2 (25)(24). 

(Displayed in the same sequence as in Figure 4.6). 

Figure 4.28: ( Cut' images for D 2 (25)(24). 

(Displayed in the same sequence as in Figure 4.7). 
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Figure 4.29: Test images for D2(25)(15). 

(Displayed in the same sequence as in Figure 4.8). 

Figure 4.30: Residual images for D 2 (25)(15). 

(Displayed in the same sequence as in Figure 4.9). 
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Figure 4.31: `Cut' images for D2(25)(15). 

(Displayed in the same sequence as in Figure 4.10). 

Figure 4.32: Test images for D 2 (45)(44). 

(Displayed in the same sequence as in Figure 4.5). 
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Figure 4.33: Residual images for D 2 (45)(44). 

(Displayed in the same sequence as in Figure 4.6). 

Figure 4.34: 'CLIC images for D 2 (45)(44). 

(Displayed in the same sequence as in Figure 4.7). 
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Figure 4.35: Test images for D 2 (45)(35). 

(Displayed in the same sequence as in Figure 4.8). 

Figure 4.36: Residual images for D 2 (45)(35). 

(Displayed in the same sequence as in Figure 4.9). 
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Figure 4.37: `Cut' images for D 2 (45)(35). 

(Displayed in the same sequence as in Figure 4.10). 

Figure 4.38: Test images for method TD-9: 1. OT 19 2. OT 20 3. OT 21 

4. OT 22 5. OT 23 6. OT 24 7. OT 25 8. OT 26 9. OT 27. 
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Figure 4.39: Residual images for method TD-9: 1. OT 19 2. OT 20 3. OT 21 

4. OT 22 5. OT 23 6. OT 24 7. OT 25 8. OT 26 9. OT 27. 

Figure 4.40: `Cut' images for method TD-9: 1. OT 19 2. OT 20 3. OT 21 

4. OT 22 5. OT 23 6. OT 24 7. OT 25 8 OT 26 9. OT 27. 
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4.8 Some Alternative Approaches 

From the numerical, and visual, results presented in §4.5 and in §4.7, re-

spectively, it is clear that none of the methods is consistently better than others. 

From the observation that some of the methods perform better than others (for 

instance, LI, TB/D-6, TB/D-7), but not necessarily over the entire sub-image, 

an alternative method has, at a late stage been explored, which would preserve 

the features of a good method, whilst trying to compensate for its drawbacks. A 

`switching' method was tried, as follows: 

1. computation of the 'local' variations of the data in the template image, 

expressed by: 

al  (i, j) ---= ui  (i, j) 	
[ui  (i — 1,j)  + z' (i + 1,j)]  

(4.30) 
2 

2. application of a switching rule, consisting of the following: 

as for LI, if ai  (i, j) < est  

ük  (i, i) = 
as for method TB/D-6, otherwise. 

Hence, the method uses linear interpolation whenever the template date is 

`locally' homogeneous, and applies Guindon's method TB/D-6, otherwise. The 

method has been applied to the sub-images in D 1 , and D2, using c=1, 1.5, and 2. 

Let the method be referred to as TB/D-11, TB/D-12, and TB/D-13, when c=1, 

1.5, and 2, respectively. 

The values for SRMS, CCOR, and SRAN, for OT's 1 to 18, and OT's 19 to 27 

in Table 4.2 are given in Tables B.11 and B.12, in Appendix B, under Template 

Band and Template Date, respectively. The values for these measures, for OT's 

1 to 12, and OT's 13 to 24 in Table 4.3 are given in Tables B.13 and B.14 in 

Appendix B, under Tem plate Band and Tem plate Date, respectively. 

The results in Tables B.11 to B.14 show that the `switching' method, if some-

times better than LI, is only marginally so. Also, it has been noticed that the 

use of method TB/D-6 is possibly not the best alternative, as this method can 

have large residuais, as pointed out previously. In the analysis of the residuais 

obtained for method TD-11 (which is the method that applies the switching rule 
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most frequently), using OT D 1 (25)(35), it has been observed that only 100 pixel 

values were estimated using Guindon's method, and only half of these estimates 

were in fact better than the estimates for LI. Therefore, method TD-11 (as well 

as TD-12 and TD-13) will definitely not improve the visual deficiencies of LI. 

The `failure' of these methods can possibly be explained by the switching rule 

that has been used, which does not take into account the 'local' variations in 

the original sub-image and in the template image. Other alternative methods 

using different switching rules (and dilferent switching methods) have also been 

experimented. However, at present, better results than LI alone have not yet 

been obtained from any of these new, altern.ative, methods. 

More encouraging results, however, have at a late stage been obtained for two 

variations of method TB/D-2, which originated from theoretical considerations. 

The first and second alternative methods use, instead of A, in equation 4.3, the 

values of P, and p, as defined in §4.2. These methods, which are henceforth 

referred to as TB/D-14 and TB/D-15, respectively, have also been applied to ali 

sub-images in D 1  and D2. The values for SRMS, CCOR, and SRAN, obtained 

for these methods, using OT's 1 to 27 in Table 4.2, are presented in Tables B.11 

(for SRMS and CCOR), and B.12 (for SRAN), in Appendix B; the corresponding 

results, using OT's 1 to 24 in Table 4.3, are given in Tables B.13 and B.14, in 

Appendix B. 

Methods TB/D-14 and TB/D-15 perform consistently better than method 

TB/D-2, for ali measures. In general, the results for method TB/D-14 are better 

than those for TB/D-15, and similar to those for L1, as can be seen from the plot 

for SRMS, CCOR, and SRAN given in Figure 4.41for the two methods. 

Recall that the original sub-images and the template band in OT's (1,2,3), 

(7,8,9,10,11,12), and (16,17,18) are poorly correlated. However, the good perfor-

mance of method TB-14 in these OT's seems to indicate that the method is not 

sensitive to the degree of correlation between the sub-image and the template. 

The results for method TD-14, in OT's 19 to 27, are also similar to those for LI. 

However, even if only marginally, the numerical results for LI are generally better 

than those for TD-14. 
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Figure 4.41: Plot of SRMS, CCOR, and SRAN for OT's 1 to 18 in Table 4.2, for 

methods LI and TB-14. 

Figure 4.42 (a), (b), and (c) respectively display the test images, the residual 

images, and the `cut' images for methods LI, TB-2, and TB-14, using OT 3 
[D1 (33)(34)], in Table 4.2. 
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a 

c 

Figure 4.42: (a) 1. Original sub-image D 1 (33); 2. Test image for LI, using 

D1(33)(34); 3. Test image for TB-2, using D i (33)(34); 4. Test image for TB-14, 

using D 1 (33)(34); (b) 1. Residual image for LI; 2. Residual image for TB-2; 3. 

Residual image for TB-14; (c) 1. `Cut' image for LI; 2. (Cut' image for TB-2; 3. 

`Cut' image for TB-14. 
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From the test images displayed in Figure 4.42 (a), it can be noted that method 

TB-14 lias better visual results than LI, or TB-2 (see also Figure 4.11). Note, for 

instance, the estimaítes of the pixel values along the road, obtained for the three 

methods. Those for LI are smoother' than they should be [and as expected, from 

a linear filter], whilst some of the estimates for TB-2 have large residuais [recai! 

that band 4 has been used as the template, and that the response from the road, 

in this band, and in band 3, are very distinct — refer to Figures 3.2 (b) and 3.4 (a)]. 

This is not observed in the test image for method TB-14. Although this method 

also has some smoothing effect, which causes the test image to appear slightly 

blurred, this effect is not as pronounced as that observed for LI. Method TB-

14 also smoothes the `speckled' appearence of the test image for TB-2. However, 

there is only a slight difference between the residual images for these two methods. 

4.9 Conclusions 

In this chapter, the performances of several relatively simple methods pro-

posed to estimate missing values arising from line dropout have been evaluated. 

Ali the methods suggested as alternatives to single band methods, such as linear 

interpolation, and interpolation using cubic splines, use the multispectral poten-

tial of the TM, by incorporating information from another neighbouring, well 

correlated, band to the one where the missing values occur. The use of these 

methods, incorporating information from another passage, instead of informa-

tion from another band, have been experimented here. The results indicate that 

multitemporal data can be a valuable source of information to aid the accurate 

estimation of missing values arising from detector failure, especially over arcas 

where small changs, from passage to passage, occur. 

One of the drawbacks of the use of methods that incorporate information 

from another passage is the fact that, at present, they cannot be implemented 

routinely to replace missing scan fines on the imagery. Unlike multispectral data, 

the information from other, dose, passages may not be readily available. Another 

disadvantage of the template date methods is that they require that the data from 

the different passages be well registered, before they can be effectively used. 

Despite these deficiencies, the template date methods have been shown to 

be particularly useful in the estimation of missing values occurring on 'fixed' 
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features on the g-round, such as roads, agricultural plots, and reforested areas, as 

this information is more likely to be similar, from one passage to another, than 

from one band to another. It is probable that better estimates of missing values 

occurring in urban areas will be obtained frorn template date methods, than from 

template band methods, although this could not be investigate here, due to the 

non-availability of suitable data. Also, the estimates of the missing values ou the 

image used by Bernstein et ai. (1984), which featured a stadium, and an airport, 

would certainly be estimated well from template date methods. Note that in 

the case of missing values occurring over 'fixed' features, it is not necessary that 

information be from a dose passage to the one in which the missing values occur. 

Although the results in this chapter have indicated a superior performance of 

the template date methods, relative to the template band methods, it is impor-

tant to note that the data from the different passages were consistently better 

correlated than the data from the other bands available. Ali the methods pro-

posed to estimate missing values arising from tine dropout assume that data from 

a well correlated template is used. This study has demonstrated that although, 

in general, better estimates are obtained from ali methods, from the use of a 

better correlated template, some of the methods are less sensitive to the degree 

of correlation between the 'clefective' image and the template, than others. The 

methods which seem -to be the least affected by this correlation are the template 

replacement with error adjustment method of Bernstein et ai. (1984) (referred to 

here as method TB/D-2), and the adjacent band modulation methods of Guindon 

(1984) (denoted here as methods TB/D-6, and TB/D-7). 

The performances of the methods, evaluated for a set of numerical measures, 

consisting of the scaled root mean square residual (SRMS), the complimentary 

correlation between the original sub-image and the test image (CCOR), and the 

scaled range of the residuais (SRAN), were in general consistent for the two data 

sets investigated here. Ali methods had a similar performance for SRMS, and 

CCOR, suggesting that only one of these measures needs to be used as a per-

formance indicator. On the other hand, the performances of the methods were 

usually not consistent for SRMS (and CCOR), and SRAN. Methods which had 

low values for SRMS, and CCOR, sometimes had large values for SRAN. As 

SRAN uses only the range of the residuais, large values may only indicate the 

presence of a few, large residuais. In particular, methods TB/D-6 and TB/D-7 
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usually had low values for SRMS and CCOR, but large values for SRAN (refer to 

Table 4.4), indicating the occurrence of some large residuais for these methods. 

Note that these few, large residuais, also increase the value of SRMS. Hence, it is 

important to realize that an evaluation of the performances of the methods, based 

solely on numerical measures, may be misleading. This stresses the importance of 

a visual evaluation of the methods, as a complement to the numerical evaluation. 

From the residual images, for instance, it is possibly to identify the spatial distri-

bution of the residuais, and their size, in relation to the original image. Methods 

with low values for SRMS, CCOR, and SRAN, may show visually as introducing 

more distortions in the original image than others for which the values for these 

measures are larger. These methods may only introduced some 'local' distortions 

in the image, while performing well elsewhere, whereas the methods with a better 

numerical performance may introduce more subtle, but more frequent, distortions 

on the image. 

If based solely on the numerical evaluations carried out here, the method of 

linear interpolation would be indicated as the `best' method to estimate missing 

values arising from fine dropout. However, considering that this method has spa-

tial smoothing effects, with consequent reduction in resolution (which explains 

the usually `blurred' test images for this method), and that it can introduce con-

siderable distortions, especially at the boundaries between regions of contrasting 

response, the indication of other methods may be justified. Methods TD-6, and 

TD-7, for instance, perform particularly well on D2, since the features in the sub-

images in this data set are more `permanent', causing an improved performance 

of template date methods. However, in `dynamic' areas, where changes from one 

passage to another are more likely to be observed, or where the objects on the 

ground are more likely to have contrasting responses, in different bands, these 

methods are not expected to work well in general. 

In summary, none of the methods, including linear interpolation, and the 

adjacent band modulation methods estimate well the missing values occurring 

in `dynamic' areas, especially in images in more heterogenous bands. However, 

over areas where the features are more permanent, methods TD-6, and TD-7 are 

expected to perform better than their corresponding methods using a template 

band, and better than the method of linear interpolation. The latter may, in gen-

eral, perform better than the template band, or the template date methods, over 
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areas which are rea.sonably homogeneous, and where large 'local' variations are 
not likely to occur. Since the template band, and the template date methods rely 
on the existance of a good association between the data on the `defective' image, 

and the template image, in order to perform well, their use, over homogenous 

areas, is certainly not justified. 

Since none of the single band, template band, or template band methods 

alone perform consistently well in ali situations, but each has its own individ-

ual potential to estimate missing values on the imagery, it is suggested that the 

development of `switching' methods, which explore, and incorporate, the indi-

vidual potentialities of some of the single band, template band, and template 

date methods, be further explored. Despite the logic of the use of such methods, 

it has been observed that the identification of the appropriate switching rule to 

apply, or what methods to use, may present undue difficulties. Although some 

`switching' methods have been experimented with here, the results have not been 

encouraging, and further work in this respect is still warranted. 

Amongst the several new methods proposed in this chapter, methods TB/D-

14, and TB/D-15 (which are variations on method TB/D-2) have a similar numer-

ical performance to the method of linear interpolation, and a better visual perfor-

mance than the 'atter, a1though method TB-14 still has some spatial smoothing 

effects. Regardless of the degree of correlation between the original sub-image and 

the template considered, the results obtained for methods TB/D-14 and TB/D-

15 were consistently similar to those obtained for LI, and consistently superior to 

those obtained for method TB/D-2. 

Due to the similarity of the numerical results obtained for these methods, 

with those for LI, and their visual superiority with respect to the latter, their 

incorportation into the `switching' methods above, may be warranted, and should 

be further investigated. 
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Chapter 5 

Estimation of Missing Values 

using Spatial Modelling 

5.1 Introduction 

Ali methods investigated in the previous chapter, except line replacement, 

linear interpolation, and interpolation using cubic splines, require either informa-

tion in adjacent, well correlated bands, or information from other, dose, passages. 

For the template date methods to perform well generally, they require that few 

changes between the sub-image and the template occur. 

Although, in general, linear interpolation performed better numerically than 

other single band, template band, or template date methods investigated in the 

previous chapter, it has the undesirable smoothing effect. In that chapter it was 

also mentioned that a single method that performs consistently better than oth-

ers, for ali measures (numerical and visual), could not be identified. Besides, the 

performances of the methods depend upon the geometry of the features present 

in the image, in which case template date methods, or template band methods 

may estimate the missing values better than single band methods. 

Recall that the methods in Chapter 4 were ali relatively simple ones, which 

could warrant their implementation on a routine basis, to replace missing scan 

lines on the imagery. 

Since certain classes of spatial models have been shown to fit remotely sensed 

data well, they are investigated in this chapter as methods to replace missing 

values arising in this particular kind of data. These spatial methods take into 
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account the fact the remotely sensed data are usually spatially autocorrelated. 

An approach to account for the spatial dependence of the observations is its 

removal before the main analysis of the data is initiated, so that conventional 

methods may then be applied. The use of polynomials has been suggested to 

eliminate spurious correlation due to the position of the observation in space. The 

technique, nowadays referred to as trend surface anal ysis, has already been inves-

tigated in connection with remotely sensed data (Haining et ai., 1989). Another 

alternative to remove the spatial dependence between the observations consists 

of spatial differencing, analogous to the differencing used in time series to remove 

non-stationarity (Cliff 45z Ord, 1975; Gleeson and McGilchrist, 1980). 

Two classes of spatial models seem to have received most attention in con-

nection with remotely sensed data: the conditional autoregressive (CAR) and 

the simultaneous autoregressive (SAR). Ku-nsch (1987), for instance, fitted an 

intrinsic CAR model with constant mean to Switzer's 16 by 25 Landsat data of 

three rock-types in one of four spectral bands, and compared the results with 

those from an ordinary CAR with up to third- order neighbours, whilst Haining 

et ai. (1989) fit a trend surface model with first-order CAR errors to an 11 by 

11 subset of reflectance values from an aerial survey monitoring marine pollution 

levels off the south coast of England. In their investigation, Haining et ai. (1989) 

deliberately and artificially deleted some values from the centre of the image, 

analyzing two situations: one consisting of the complete deletion of the values in 

une 5 of their original data, and another consisting of the deletion of a cluster 

of size 3 by 3 from the centre of the lattice. They compare the results obtained 

by averaging neighbouring observed values, and by the fit of a sequence of trend 

surface models of successively higher order. Estimates based on a stationary form 

for the covariance matrix have also been obtained. Haining et ai. (1989) used the 

root mean square error as a measure for evaluate the results from the different 

models. The results from averaging, and from the use of a second-order trend 

surface with lp-CAR(1) errors (fixed border values, and stationary form) were 

very similar, both in the case of the sequentially missing values, as well in the 

clustered case. The larger values for the root mean square error were obtained 

for the methods that assumed a stationary form for the covariance matrix. 

Before data from D l  and D2 became available, the fit of several spatial models 
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to the original 11 by 11 data of Haining et.al  (1989) has been investigated. As 

the data showed some trend on the mean, some exploratory data analyses have 

been applied to the data, consisting of a method proposed by Tukey (1977) (line 

median polishing and row median polishing), and line differencing. CAR and SAR 

processes of several orders have been fitted to their data, the results of which are 

included in Appendix D. From these results it can be seen that there is only a 

slight gain in using higher-order processes. 

Krug & Martin (1990) reported the results from the use of a method using spa-

tial modelling, and the methods of adjacent line replacement, linear interpolation, 

and TB/D-4, and TB/D-5, which were used to estimate some simulated missing 

lines in one sub-image from D 1  [D1 (15)1. The results from that preliminary in-

vestigation suggested further exploration of methods using spatial modelling. 

Subsequently, Krug & Martin (1991a), applied the same methods to a larger 

number of simulated missing lines, using some sub-images from D 1 , acquired at 

different dates, and in different bands. Results were obtained for 10 simulated 

missing lines [3 in sub-image D 1 (15), 2 in D 1 (14), 1 in D1 (25), 3 in D 1 (24), and 1 

in D1 (35)1, and for eight hypothetical configurations of missing values. As for the 

results for the missing lines, Krug & Martin (1991a) conduded that the results 

using spatial modelling were better than those for methods TB/D-4, or TB/D-5, 

although only slightly better than those obtained for LI. 

The application of methods that use spatial modelling hos been investigated in 

other contexts than remote sensing. For instance, Mead (1967) reported the use 

of a one-parameter first-order CAR in a study involving the estimation of inter-

plant competition, to describe competition effects between neighbouring plants. 

In this chapter, the results from the use of CAR and SAR models, as methods 

to estimate missing values in remotely sensed data, are evaluated. A general 

introduction to CAR and SAR processes is given in §5.3 and §5.4, whilst in §5.5 

some particular classes of these processes are examined. Although the material 

presented in these sections covers more than is necessary for the aims of this 

chapter, it is relevant to Chapter 7. The notation introduced in §5.2, and the 

contents in §5.3 to §5.5 are essentially verbatim from Krug & Martin (199Ib). 

Details of CAR and SAR processes can also be found in §5.2 in Ripley (1981). 

The main objective in this chapter is to contrast the results obtained from the 

application of methods that use spatial modelling with those obtained from the 
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simple methods introduced in Chapter 4. As in that chapter, the missing values 

are assumed here to arise from line-dropout. In Chapter 6 the methods proposed 

here, which are presented in §5.6, as well as some of the methods presented in 

Chapter 4, are evaluated in the estimation of missing values occurring in small 

dusters, as if arising from the presence of small, thick, douds. 

The model parameters are estimated using maximum likelihood, since the 

least square estimators for SAR models are inconsistent (Whittle, 1954). Al-

though the least squares procedure leads to consistent estimators for a CAR 

scheme, these estimators are nonetheless inefficient. Some problems encountered 

with the use of the method of maximum likelihood are described in §5.7. 

As the application of methods that use spatial modelling to estimate a large 

number of missing values can be so computer demanding as to become prohibitive, 

only the failure of a few detectors is simulated in this chapter, generating sys-

tematically missing scan lines (every 16th line) in one selected sub-image from 

D1  [D1 (15)1, and in another from D2 [D2 (15)]. The simulated missing lines, and 

some descriptive statistics, are presented in §5.8, for some sub-images from both 

data sets. 

Results for the methods proposed in §5.6, and for those introduced in Chapter 

4 are given in §5.9; a discussion of the results in §5.9 is presented in §5.10. The 

conclusion follows in §5.11. 

5.2 Notation 

In this section, some notation is introduced. For convenience assume in this 

section that the n sites in the n 1  by n2  lattice are labelled by the first n positive 

integers, in lexicographic order [that is, in the ordering, site (i, j) precedes (i, j+1) 

for j <n2  and (i, n 2 ) precedes (i -I- 1, 1)]. 

Two sites i and j on the lattice are said to be lag k neighbours if i — j = ±k. 

Thus, if d = 3, for instance, and k' = (k1 , k 2 , k3 ) then the lag k neighbours of 

2 = (ii, i2, i3) are (i 1  -I- kl , i2 -1- k2, i3 -1- k3) and (i 1  — 1c 1 , i2 - k2, i3 - k3). 

Let the n by n lag k neighbour matrix Wk be such that Wk[i, j] is 1 if i and 

j are lag k neighbours, and O otherwise, where Wk[i, j] is the value in matrix Wk 

for the row corresponding to site i and the column corresponding to site j. 

Define also the n by n directed lag k neighbour matrix Tk by Tk[i,j] is 1 if 
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j — i lc, and O otherwise, and note that Wk = Tk 4- T ik, and that fk  = T-k. 

5.3 CAR processes 

Assume that K, is a set of vectors k O for which /3k  = fi_k is non-zero, and 

exactly one of ±k is in K. The CAR process is then defined here through its 

inverse covariance matrix 

-1= 	E okwk. 	 (5.1) 
kEK, 

Ali subsequent sums in this section are over K. For k O and ±k K,, define 

fik = O. Note that V -1  must be positive definite, and that in general this process 

is not stationary - for example, the diagonal elements of V are not constant, so 

that var(x i ) is not constant, and covariances are also a function of location. 

Equation 5.1 implies that the conditional mean and variance are 

	

E(x, I•) = p + E 	+ Xi+k 2) , and var(x i  1.) = o-2  , 	(5.2) 

where the notation • stands for ali other values x 3  in the lattice, i.e. 

	

, j E T5}. If j 	then it is assumed in (5.2) that xi = 

The stationary process can be defined by equation 5.2 when T5 is extended to 

the infinite lattice Zd, provided the fi k  satisfy E Ok  cos (col k)< 1, for ali c.o. For 

a finite 25, V 1  in 5.1 is always positive definite under this condition, but slightly 

larger values of the 1 fik I may be possible. 

Site i is said to be an interior site of 5 if its corresponding row in V -1  has sum 

equal to 1-2 E fik, i.e. if i has both neighbours at ali lags k E K. Otherwise i is 

referred to as a boundary site. If V; 1  denotes the inverse covariance matrix for 

a realization on 5 of the stationary process, then the (i, j)- elements of v. -1 and 

V;1  only differ if i and j are boundary sites. Thus, for the stationary process 

on t5 equation 5.2 holds for interior sites i , but not for boundary sites. 

Sites i and j are isolated if = O (or (i — i) Kc  ). Thus x; does not 

occur in expression 5.2 for E(xi 1 6). Two groups of sites are isolated if ali sites 

in one group are isolated from ali sites in the other group. 
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5.4 SAR processes 

The simultaneous autoregressive (SAR) process is defined here by its inverse 

covariance matrix \T-1 

(1- Ef3,Tk) g - E skTk)=I- E okwk + E E PkPiT;eT/ 	(5.3) 

where ali sums are over Ks , the set of ali vectors k O for which fik O. Again 

fik = O if k O and k 1C 3 . Note that the matrix I — E fikTk must be non-

singular, and that in general fik  is different from fi_k. As for the CAR process of 

§2.2, this process is in general not stationary. 

Equation 5.3 implies that 

xi = i + E Pk(xi—k 	+ ei 	 (5.4) 
kEK, 

where the ei are white noise, and x;  = p when j 05 . 

The stationary process can be defined by equation 5.4 when 25 is extended to 

the infinite lattice Zd provided the fik satisfy the stationarity condition EkEic, ,8k  

cos <1, Vw. For a finite 25, large values of the 1 fik  1 may also be possible. 

Every stationary SAR process has a corresponding CAR formulation. For a 

SAR process a site i is said to be an interior one if it is interior in its corresponding 

CAR formulation, which can be found by equating equations 5.11 and 5.12 in 

Besag (1974). 

Assume here that the generating function for the SAR process is (1—E kEKa  OkZ), 

where Z k  denotes ri 4,  (for instance, if d = 2 and k = (1, —1) then Z k  = Z1Z2-1 ), 

then that for the corresponding CAR is 

b-10._ E /42,)(1 E okz _k )  = 	E  z  E orfir+k 	(5.5) 
kEK3 	kEK, 	 kEK: rEK: 

with K;1-  = 	U {O) , 	= {k I k = 	k2  for ali 	k2  E Kji- } , 

Po = —1 and b = >-kEK Ín• 

Then equation 5.5 shows that the corresponding CAR is defined by 

E(xi 1 •) = P EkEK: Orc(Xi-k X14-k — 2P) 

for fii*, = 	ET. EKii- firf3r +k. The appropriate IC: for which the 	are non-zero 

contains one of each pair ±k for k O, kEKB  

Consider, for instance, the CAR formulation corresponding to the two-parameter 

first-order SAR referred to in subsection 5.5.4 This has 
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Ks  = {(0,1), (O, -1), (1,0), (-1, O)} and fik = a for k = (±1, O) and fik = fi for 

k = (O, ±1). The corresponding K: is {(1, 0),(0,1),(1,1), (1, -1), (2,0), (0,2)}, 

and the corresponding CAR is 

	

(1 + 2a2  + 2[32) E(xii 1 s) = 2a(xi_Li + xi+i,j) + 	+ sij+i) 

+ 	+ 	+ 	 (5.6) 

xi+2á) + 	- 	xià+2 ) ,  

where i and j are scalars here. 

For the CAR corresponding to the general four-parameter first-order SAR see 

equations 5.7 and 5.8 in Besag (1974). 

Under the assumption that fik = fL k  for ali k E Ks , the process is referred 

to here as the symmetric SAR. Then V -1  can be written as 

(I - Ek€K, 13kWk) 2 . 

5.5 Some classes of two-dimensional CAR and 

SAR processes 

For simplicity define now the following matrices: 

Ulh = Wk for k = (1,0), the adjacent horizontal neighbours matrix; 

Uii, = Wk for k = (0,1), the adjacent vertical neighbours matrix; 

Ui  = Ulh + Ui,,, the adjacent neighbours matrix; 

U2 = Wk Wj for k = (1,1) and / = (-1,1), the adjacent diagonal neighbours 

matrix. 

Note that for the first- and second-order CAR processes discussed here a site 

i is interior if it is not in the outer layer of the rectangular lattice, i.e. if it is not 

in the first or last row, or in the first or last column of the lattice. 

5.5.1 One-parameter first-order CAR 

The one-parameter first-order CAR has one parameter for its horizontally and 

vertically adjacent neighbours. It is defined by V1  = /XI . The stationarity 

condition is I l< 

For a first-order CAR, two sites i and j are isolated if j is not an adjacent 

horizontal or vertical neighbour of i. 
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5.5.2 Two-parameter first-order CAR 

The two-parameter first-order CAR has one parameter for horizontal neigh-

bours and one for vertical neighbours. Its inverse covariance matrix is V -1  = 

— aUll, — /31.4„. The stationarity condition is 1 a I + I PI< 1. For an n1  by ni 
lattice, V-1  is positive definite when ja1+1fi l< [2cos{r1(n 1  + 1)}] -1 . When 

a = 0 the one-parameter first-order CAR of subsection 5.2.1 results. The condi-

tion for two sites to be isolated is the same as in 5.5.1. 

Higher order models can be extended from first-order models by incorporating 

more elements in the set K. Thus, a second-order model, for instance, includes 

the diagonal neighbours in the specification of V -1 , and a third-order includes 

sites which lie at lags (0,2) and (2, O). 

5.5.3 Two-parameter second-order CAR 

For the second-order process K, = {(0,1), (1,0),(1,1), (-1, 1)}. Assume 
{ a if k = (0,1) or k = (1, 0) 

here that /3k = 	 . Thus, this two-parameter 
/3 if k = (1,1) or k= (-1,1) 

second-order CAR has one parameter for horizontally and vertically adjacent 

neighbours, and one for diagonally adjacent neighbours. The inverse covariance 

matrix is V-1  = In  — aUi — OU2 . The stationarity conditions are /3> —1 and 

I 0/ I + O < .. When )3 = 0, the one-parameter first-order CAR of subsection 

5.5.1 is obtained. 

For the second-order CAR two sites i and j in t5 are isolated if j is not an 

adjacent horizontal, vertical, or diagonal neighbour of i. 

5.5.4 First-order symmetric SAR 

The two-parameter first-order symmetric SAR has one para.meter for horizontal 

neighbours and one parameter for vertical neighbours. It is defined by V -1  = (In — 
i al.11), — flU1t,) 2 . The stationarity condition for this process is la1+1#1< 

The corresponding CAR formulation is given in equation 5.6. The first-order 

SAR is a special case of a third-order CAR. 

Two sites i and j are isolated for a first-order SAR if j is not an adjacent 

horizontal, vertical, or diagonal neighbour of i, and also not its lag (0,2) or (2,0) 

neighbour. 
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For ali SAR processes discussed here a site i is interior if it does not lie in the 

two outer layers of the rectangular lattice, i.e., if it is not a site in the first or 

last two rows or first or last two columns of the lattice. 

The one-parameter first-order SAR has a = /3. 

5.5.5 Two-parameter second-order symmetric SAR 

For the second-order symmetric SAR K, = 1(0, 1), (1, O), (1,1), (1, —1)}. Here 

a if k = (0,1) or k = (1,0) it is assumed that fik = 	 . fi if k = (1,1) or k = (1,-1) 
Thus V-1  = (I,,, — aU i  — ,8U2 ) 2 . The stationarity conditions are 13 > —1 and 
! a 1 -I- /3 < 4. The one-parameter first-order SAR of subsection 5.5.4 results 

when 9 = O. 

5.6 Proposed Methods using Spatial Modelling 

The methods proposed in this section, for the estimation of missing values 

arising in remotely sensed data, use the spatial models introduced in §5.5. 

The following methods are proposed: 

• the one-parameter first-order CAR (lp-CAR) of §5.5.1; 

• the one-parameter first-order SAR (1p-SAR) of §5.5.4; 

• the two-parameter first-order SAR (2p-SAR) of §5.5.4. 

Results have also been obtained for a two-parameter first-order CAR of §5.5.2, 

a two-parameter second-order CAR of §5.5.3, and for a two-parameter second-

order SAR of §5.5.5. The maximum likelihood estimate of the parameter a, for 

the methods using second-order models, were similar to the estimate obtained 

for the corresponding methods using first-order models, and the estimate of )3 

was always dose to zero. Hence, the estimates of the variance, and the function 

value for the methods using second-order models were similar to those obtained 

for the corresponding methods using first-order models. The results for a method 

that uses a two-parameter first-order CAR were consistently worse than those 

obtained for the other methods proposed here, and hence are not included. 
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For the case of missing values occurring sequentially on a fine, as in this 

chapter, the estimates for a first-order CAR incorporate the information from ali 

sites in the lines above and below the one where the missing values occur. For 

example, consider the case of the 5 by 5 lattice given below, where the missing 

values occur sequentially in line 3. The sites are labelled by the first integers, in 

lexicographic order, and those corresponding to the missing values are indicated 

in bold. 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

The estimate of the missing value at site 13, for instance, for the method using 

a 1p-CAR(1) (assuming constant mean) is a linear combination of the values in 

the limes above, and below, as follows: 

U13 = a• (U8 + U18) b(U7 Ug U17 + Uig) C(U6 4- U10 + U16 4- U20) 

where u t, is the pixel value at site v. The values of a, b and c are a function of the 

size of the lattice, and of the value of the dependence parameter fi. Assuming 

fi = 0.25, the approximate values of a, b, and c are 0.288, 0.077, and 0.019, 

respectively. 

The method that uses a lp-SAR(1) estimates the missing values by incorpo-

rating information from a larger number of sites than the lp-CAR. For instance, 

the estimate of the missing value at site 13 is given by 

U13 = a(u8  + u18 ) b(u7 us u17 4- u19) + c(u 3  u23 ) 

+ d(u2 + u4 + U22 + u24)  ed(U6 U10 + U16 + u20)  f (U1 + U5 + U21 + U25) 

The approximate values of a, b, c, d, e and f, assuming fi = 0.25, are 0.672, 

0.277, -0.192, -0.095, 0.086, and -0.033. 

Ali the methods proposed above assume that the corresponding process has a 

constant mean, that is, piá = p, V(i, j) E 21 Two other methods, which assume 

stationarity in covariance structure, but not in the mean, are also proposed, which 

use trend surface analysis. 

The two additional methods proposed here are: 
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• second-order trend surface with lp-CAR(1) errors (lp-CART); 

• second-order trend surface with lp-SAR(1) errors (lp-SART). 

Results have also been obtained for a third-order trend surface with lp-

CAR(1) errors, but as they are similar to those obtained for the method using a 

second-order trend surface, they are not included. 

In trend surface analysis, which is a particular case of regression analysis, the 

regressor variables refer to the spatial coordinates of the sites. The mean at a 

site (i, j), say j), is expressed in the linear form 

	

i) = E E asrisir 	 (5.7) 
s=0 r=0 

where p -E q < k, and k is the order of the polynomial trend. 

In matrix notation, the mean vector is íz = AO, where A is an n by p design 

matrix, and O = Laoo, aoi , aio, 011 a02) a2or, for the second-order surface (k = 2). 

5.7 Maximum Likelihood Estimation 

Ali the methods proposed in this chapter require the estimation of the 

parameter vector cp (cp = /3 for the one parameter methods, and w = [a /3]' for 

the two-parameter methods). 

As mentioned in the introduction, the least squares method provides inconsis-

tent estimates of the parameters for a SAR model, and consistent, but inefficient, 

estimates for a CAR. In this section the method of maximum likelihood is dis-

cussed, assuming the vector of observations, Utk  , is jointly normally distributed 

with mean = AO and covariance matrix Vcr 2 , where: 

• the design matrix A is n by p with rank p; 

• O is a p by 1 vector of para.meters for the mean of /4; 

• V is proportional to a correlation matrix, and is assumed here to be a 

function of a q by 1 parameter vector yo; and 

• cr2  is a scaling factor. 
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Henceforth, the vector of observations, 4, is simply denoted by u. 

In the maximum likelihood approach, under the above assumptions, the es-

timates of the unknown parameter o- 2  and parameter vector yo are such that 

f (u, cr2 , cp), the likelihood function of = [cr 2  c,o]' for u fixed at the observed 

values, is maximized. 

Martin (1984) gives the log likelihood for the full data as: 

L(9, cp, (3.2  1 u) = - 7pn2r - l na2 
 - in 1 VI 	(u - A9)'V -1 (u - AO). (5.8) 

The maximum likelihood estimates of O and o.2  , Ô and ?, are obtained from 5.8, 

and are simply 

Ô = (A'T-1 A) -1A'r-i ti and c;-2 	AÔ) iÁsr-1 (u AÔ) 

The maximum likelihood estimate of the vector of parameters, s7p,is obtained from 

5.8 by minimizing 

I 	(u - AÔ)' .V.-1 (22 - AÔ) =1 -1  1 - 4 	, 	(5.9) 

for e = u - AÔ, and assuming 	*- T -1 A is of rank p. 

For first- and second-order CAR and SAR processes defined on rectangular 

lattices, the term 1 V 1, and the quadratic form e lV- le in equation 5.9, are easily 

found for a given cp. 

Ord (1975) proposed a procedure for the evaluation of 1 V 1 based on the 

fact that the determinant of a matrix may be computed as the product of its 

eigenvalues. For example, for the lp-CAR(1) process, whose inverse covariance 

matrix is V-1  = 1,, - #U1  (refer to §5.5.1), 

1 V-1  1=1in OU1 1 =  11( 1  SAi) 	 (5.10) 

where Ai, i = 1 	ri are the eigenvalues of U 1 . As the A i 's need to be evaluated 

only once, then the problem reduces to finding that value of A, which minimizes 

{11(1 — flAi)} (-4) (e ie - fies Ui e). 	 (5.11) 

Ord (1975) stresses that for irregularly spaced points analytic simplification of 

the equation for the eigenvalues is usually impossible. However, when the lattice 

has a regular grid structure, some analytic progress is possible. 
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Note that for processes of order higher than two, defined on rectangular lat-

tices, the computation of I V 1 is not as simple as for the first- and second-order 

processes, since they require higher-order neighbourhood matrices which no longer 

commute with the lower-order ones. If all the matrices commute, there exists an 

orthogonal transformation that diagonalizes these matrices simultaneously (the 

diagonal elements being their respective characteristic roots) (Ali, 1979), and it 

is very simple to calculate 1 V 1. 

One way to ensure that all neighbourhood matrices commute is by defining 

the process on a torus lattice, instead of on a rectangular one. For details on 

such processes see, for instance, Kiiveri & Campbell (1989), and Mardia (1990). 

Hence, for processes defined on a torus lattice, the computation of 1 V 1 is always 

simple, regardless of the order of the process under consideration. However, the 

periodic boundaries defined by such processes do not seem to be very realistic, 

especially in the case of remotely sensed data, when the size of the lattice is large. 

The computation of 1 V 1 is also easily carried out for separable processes. 

These processes have many desirable properties which may make them suitable 

for representing autocorrelated variables in practical situations. For details, see 

Martin (1979, 1990a). 

When fitting different spatial models to the 11 by 11 data set used by Haining 

et al. (1989), the processes were assumed to occur on a rectangular lattice, as well 

as on a torus lattice. However, the fits of the models, under the torus assumption, 

were in general inferior (based on the function values - refer to Appendix D) than 

those obtained under the rectangular assumption. Considering also the unrealistic 

assumption of periodic boundaries mentioned above, then only models defined ou 

a rectangular lattice have been assumed. 

In order to ensure that V -1  is a valid covariance matrix it needs to be positive 

definite, which from theorem 12.2.2 in Graybill (1969) is ensured if the eigenvalues 

of V are all positive. 

Consider again the case of a lp-CAR(1) process, which has V -1  -= In  - flU1  = 

In  - NUh +Uv). To ascertain that V -1  is positive definite it is necessary that the 
ith eigenvalue of V -1 , 1 - Nni  + ,), be positive for i = 1, 2, ... ,n. Let nmar  > O 

and rhni„ < O be the maximum and minimum eigenvalues of Uh, respectively. 

Similarly, define „,,c,s > O and min <0 as the maximum and minimum eigenval-

ues of Uv , respectively. The conditions for the covariance matrix to be positive 

143 



definite are: 

• 1 — p(?)„,,,x  emax ) > o ft(n...+ ema) < 1 = fi < (77. + 

• 1 — /3( 71min + emjn) > O 	0(1ltnin + UM) <1 	fl >.4- ,qmin ,min 

Therefore, the search for fl is confined to the range 

(77min  + CminY1  < < (limar + 

5.7.1 Maximum Likelihood Estimation with Missing Val-

ues 

Suppose now that m out of the n observations are missing at random, and 

assume that the vector u can be reordered into x = (y' z'), where y corresponds 

to the first n-m elements of x, and z to the last m elements, which are associated 

with the missing values. 

Vyz  
Let var(x)/a2  = V 2,r  be partitioned as 

Vyy 	
, and 

Vzy  V.zz  

) 	( V" 
(V)as 

V" Vzz 	V" ) • 
The estimates of the missing values using spatial modelling can be obtained 

simultaneously with the parameters estimates, in several iterations, until conver-

gence of the model parameters is achieved. This has been the approach adopted 

here. 

In the first iteration, ali the missing values are replaced by the mean of the 

remaining values (that is, by g= (n - m) -1 1'y), and the vector of observations is 

treated as if complete. At the end of each iteration, the parameters of the model 

are used to estimate the missing values. From Martin (1984) it is known that the 

minimum mean square estimator of the unobserved vector z, for known O and so 

is the conditional mean Etz 1 y]. The maximum likelihood estimator of the vector 

of missing observations, z, is given by 

E(z 1 y, Ô, ço, ô-2 ) = Azâ "Çfzy r;y4 (y — AV Ô) = Azâ ("(T") -1.V."(y — Ayâ) (5.12) 

A schematic representation of the method is given in Figure 5.1. The estimate 

of so(°) is that of no spatial dependence, that is, O, and p refers to the iteration 

number (initial p is O). 
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Yvt—m 
z2) 	' Nr(P)]-3 	 ii(p) 	(V(0)-1  x, = 

min I (P)  I I-  (eP ) '
(eP )  

p=p+1 

(p ) 

z(P)  = 	= ii (f )  — (tzz (e) ) -- 3  V2 Y (P) (y 49')) 

Figure 5.1: Diagram for a method of estimating missing values using maximum 

likelihood. 

As mentioned in §5.1, the use of the method of maximum likelihood hos some 

drawbacks, the first associated with the need for a minimization routine, and 

the second related to the easiness of implementation of the method, particularly 

in the case of large lattices, as is the case with reinotely sensed data. It is 

difficult to guarantee that the minimization routine is not converging to a local 

minimum, instead of to a global minimum. Moreover, if the covariance matrix is 

specified using the U matrices in §5.5, then large matrices need to be stored in 

the case of large lattices, which the computer may not be able to handle. Even 

for lattices of size 11 by 92, or 11 by 100, as the ones used here, the number of 

bites necessary to store the U matrices for a 2p-CAR(1) process, for instance, 

is prohibitive. If the inverse covariance matrix for this process is written as 

— a(Uh Uv) flU2 then there are at least three matrices of dimension 1100 

by 1100 to be stored, viz., V-1 , Uh Uv , and U2. The solution to this problem 

is to write the programs in such a way that only one matrix, viz, V", needs to be 

stored. All the programs used in this dissertation, for the methods using spatial 

modelling, have been written in both forms. However, only the ones requiring less 
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storage were able to handle data from the entire neighbourhood of the missing 

line, defined as the sub-region consisting of 5 lines above, and 5 lines below the 

missing one. When using the more memory demanding programs, results could 

only be obtained (for up to a second-order SAR) for lattices of dimension less 

than 11 by 40. For the results obtained in this chapter, the prograrns were run 

á a SUN workstation. However, although the computer memory problem has 

been overcome by appropriately writing the programs, another problem had to 

be faced, regarding the speed at which the results were obtained, especially for 

higher order processes. For example, to obtain the estimates of the 92 pixel values 

in a line, for a 2p-SAR(1), more than 90 min of CPU time were required (at a 

SUN workstation). By increasing the order of the process under consideration, 

especially SAR, the programs become very ineflicient, and extremely slow. This is 

an important factor that needs to be taken into account, when applying methods 

that use spatial modelling. 

The method for function minimization used here was the downhill simplex 

method due to Nelder & Mead (1965), using a sub routine based on the algorithm 

given by O'Neill (1971), incorporating remarks ASR11, ASR15, and ASR28 in 

vols. 23, 25, and 27, respectively, of Applied Statistics. Before use of the down-
hill method, another function minimization routine has been considered (routine 

E04KAF, from the NAG library, which uses only function values), but as conver-

gence problems were encountered, it was abandoned. For a detailed description 

of the downhill simplex method, see also §10.4 in Press et al. (1988). 

5.8 Simulated line dropout, and some descrip-

tive statistics 

5.8.1 Introduction 

The fact that, for large lattices, the methods that use spatial modelling can 

be very computer demanding, made it difficult to apply here the same approach 

used in Chapter 4, i.e., that of estimating each line in ali sub-images in D 1 , and 
D2. Hence, besides simulating the failure of a few detectors, only one sub-image 

from each data set has been selected to be used with the methods. 

The selected sub-images from D 1 , and from D2, are D1(15) (acquired at 10/07) 
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and D2 (15) (acquired at 09/09), respectively. The simulation of detector failure 

generated entirely missing lines, which occurred systematically at every 16th line 

on these sub-images. The simulated `defective' lines on sub-image D 1 (15) are 11, 

27, 43, 59, 75, and 91, whilst those in D2 (15) are 7, 23, 39, 45, 61, 77, and 93. 

Note that for the second data set the failure of two different detectors has been 

simulated. The `defective' lines 7, 23, and 39 arise from the failure of one detector, 

whilst the `faulty' lines 45, 61, 77 and 93 arise from the failure of another. 

The simulated `defective' sub-images, D 1 (15) and D2(15), are displayed in 

Figure 5.2 (a) and (b), respectively. 

In order to estimate the missing values occurring in the simulated `defective' 

lines, data from 5 lines above, and 5 lines below the `faulty' one are used with 

the spatial methods. This neighbourhood around each missing Ene (except Ene 

91, in sub-image D1 (15)) ensures that most missing values on each `defective' 

Ene, occur at interior sites, and hence have information from ali neighbours. 

The neighbours of any interior site, for a first-order CAR process, consist of 

its adjacent horizontal and vertical sites (see §5.5.1). For the first-order SAR, 

the neighbours of an interior site consist of its adjacent horizontal, vertical and 

diagonal sites, and those at lags (0, ±2) and (±2, 0). 

5.8.2 Description of the neighbourhood of each missing 

line in sub-image D1(15) 

The mean and standard deviation (stdev) of the data in the neighourhood 

of each `defective' fine, in the `faulty' sub-image and in ali possible templates 

(band or date), are presented in Table 5.1. The minimum and maximum values 

[(m,M)], the range, and the correlation (r) between data in the neighbourhood of 

the missing line, and the corresponding data in the template, are also included. In 

the computation of the means and the standard deviations of the template, data 

from the line corresponding to the missing one in the 'clefective' sub-image and 

in its neighbourhood are ali used (i.e., data in the entire 11 by 92 area), whilst 

for the `defective' sub-image, only data in the neighbourhood of the `faulty' line 

are considered. 
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a 

b 

Figure 5.2: Simulated defective sub-images: (a) Di(15); (b) D2(15). 
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Table 5.1: Descriptive statistics of the data in the neighbourhood of each 'de- 
fective' line in sub-image D 1 (15), and of the data in corresponding areas in the 
possible templates (band and date), including those corresponding to the missing 
line, in sub-image D1(15). 

Range l Sub- 
7 1-31(13) 

D1(14) 
D1(25) 
D1(35)  
D1(13) 
D1(14) 
D1(25) 
D1(35)  
D1(13) 
Di  (14) 
D1(25) 
D1(35)  
D1(13) 
D1(14) 
D 1 (25) 
Di  (35) 
D i  (13) 
D1(14) 
D1(25) 
D1(35)  
Di (13) 
Di  (14) 
D1(25) 
D1(35) 

27 11 68.77 16.93 1(24,106)1 	82 

43 11 65.40 1 1 5.82 1 (32,97) 1 	65 

59 11 56.57 1 14.55 1 (22,93) 1 	71 

75 11 51.94 1 18 . 52  1 (5,99) 1 	94 

91 11 55.64 1 16.94 1 (11,89) 1 	78 

Sub-Image  
Line Mean Stdev (m,M, 
11 58.73 19.13 (21,99 

Template 
Mean Stdev 1 	(m,M) 
23.32 6.55 (11,35) 
43.73 8.84 (27,65) 
55.39 18.73 (20,94) 
55.45 19.07 (19,98) 
27.29 4.44 (14,40) 
49.45 9.60 (18,65) 
63.37 16.02 (23,100) 
62.28 17.09 (24,101) 
27.01 3.82 (14,38) 
45.94 8.84 (19,64) 
61.83 14.69 (31,94) 
60.38 14.90 (32,95) 
24.64 4.46 (11,37) 
43.76 9.04 (18,62) 
53.92 13.47 (20,84) 
53.53 13.42 (22, 90) 
24.30 5.61 (11,40) 
35.21 10.91 (7,65) 
50.88 15.49 (7,93) 
50.44 14.78 (7,92) 
23.83 5.75 (11,39) 
40.75 12.79 (11,76) 
52.75 15.44 (9,90) 
52.08 13.54 (11,80) 

24 
	

0.896 
38 	-0.008 
74 
	

0.978 
79 
	

0.959 
26 
	

0.762 
47 	-0.355 
77 
	

0.943 
77 
	

0.939 
24 
	

0.682 
45 	-0.289 
63 
	

0.956 
63 
	

0.919 
26 
	

0.670 
44 
	

0.035 
64 
	

0.927 
72 
	

0.830  
29 
	

0.603 
58 
	

0.425 
86 
	

0.885 
85 
	

0.881 
28 
	

0.650 
65 
	

0.298 
81 
	

0.857 
69 
	

0.847 
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Since the methods using spatial modelling estimate the missing values in each 

`defective' line using the information from its neighbours, a brief discussion is 

now ca.rried out about the main features of the data in the neighbourhood of 

each missing line. 

Let the set of sites that are adjacent vertical, or diagonal, to any site (i, j) 

in a `missing' line on the lattice, be referred to as the adjacent neighbourhood of 

site (i, j). Each site in this neighbourhood is an adjacent neighbour of site (i, j). 

The first simulated missing line in sub-image D1(15) (line 11, i 1 =11) comprises 

diverse types of land cover, but most of the pixel values at the boundaries between 

them axe not contrastingly different. The greatest fluctuation between the data 

in the adjacent neighbourhood of any pixel in this line is 36, which occurs at 

column 30 (j = 30), (boundary between wheat field and sou l with low density 

vegetation); other large variation occurs at column 86, which is a boundary pixel 

separating the wheat field from the moisture sou l shown in magenta in Figure 5.2 

(a). The range of the data in the adjacent neighbourhood of the site at column 

86 is 28. 

Sharper contrasts between the values of adjacent neighbours are observed for 

the missing sites in line 27, between columns 15 and 21, inclusive. The ranges of 

the data in the adjacent neighbourhood of these pixels are 40, 35, 35, 45, 45, 51, 

and 45, respectively. These pixels are associated to the area near the road that 

crosses the sub-image from top left to bottom right. The ranges of the adjacent 

neighbours of the pixels at columns 68 and 69, which correspond to the boundary 

between the wheat field and the bare sou l area (shown in green) are also relatively 

high (40 and 32, respectively). However, even higher variations are observed for 

the data in the adjacent neighbourhood of the pixels at columns 87, 88, and 89, 

which correspond to the boundary between the bare sou l and the sou l with low 

density vegetation. The ranges are 63, 58, and 59. 

The range of the data in the adjacent neighbourhood of the missing pixels, in 

line 43, is larger for the pixels at columns 14 to 17, inclusive (ranges are 26, 26, 

35 and 25), and at column 60 (range is 30). 

From Figure 5.2 (a), it is very clear the sharp contrast between the adjacent 

neighbours of the pixels at columns 4 to 10, in line 59 [note that the pixels in these 

columns are boundary pixels between an area of intense moisture (shown above 

the missing line, in dark magenta) and the area of low density vegetation (shown 
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below the missing une, in medium blue)]. The ranges of data in the adjacent 

neighbourhood of these pixels are respectively 49, 54, 47, 46, 34, 36, and 36. Also 

contrasting are the data in the adjacent neighbourhood of the pixels at columns 

73 and 74, near the intersection of the missing une with the road the crosses the 

sub-image. Note that as the road is narrow, and crosses the sub-image diagonally, 

then it is expected that the lines above and below the missing one carry different 

information (one corresponding to the road, and another to the land cover). This 

can be observed in Figure 5.2 (the point where the missing une crosses the road). 

The ranges of the data in the adjacent neighbourhood of the pixels at columns 

73 and 74 are respectively 25 and 19. Note from the figure that there should 

not exist (as there does not) a too contrasting difference between the pixel values 

in the adjacent neighbourhood of the pixel corresponding to the road, in une 

43. This occurs because there exists less contrast between the response of this 

feature and the wheat fields, than between the road and the sou l with low density 
vegetation. 

From observation of Figure 5.2 (a), some variation between the pixels in the 

adjacent neighbourhood of the sites in une 75, at columns 31, 32, and 33 can 

be expected. Note the difference in the colour of the adjacent neighbours of 

these sites, above and below the road (dark magenta above, and light magenta 

below), and at columns 85 to 89 (magenta above, and cyan below). For the 

missing values occurring at columns 31, 32, and 33, the ranges of the data in 

their adjacent neighbourhood are respectively 24, 26, and 26, whereas for those 

occurring between columns 84 and 88 inclusive, are 37, 34, 39, 23, and 32. 

Finally, data in the adjacent neighbourhood of une 91 is most contrasting 

between columns 38 and 41 (ranges are respectively 41, 37, 42, and 36), and 

between columns 47 and 53 (ranges are 35, 43, 31, 27, 28, 29, and 25). 

In order to evaluate the changes between the data in the neighbourhood of 

each missing fine in sub-image D 1 (15), and the corresponding data in the sub-

images in other bands [Di  (13) and D1 (14)], `difference' images are obtained and 

presented in Figure 5.3, for D l  (15) - Di (13) and Dl  (15) - Dl (14). Note that the 

figure also gives the difference for the `missing' lines, which are marked, for their 

easier identification, at the right hand side of the figure. As before, a constant 

(128) is added to each pixel in the `difference' image. 

Similarly, difference images are also presented in Figure 5.4 for the data in 
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Figure 5.3: Difference images for the data in the neighbourhood of each `defective' 

line, in different bands: (a) D 1 (15) — D 1 (14)(1-128); (b) D 1 (15) — D 1 (13)(+128). 

the neighbourhood of each missing line, in images acquired at different passages, 

that is, for D 1 (15) — D 1 (25), and D 1 (15) — D 1 (35). The difference data in the 

line corresponding to the missing one is also included, and is marked at the right 

hand side of the figure. 

Although the information in Figures 5.3 and 5.4 is of no relevance for the 

purely spatial methods, they are nonetheless important for the methods that 

use information from a template band, or a template date. As results from 

these methods are also included in this chapter, it seems pertinent to include the 

difference images here. 

Of greater relevance to the methods using spatial modelling are the plots of 

the sample autocorrelations. Figure 5.5 (a) to (e) gives the plot of r 1 ,g , r_ 1 ,9 , r 2 ,9 , 
and r_ 2 , 9 , for g = 0, , 7, for the data in the neighbourhood of lines 11, 27, 43, 

59, and 75, respectively. 

From the sample autocorrelations given in Figure 5.5 (a) to (e) it can be 

seen that the data in the neighbourhood of each missing line (and including the 

data corresponding to the `missing' line), are highly spatially correlated. The 

sample autocorrelations are approximately symmetric about both axes, that is 

rg , h  r_g ,h r_g ,_h, which suggests that the application of methods 

that use one-parameter models may be adequate. 
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a 

e 5.4: Difference images for the data in the neighbourhood of each 'detective' 

acquired at different passages: (a) D 1 (15) — D 1 (25)(+128); (b) D 1 (15) — 

3 Description of the neighbourhood of each missing 

line in sub-image D2 (15) 

he summary statistics for the data in the neighbourhood of each simulated 

ng line in sub-image D2 ( 15 ) , and in the corresponding areas in the reasonable 

lates are presented in Table 5.2. The information provided in the table is 

given for sub-image D 1 (15), in the previous section, except that now the 

is of size 11 by 100, instead of 11 by 92. 
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Figure 5.5: Sample autocorrelations, rl , h, r-i,h,  r2, h , and r_2,h, h = O, 	, 7 for 

the data in the neighbourhood of lines (a) 11; (b) 27; (c) 43; (d) 59; and (e) 75. 
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Table 5.2: Descriptive statistics of the data in the neighbourhood of each 'de- 

fective' line in sub-image D2(15), and of the data in corresponding areas in the 

possible templates (band and date), including those corresponding to the missing 
line, in sub-image D2(15). 

Sub-Image 
. 	

Template 
' Line Mean  Stdev (m,M) Range Sub-Image Mean Stdev (m,M) Range r 

7 97.30 35.34 (45,192) 147 D2(13) 53.21 5.85 (28,70) 42 0.425 
D2(14) 74.18 27.03 (27,138) 111 0.986 23 90.86 29.57 (46,166) 120 D2(13) 52.38 5.91 	- (38,67) 29 0.603 
D2(14) 65.88 22.59 (31,112) 81 0.967 

39 89.92 27.25 (49,139) 90 . 	D2(13) 52.72 6.23 (37,66) 29 0.580 
D2(14) 68.78 23.42 (31,113) 82 0.970 45 83.27 25.79 (49,131) -  82 D2(13) 51.83 6.02 (38,66) 28 0.680 
D2(14) 63.83 24.67 (34, 114) 80 0.978 

61 106.64 20.11 (35,133) 98 D2 ( 13 ) 52.79 3.55 (41,67) 26 0.397 
D2(14) 90.97 18.91 (24,111) 87 0.971 

77 105.80 24.33 (40,167) 127 D2(13) 56.12 7.49 (40,79) 39 0.715 
D2 ( 14) 88.33 24.34 (26,134) 108 0.965 

93 96.02 20.79 (39,158) 119 D2 ( 13 ) 53.76 7.12 (35,78) 43 0.783 
D2(14) 77.20 20.41 (22,124) 102 0.951 
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A brief discussion of the data in the neighbourhood of each missing line in sub-

image D2(15) is 110W presented, since this information is relevant to the discussion 

of the results for the methods using spatial modelling, in §5.9. 

From the standard deviation, and the range of the data in line 7, in Table 

5.2, and also from Figure 5.2 (b), it can be seen that amongst ali the simulated 

missing lines, this is the most heterogeneous one, comprising several different 

types of land cover: reforested area,s (at early and late stages), grass, and bare 

sou. However, it is for the pixels at columns 78 and 79, that the data in the 

adjacent neighbourhood are most contrasting. For the pixel at column 78, the 

range of the values in the adjacent neighbourhood is 45, and for that at column 

79, it is 26. These pixels are located at the boundary between bare sou l (shown 

in yellow) and grass (show in cyan). On this line, contrasting values can also 

be found in the adjacent neighbourhood of the pixels at columns 27 and 28 (42 

and 36, respectively). For the pixels at the boundary between the areas shown 

in cyan and green, at columns 39 and 40, the ranges of the values in the adjacent 

neighbourhood are also reasonably large (30 and 44, respectively). 

On line 23, the ranges of the values in the adjacent neighbourhood of the 

pixels at columns 6, 7, and 8 are very large. The ranges of the values in the 

adjacent neighbourhood of these pixels are 69, 69 and 42, respectively. Large 

variation of the data in the adjacent neighbourhood also occurs for the pixels at 

columns 89 and 90 (57 and 69). These pixels are located at the boundary between 

the reforested area and soil with low density vegetation 

Figure 5.2 (b) shows very clearly where large variations of the data in the 

adjacent neighbourhood of the pixels in line 39 are expected to occur. Note that 

the pixels in this missing line, between columns 48 and 61 delimit the boundary 

between two distinct responses of sou l with low density vegetation, which may 

be related to differences in sou l moisture. Above the missing line, the pixels in 

this area are displayed in light green, whereas below the line they are displayed 

in dark blue [note the range of the values associated to these two colours, in 

the histogram in Figure 5.2 (13)]. For the pixels between columns 48 to 54, the 

minimum range of the values in their adjacent neighbourhood is 31; however, 

from column 55 to 61, the ranges of the data in the adjacent neighbourhood of 

each of these sites are very large, and are respectively 60, 76, 74, 76 75, 73, and 

52, 
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The large variMion of the data in the adjacent neighbourhood of the pixels 

in une 45, between columns 38 and 43, is also clear from Figure 5.2 (b). These 

pixels mark the limit between the reforested area and grass, which are shown 

in the colours magenta and blue, respectively. The ranges of the data in the 

adjacent neighbourhood of the pixels between columns 38 and 43 are 58, 54, 51, 

51, 44, and 42. 

Data in the neighbourhood of une 61 are relatively homogeneous. The greater 

contrast between the values in the adjacent neighborhood occurs for the pixels 

at columns 9, 10, and 11, which mark the limit between the reforested area and 

grass. The ranges of the data in the adjacent neighbourhood of these pixels are 

respectively 75, 77, and 32. 

It is essentially for the pixels at the boundary between the reforested area and 

grass (at columns 18 and 19), in une 77, that the largest variation between the 

data in their adjacent neighbourhood occurs (69 and 54, respectively). 

As for lines 61 and 77, the greatest variation between the data, in une 93, 

occurs for the pixels at columns 28 and 29, which delimit the boundary between 

the reforested area and grass. The ranges of the data in the neighbourhood of the 

missing values at these columns are respectively 48 and 49. Large differences are 

also observed for the data in the adjacent neighbourhood of the missing values 

at columns 93 to 98 (ranges are 37, 44, 55, 51, 39, and 38, respectively). 

Figure 5.6 (a) shows the `difference' image for the data in the neighbourhood 

of each missing une, using sub-images in different bands ED 2 (15) and D2 ( 14)1 ; and 

(15) displays the `difference' image corresponding to the data in the neighbourhood 

of each missing une, using sub-images acquired at different passages [D 2 (15) - 
D2(25)1. 

The plots of the sample autocorrelations, r i ,g , r_1,9 , r2,9 , and r_2 ,9 , for g = 
0, ... , 7, for the data in the neighbourhood of lines 7, 23, 39, 45, 61, and 77 are 

given in Figure 5.7. 

From the sample autocorrelations in Figure 5.7 it can be noted that the data 

in the neighbourhood of each missing une (and including those corresponding to 

the `missing' une) are highly spatially correlated. The `atypical' behaviour of the 

sample autocorrelations for the data in the neighbourhood of lines 39 and 45 can 

be possibly explained by the diagonally oriented features in the area, which are 

more pronounced in the south-east direction. 
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a 	 b 

Figure 5.6: Difference images obtained for the data in the neighbourhood of 

each `defective' line Zn sub-image D 2 (15) and in the templates. (a) D 2 (15) — 

D2(14)(+128); (b) D 2 (15) — D2(25)(+128). 

The sample autocorrelations for the data in fines 7, 23, 61, and 77 are approx-

imately symmetric about both axes, that is rg ,h"--=  

5.9 Results from Methods using Spatial Mod-

elling and from Simpler Methods 

The results obtained for the methods using spatial modelling, and the methods 

introduced in Chapter 4, using the simuiated scan lines in sub-images D 1 (15), and 

D2 (15). are now presented. 
The estimates of the missing pixel values in the simulated lines in D 1 (15), 

from template methods (band or date), are obtained using ali possible templates. 

Hence, there are two sets of results for each method using a template band [one 

using sub-image D1(13), and other using sub-image D1(14)], and two sets for each 

method using a template date [one using sub-image D1(25), and another using 

D1(35)]. 

For sub-image D 2 (15), results are obtained using sub-image D 2 (14) as the 

template band, and sub-image D2(25) as the template date. Recai! that the 

158 



descriptive statistics for the data in ali possible templates are given in Table 5.1 

for sub-image D 1 (15), and in Table 5.2 for sub-image D 2 (15). 

The same set of numerical measures used in Chapter 4 (§4.4.2) (SRMS, CCOR, 

and SRAN) is also applied here to evaluate the performances of the methods. 

As in that chapter, the methods are evaluated by their ability to give small 

values for SRMS, CCOR, and SRAN. Since here only some lines in the sul).- 

images are estimated, the visual results do not have the same significance as they 

did in Chapter 4, when ali lines in the image were estimated, thus showing the 

deformations introduced in the image by each of the methods. Only a few of 

the visual results obtained from the replacement of the missing values by the 

estimates obtained for some methods are presented in this chapter. In this case, 

the photograph displaying the residuais is also included. The residuais in these 

figures correspond to the difference between the estimate obtained for a given 

method, and the true pixel value. 

5.9.1 Results using D1(15) 

The results for the methods using spatial modelling, when applied to the 

simulated missing lines in sub-image D 1 (15), are presented in Table 5.3. The 

table gives the values for SRMS, CCOR, SRAN, and the minimum and maximum 

values for the residuais. The fit statistics for the spatial methods [estimates of the 

model parameters (et and à), and of the standard deviation (&), and the function 

value, divided by 100 (L)1, are aliso given in the table. 
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Figure 5.7: Sample autocorrelations, r , r_ 111„ r2 ,h, and r_24, h = 0,... , 7 for 
the data in the neighbourhood of lines (a) 7; (b) 23; (c) 39; (d) 45; (e) 61; and 
(f) 77. 

160 



Table 5.3: Values for SRMS (x100), CCOR (x1000), SRAN, and the fit statistics 

for the methods using spatial modelfing: D 1 (15). 

I Une II 	Method 	I SRMS I_.  CCOR I SRAN i 	(m,M) 	I 	ri 	I 	Ái 	I 	I, 
lp - CAR 16 11 0.7 (-9, 5) 0.254 -- 10.37 4.7 11 lp - CART 16 11 0.7 (-8, 5) 0.254 -- 10.29 4.5 lp - SAR 16 11 0.7 (-7, 6) 0.251 -- 10.03 3.9 2p - SAR 15 11 0.7 (-7, 6) 0.316 0.183 10.02 3.8 lp - SART 16 11 0.7 (-7, 6) 0.250 -- _10.01 3.7 
lp - CAR 40 80 3.2 (-25, 29) 0.254 -- 10.84 6.0 

, 
27 lp - CART 40 80 3.1 (-24, 29) 0.254 -- 10.72 5.6 lp - SAR 40 84 3.4 (-25, 33) 0.250 -- 10.63 5.2 2p - SAR 41 82 3.4 (-25, 32) 0.293 0.196 10.61 5.1 lp - SART 41 84 3.5 (-25, 34) , 0.242 -- 10.60 5.0 

lp - CAR 24 31 1.5 (-13, 11) 0.254 -- 10.43 4.9 43 lp - CART 24 30 1.5 (-13, 11) 0.254 -- 10.30 4.6 lp - SAR 23 29 1.3 (-9, 12) 0.248 -- 10.10 4.0 2p - SAR 23 29 1.3 (-10, 12) 0.302 0.193 10.08 3.9 lp - SART 23 29 1.3 (-9, 12) 0.247 -- 10.06 3.8 
lp - CAR 38 61 2.5 (-24, 13) 0.254 -- 10.58 5.2 59 lp - CART 38 60 2.5 (-24, 13) 0.254 -- 10.52 5.1 
lp - SAR 36 59 2.6 (-24, 14) 0.248 -- 10.29 4.5 2p - SAR . 36 59 2.6 (-24, 14) 0.253 0.241 10.28 4.4 .  lp - SART 37 59 2.6 (-24, 14) 0.250 -- 10.26 4.2 
lp - CAR 27 23 1.9 	(-21, 14) 0.254 -- 10.86 6.0 75 lp - CART 26 23 1.9 	(-22, 14) 0.254 -- 10.77 5.8 lp - SAR 24 23 1.5 	(-16, 11) 0.250 -- 10.45 4.8 2p - SAR 25 23 1.7 	(-18, 13) 0.323 0.176 10.42 4.7 lp - SART 24 23 1.5 	(-16, 11) 0.248 -- 10.40 4.5 
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The results for the methods introduced in Chapter 4 are now given. The 

values for SRMS, CCOR, and SRAN, for the single band methods (LR, LI, and 

CSP), for the methods using a template band (TB-1 to TB-10), and for the 

methods using a template date (TD-1 to TD-10) are given in Tables C.1, C.2, 

and C.3, in Appendix C, respectively. In these tables, the code L, alongside the 

line number, denotes the results obtained for the template methods that use a 

less correlated template, whereas the code H denotes the results using the better 

correlated template (band or date). The correlations between data in sub-image 

D1 (15) and the template are given in the last column of Table 5.1. 

In order to evaluate the performances of the methods for the missing lines in 

sub-image D1 (15), a procedure similar to that used in Chapter 4, where ranks were 

formed for each method, for each measure, is also adopted here. Since, in general, 

the methods using a less correlated template (band or date) have an inferior 

performance than those using a better coffelated one, then the investigation is 

carried out only for the methods that use a better correlated template, that is, 

using only the results coded H, in Tables C.1, C.2, and C.3, in Appendix C. 

Results for method TB/D-14 are also included in the analysis, since this method 

performed well amongst the alternative methods introduced in §4.8. The values 

for SRMS, CCOR, and SRAN, for method TB/D-14 are presented in Table C.7, 

in Appendix C. 

Ranks are formed for each of the 30 methods (3 single band, 10 using a tem-

plate band, 10 using a template date, 5 using spatial modelling, and TB/D-14), 

for each measure, according to their performance when applied to each simulated 

missing line. The results for line 91 are not included in the investigation, since 

they are not available for the methods that use spatial modelling. The ranks 

assigned to the methods, in each line, are subsequently averaged, individually for 

each measure, giving the results in Table 5.4. The table also includes the absolute 

value of the differences between the average ranks for: (1) SRMS and CCOR; (2) 

SRMS and SRAN; and (3) CCOR and SRAN. 

New ranks, from 1 to 30, are now assigned to each method, according to its 

position in Table 5.4 (rank 1 to the method at the top), for each measure. Hence, 

each method hos 3 new ranks, indicating its performance for SRMS, CCOR, 

and SRAN. By averaging the 3 new ranks assigned to each method, the overall 

performances of the methods can be evaluated. These new average ranks are 

162 



given in Table 5.5 (under D 1 ), where a  and sr„ are the mean and the standard 
deviation of the new ranks, respectively. The table also gives the rninimum and 

maximum [(m,M)] values of the new ranks assigned to each method. 

The true `missing' values, and the corresponding estimates for LI and the 

method using a 1p-SAR, are given in Figures 5.8 (a) and (b), 5.9 (a) and (b), 

and 5.10 for lines 11 and 27, 43 and 59, and 75, respectively. 

Table 5.4: Average ranks of the methods, for SRMS, CCOR, and SRAN, and the 

absolute value of the differences between the average ranks for: (1) SRMS and 

CCOR; (2) SRMS and SRAN; (3) CCOR and SRAN. 

ii.../-t5 

TD - 6 
TD - 14 
TD - 7 
TD - 2 
LI 
lp - SAR 
2p - SAR 
TD - 10 
lp - SART 
lp - CART 
lp - CAR 
TD - 9 
TD - 3 
CSP 
TB - 7 
TD - 5 
TD - 4 
TB - 14 
TB - 6 
TB - 8 
LR 
TD - 1 
TB - 2 
TB - 3 
TB - 10 
TB - 5 
TB - 4 
TB - 9 
TB - 1 

5.8 
6.1 
6.5 
7.6 
8.2 
8.5 
9.2 
9.6 
9.9 

12.4 
12.7 
13.5 
14.3 
14.3 
14.7 
15.3 
16.0 
16.4 
16.8 
17.6 
17.9 
18.4 
23.4 
25.2 
25.6 
27.0 
28.3 
29.2 
29.3 

TD - 14 
TD - 7 
TD - 6 
TD - 2 
LI 
lp - SAR 
2p - SAR 
1P - SART 
TD - 3 
1P - CAR 
1P - CART 
CSP 
TD - 10 
TD - 9 
TD - 5 
TD - 4 
TD - 1 
TB - 7 
TB - 6 
TB - 14 
LR 
TB - 8 
TB - 2 
TB - 3 
TB - 10 
TB - 5 
TB - 4 
TB - 1 
TB - 9 

6.3 
7.4 
8.1 
8.1 
8.4 
8.4 
8.4 
8.4 

11.5 
11.9 
11.9 
12.8 
14.3 
14.7 
14.7 
14.7 
14.7 
15.2 
15.8 
17.2 
19.5 
19.7 
23.1 
25.1 
26.3 
28.1 
28.1 
28.1 
28.9 

5•3 
 TD - 6 

TD - 14 
TD - 2 
TD - 7 
LI 
CSP 
TD - 10 
TD - 9 
TD - 3 
TD - 5 
IP - SAR 
TD - 4 
IP - SART 
TB - 6 
2P - SAR 
TD - 1 
IP - CART 
1P - CAR 
TB - 7 
TB - 14 
TB - 8 
LR 
TB - 2 
TB - 5 
TB - 8 
TB - 10 
TB - 4 
TB - 3 
TB - 1 

■ 

5.6 
5.8 
6.1 
6.7 

11.5 
12.3 
12.4 
12.5 
13.0 
13.5 
13.8 
13.9 
14.2 
14.3 
14.4 
15.8 
15.9 
16.3 
16.3 
17.1 
19.0 
19.1 
22.4 
23.5 
23.9 
24.2 
24.2 
25.6 
26.4 

LI 
CSP 

TB - 1 
TB - 2 
TB - 3 
TB - 4 
TB - 5 
TB - 6 
TB - 7 
TB - 8 
TB - 9 

TB - 10 
TD - 1 
TD - 2 
TD - 3 
TD - 4 
TD - 5 
TD - 6 
TD - 7 
TD - 8 
TD - 9 
TD - 10 

1P - CAR 
IP - CART 
1P - SAR 
2P - SAR 

IP - SART 
TB - 14 
TD  - 14 

0.2 
1.5 
1.2 
0.3 
0.1 
0.2 
1.1 
1.0 
0.5 
2.1 
0.3 
0.7 
3.7 
0.5 
2.8 
1.3 
0.6 
2.3 
0.9 
0.1 
1.2 
4.7 
0.8 
0.5 
0.1 
0.8 
1.5 
0.8 
0.2 

3.3 
2.0 
2.9 
1.0 
0.4 
4.1 
3.5 
2.5 
1.6 
1.4 
5.3 
1.4 
2.6 
1.5 
1.3 
2.1 
1.8 
0.2 
0.2 
0.0 
1.0 
2.8 
3.6 
3.5 
5.3 
5.2 
4.3 
0.7 
0.3 

, 	3.1 
0.5 
1.7 
0.7 
0.5 
3.9 
4.6 
1.5 
1.1 
0.7 
5.0 
2.1 
1.1 
2.0 
1.5 
0.8 
1.2 
2.5 
0.7 
0.1 
2.2 
1.9 
4.4 
4.0 
5.4 
6.0 
5.8 
0.1 
0.5 
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Table 5.5: Average of the new ranks assigned to the rnethods: D1(15) and D2(15). 

D1  D2 
Method 1 	fo 	1 sr. 	I 	(m,M) Method 	If-  fa 	1 sr. 	f (m,m) 
TD - 8 1.0 0.00 (1,1) TD - 7 1.0 0.00 (1,1) 	. 
TD- 14 2.7 0.58 (2,3) TD- 14 3.0 1.73 (2,5) 
TD - 6 2.8 1.44 (2, 4.5) TD- 2 3.0 0.00 (3,3) 
TD - 7 4.0 1.00 (3,5) 1P - SAR 4.0 2.00 (2, 6) 
TD - 2 4.5 0.50 (4,5) 1P - SART 4.3 0.58 (4,5) 

LI 6.5 0.87 (6, 7.5) CSP 6.0 1.00 (5,7) 
1P - SAR 8.8 2.75 (7, 12) 2P - SAR 6.6 0.58 (6,7) 
TD- 10 10.3 3.21 (8,14) TD - 8 8.3 0.58 (8,9) 

2P - SAR 10.5 4.77 (7.5, 16) LI 8.7 0.58 (8,9) 
1P - SART 10.5 3.28 (7.5, 14) TD- 3 12.0 2.65 (10, 15) 

TD - 3 11.3 2.31 (10, 14) TB - 14 12.7 2.08 (11, 15) 
CSP 11.7 4.16 (7, 15) 1P - CART 13.0 3.61 (10, 17) 

TD- 9 12.8 3.75 (9, 16.5) 1P - CART 13.0 4.36 (10, 18) 
1P - CART 13.5 3.91 (11, 18) TD - 6 13.0 0.00 (13,13) 
1P - CAR 14.3 4.48 (11.5, 19.5) TB - 6 14.0 0.00 (14, 14) 
TD- 5 14.8 3.33 (11, 17) TD- 5 15.3 2.89 (12, 17) 
TD- 4 15.8 2.57 (13, 18) TD- 4 17.3 1.15 (16, 18) 
TB - 7 18.2 1.89 (16, 19.5) LR 17.8 2.89 (16,21) 
TB - 6 18.3 2.89 (15,20) TD- 1 18.3 3.06 (15,21) 
TD- 1 18.8 3.62 (16.5, 23) TB - 7 19.7 1.16 (19, 21) 
TB - 14 20.3 1.16 (19, 21) TB - 8 20.7 1.15 (20,22) 
TB - 8 22.0 1.00 (21,23) TB - 2 21.3 1.15 (20,22) 

LR 22.3 0.58 (22,23) TB - 3 23.0 0.00 (23,23) 
TB - 2 24.0 0.00 (24,24) TB - 5 24.0 0.00 (24,24) 
TB - 3 26.3 2.31 (25,29) TB - 4 25.0 0.00 (25,25) 
TB - 10 26.5 0.87 (26,27.5) TB - 1 26.0 0.00 (26, 26) 
TB - 5 26.7 1.53 (25,28) 
TB - 4 27.8 0.29 (27.5, 28) 
TB - 9 28.3 2.08 (26,30) 
TB - 1 29.3 1.15 (28,30) 
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Figure 5.8: Plot of the true values, and the estimates obtained for LI and lp-SAR 
on: (a) une 11; (b) une 27. 
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Figure 5.9: Piot of the true values, and the estimates obtained for LI and lp-SAR 
on: (a) line 43; (b) line 59. 
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Figure 5.10: Piot of the true values, and the estimates obtained for LI and 1p-

SAR, line 75. 

Figure 5.11 (a) shows the simulated sub-image D 1 (15), after the replacement 

of the simulated missing lines with the estimates obtained for the method using a 

lp-SAR. Figure 5.11 (b) displays the residuais obtained for this method, in each 

of the `missing' lines, which indicates the occurrence of large residuais particularly 

at lines 27 and 59, and at the boundaries between contrasting types of land cover 

(for line 27, for instance, this occurs between columns 18 and 21, and at column 

88, as expected from §5.8.2). In this 'residual' image, the largest negative, and 

the largest positive residuais show in the colours red and blue, respectively. 

Figures 5.12 (a) and (b), 5.13 (a) and (b), and 5.14 display the true `missing' 

values, and the estimates obtained for method TD-6H, for lines 11 and 27, 43 

and 59, and 75, respectively. 

167 



•Di .., . , 

	

. 	. 
. 	, . '' .:"...l' IS,.., 	. 	. 	"''1. 	..' '''': 	' 	 • 	.., .. 

	

... 	• ... 

• 

	

: 	. 	. 	.. 	• 

e  
• 

■ 	 .• 	. 	. 
..' -.......i .i '. 

.7...... 

.. .' f ". ^ . 	. 	v'''' 	 . • 
.. 

• 
. 	. 

• 

• . 

1.-
. 	 .. 

.. • . 

	

.. 	. 	'' 	 .X 	:-. 
' 	 ' 	 ... 	 . 	

. 	 . 
, 	 . - , 

. 	... 	.. 
• ', . "- .. . *....' - N icrijr, . 	, :;. 	,4':. -. L: -,,_. : . -. 	,,,,i_ -,--, :. 	• .-. 	

: ...., .,41,,,, • 

. 	. 	_ 

	

é . ''.• - '.. .. -.'' , .... - .=:::.:,....''fk r-,, ' . 	• 

	

,•.. e 	O/! en,.• :. 't 	'. 4'-'' 	-, '''''''.[::45,•,4 ''''''.. ''','''' 	''...;.. ■:. :,.; .... .' • 	''':.. 	'• ''"... 	i : . '...C:::.:.''''..,;.'Y'  . . • 	".'•••••■ :' ■ ''',,` 	= 	' 	'.-: ',5' ....,.; :4' 	''i• 	'. 	. ''. . 4. 'W'', ` 	'''' ''. '. • ' ' 	. 	..• `.:'-" ,-nr' ',_. 	..,.. 1:<-•''.. 	' 	. ....-'." 	. y: ' 	. 	• 	r 	- 

. . ,,31. 	..,'.. ■., 4,  .4 	'. 	O. , 	..., 	' 	' ' .:,-: 

2çIS 

- • 
• ., , ''...:...`,' t;,4 .4 	... 	d....-0.-.4, 

.:. 	,',..¡X r--  -.. 	. -.. 	• . 	: 	.-„,. 

 

• 'ff 
 

Á 



LINE 11 

D 
N 

1( 

80 

60 

40 

20 

0 

a 

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 

J 

UNE 27 

120 

Figure 5.12: Plot of the true values, and the estimates obtained for method TD-
611, on lines (a) 11 and (h) 27. 
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Figure 5.13: Piot of the true values, and the estimates obtained for method TD-

6H, on lines (a) 43 and (b) 59. 
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Figure 5.14: Plot of the true values, and the estimates obtained for method TD-

611, on une 75. 

5.9.2 Results using D2(15) 

The results for the methods using spatial modelling, using the simulated 

missing scan lines in sub-image D 2 (15), are presented in Table 5.6. The table 

gives the values for SRMS, CCOR, SRAN, and the minimum and maximum 

values for the residuais. The fit statistics for the spatial methods [estimates of 

the model parameters (â and '), of the standard deviation (&), and the function 

value (L)1 are also included in the table. 
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Table 5.6: Values for SRMS (x100), CCOR (x1000), and SRAN, and the fit 

statistics for the methods using spatial modeffing: D2(15). 

LINE 	METHOD j SRMS 	CCOR 1 SRAN 	(m,M) 	ci 	P1 	L 	a i 
lp - CAR 9 5 0.45 	(-8, 8) 0.254 -- 12.36 	7.5 

07 
lp - CART 10 5 0.45 	(-8, 8) 0.254 -- 11.86 	6.0 lp - SAR 8 4 0.42 	(-7, 8) 0.252 -- 11.72 	5.1 2p - SAR 9 4 0.42 	(-7, 7) 0.343 0.160 11.59 	4.6 lp - SART 8 4 0.42 	(-7, 8) 0.252 -- 10.45 	4.5 
lp - CAR 19 19 1.08 (-16,16) 0.254 -- 12.60 8.3 

23 
lp - CART 19 19 1.05 (-16, 15) 0.254 -- 12.42 7.7 lp - SAR 
2p - SAR 

lp - SART 

14 
15 
14 

10 
13 
10 

0.81 
1.29 
0.81 

(-12,12) 
(-20, 18) 
(-12, 12) 

0.251 
0.329 
0.251 

-- 
0.173 
-- 

11.94 
11.89 
10.65 

5.6 
5.4 
4.9 

lp - CAR 28 40 1.65 (-21,24) 0.254 -- 12.71 8.7 

1-  39 
lp - CART 
lp - SAR 

27 
25 

40 
33 

1.65 
1.39 

(-21,24) 
(-18,20) 

0.254 
0.250 

-- 
-- 

12.42 
12.12 

7.6 
6.1 2p - SAR 

	 lp - SART 
25 
25 

33 
33 

1.39 
1.39 

(-18, 20) 
(-18,20) 

0.382 
0.251 

0.117 
-- 

11.85 
10.67 

5.2 
5.1 

lp - CAR 18 11 1.28 (-18,15) 0.254 -- 12.10 1  6.6 lp - CART 18 11 1.28 (-18,15) 0.254 11.87 5.8 45 lp - SAR 17 11 1.32 (-18,16) 0.251 -- 11.54 4.7 2p - SAR 17 9 1.16 (-16,14) 0.364 0.137 11.35 4.6 lp - SART 17 	i  11 1.32 (-18, 16) 0.251 10.06 4.5 
lp - CAR 	19 15 1.84 (-16,21) 0.254 -- 11.96 6.1 

61 
lp - CART 	18 16 1.84 (-14,23) 11.46 4.9 lp - SAR 	14 9 0.94 (-5,14) 0.251 -- 11.39 4.4 2p - SAR 	16 12 1.19 (-8,16) 0.312 0.189 11.37 4.3 
	- 
	 1p 	SART - 	13 8 0.94 (-5,14) 0.250 10.18 4.0 

lp - CAR 19 20 1.11 (-16,11) 0.254 -- 	12.14 ' 6.5 

77 
lp - CART 19 21 1.11 (-15,12) 0.254 11.70 5.5 lp - SAR 15 13 0.78 (-10,9) 0.250 -- 	11.63 4.9 2p - SAR 16 15 0.90 (-12,10) 0.335 0.165 	11.56 4.7 lp - SART 15 12 0.78 (-10,9) 0.247 10.47 4.6 
lp - CAR 26 39 2.02 (-22,20) 0.254 -- 12.13 6.5 lp - CART 26 40 2.07 (-23,20) 0.254 -- 11.86 5.9 93 lp - SAR 23 30 1.78 (-14,23) 0.250 -- 11.71 5.1 2p - SAR 24 32 1.97 (-16,25) 0.330 0.167 11.62 4.9 lp - SART 24 32 2.02 (-19,23) 0.251 , -- 10.57 4.8 
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The results for the methods in Chapter 4 are now presented. The values 

for SRMS, CCOR, and SRAN, for the single band methods (LR, LI, CSP), for 

the methods using a template band (TB-1 to TB-8), and for the methods using a 

template date (TD-1 to TD-8) are given in Tables CA, C.5, and C.6, in Appendix 

C, respectively. 

Similarly to the procedure adopted in §5.9.1, ranks from 1 to 26 are formed 

for 26 methods (3 single band, 8 using a template band, 8 using a template date, 

5 using spatial modelling, and TB/D-14), to evaluate the methods, using D2 ( 15) . 

The ranks thus assigned are averaged, individually for each measure, giving the 

results in Table 5.7, which also includes the absolute value of the differences 

between the average ranks of the methods for: (1) SRMS and CCOR; (2) SRMS 

and SRAN; and (3) CCOR and SRAN. 

New ranks, from 1 to 26, are now assigned to each method, according to its 

position in Table 5.7 (rank 1 to the method at the top), for each measure. By 

averaging the 3 new ranks assigned to each method, the overall performances 

of the methods can be evaluated. These averages are given in Table 5.5 (under 

D2 ), where fa, and s,.. are the mean and the standard deviation of the new ranks, 

respectively. The table also gives the minimum and maximum [(m,M)] values of 

the new ranks assigned to each method. 

Figure 5.15 (a) shows the simulated sub-image D 2 (15), after the replacement 

of the values on the simulated missing limes with the estimates obtained for linear 

interpolation. Figure 5.15 (b) shows the residuais obtained for this method, which 

indicates the occurrence of large residuais at the boundaries between regions of 

contrasting response, as indicated in §5.8.3. 

The plots in Figures 5.16 (a) and (b), 5.17 (a) and (b), and 5.18 (a) and 

(b), display the true `missing' value, and the estimates obtained for lines 7 and 

23, 39 and 45, and 61 and 77, respectively, using method lp-SAR. These figures 

may give an idea of where the method fails to estimate the missing values well. 

This can also be verified for method TD-6, from the plots of the true `missing' 

values and the estimates obtained for this method, given in Figures 5.19 (a) and 

(b), 5.20 (a) and (b), 5.21 (a) and (b), for lines 7 and 23, 39 and 45, 61 and 77, 

respectively. 
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Table 5.7: Average ranks of the methods, for SRMS, CCOR, and SRAN, and the 

absolute value of the differences between the average ranks for: (1) SRMS and 
CCOR; (2) SRMS and SRAN; (3) CCOR and SRAN. 

SRMS  CCOR SRAN DIFFERENCES 
Method 	1 AR  , 	Method 	I AR Method 	1 AR Method 	I (1) 1 (2) I (3) 

TD - 7 5.14 TD - 7 4.79 TD - 7 5.14 I 	LR 1.0 3.4 2.4 lp - SAR 5.21 TD - 14 5.07 TD - 14 5.86 LI 0.1 1.0 0.9 TD - 2 5.36 TD - 2 5.64 TD - 2 6.43 CSP 0.9 1.2 2.1 lp - SART 5.43 1P - SART 6.07 1P - SAR 6.93 TB - 1 0.7 0.2 1.0 TD - 14 6.29 CSP 6.07 1P - SART 8.00 TB - 2 0.5 0.3 0.9 CSP 7.00 lp - SAR 6.29 2P- SAR 8.21 TB - 3 0.2 0.3 0.5 2P - SAR 7.43 2P - SAR 6.79 CSP 8.21 TB - 4 0.2 0.3 0.5 TD - 8 7.64 LI 8.14 TD - 8 9.00 TB - 5 0.7 0.2 1.0 LI 8.00 TD - 8 10.36 LI 9.07 TB - 6 0.2 0.1 0.4 1P - CART 10.93 lp - CAR 10.50 TD - 3 9.71 TB - 7 0.5 0.4 0.9 1P - CAR 11.00 TD - 3 10.64 TB - 14 12.51 TB - 8 0.2 0.3 0.1 TB - 14 12.07 1P - CART 10.93 TD - 5 12.64 TD - 1 1.8 5.4 3.5 TD - 6 12.79 TD - 6 12.64 TD - 6 12.93 TD - 2 0.2 1.0 0.7 TB - 6 13.07 TB - 6 13.36 TB - 6 12.93 TD - 3 3.5 4.5 0.9 TD - 3 14.21 TB - 14 13.71 Ti? - 1 13.00 TD - 4 1.3 4.9 3.5 LR 15.00 LR 16.00 Ti? - 4 13.00 TD - 5 1.5 2.4 3.9 Ti? - 5 15.07 TD - 5 16.57 1P - CAR7' 13.14 TD - 6 0.1 0.1 0.2 TD - 4 17.93 TD - 4 16.57 1P- CAR 13.29 TD - 7 0.3 0.0 0.3 TB - 7 18.07 TD - 1 16.57 TB - 7 17.64 TD - 8 2.7 1.3 1.3 TB - 8 18.21 TB - 8 18.43 TB - 2 18.36 1P- CAR 0.5 2.2 2.7 Ti? - 1 18.43 TB - 7 18.57 LR 18.43 1P - CART 0.0 2.2 2.2 TB - 2 18.71 TB - 2 19.29 TB - 8 18.57 1P - SAR 1.0 1.7 0.6 TB - 3 23.21 TB - 3 23.00 TB - 3 23.57 2P- SAR 0.6 0.7 1.4 TB - 5 24.21 TB - 5 25.00 TB - 5 24.00 1P - SART 0.6 2.5 1.9 TB - 4 24.79 TB - 4 25.00 TB - 4 24.43 TB - 14 1.6 0.4 1.2 
,
TB - 1 25.79 TB - 1 25.00 TB - 1 26.00 Ti? - 14 1.2 0.4 0.7 
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a 

Figure 5.15: (a) Simulated sub-image D 2 (15), after the replacement of the sim-

ulated missing lines by the estimates obtained for LI; (h) residuais obtained for 

L1, for the simulated missing lines in sub-image D 2 (15). 

175 



LINE 7 

21 

150 

D 100 
N 

50 

o 

a 

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100 
J 

LINE 23 

Figure 5.16: Piot of the true values, and the estimates for a lp-SAR on: (a) line 
7; (b) line 23. 
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Figure 5.17: Piot of the true values, and the estimates for a lp-SAR on: (a) line 
39; (b) line 45. 
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Figure 5.18: Piot of the true values, and the estimates for a lp-SAR on: (a) une 
61; (b) une 77. 
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Figure 5.19: Piot of the true values, and the estimates for method TD-6 on: (a) 

line 7; (b) line 23. 
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Figure 5.20: Piot of the true values, and the estimates for method TD-6 on: (a) 

line 39 (b) line 45. 
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Figure 5.21: Piot of the true values, and the estimates for method TD-6, on line 
77. 
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5.10 Discussion of Results 

The results presented in section §5.9 are now discussed, firstly for the simulated 

lines in D1(15), and then for those in D 2 (15). The discussion concentrates on the 

methods that usually perform well. 

5.10.1 Results using the simulated lines in sub-image 

D1(15) 

From the results in Table 5.4, it can be seen that, unlike in Chapter 4, when 

linear interpolation usually performed numerically better than the other methods 

(smaller SRMS, CCOR and SRAN), it does not do so here. However, since the 

results in Chapter 4 correspond to the average performance of the methods, using 

severa! sub-images, (in which case a poor performance in one sub-image, may be 

shadowed by a good performance in another), and as in this chapter the methods 

are evaluated using only one sub-image, and 5 missing lines, some contrasting 

results may be expected. For instance, the performance of method TD-8 is much 

better here than in Chapter 4. However, a closer investigation of the results for 

this method, in that chapter, indicates that method TD-8 performs particularly 

well in sub-image D 1 (15) (in fact, its ranks were similar to those for TD-7, which 

usually performed well, in that chapter). 

It has been the good performance of this metliod, for the missing lines in 

D1 (15), that motivated its application to other sub-images. Recall that method 

TB/D-8 had been developed before knowledge of Guindon's methods, and hence 

its results were being compared only with those obtained for method TB/D-2. 

From Table 5.5 it can be seen that, in general, method TB/D-8 performed better 

than TB/D-2. 

Note, from Table 5.5, that the good performances of Guindon's methods, 

observed in Chapter 4, are still maintained here. The same applies to method 

TB/D-14. 

From the absolute value of the differences between the average ranks of meth-

ods, for the different measures, given in Tables 5.4 and 5.7 under (1), (2), and (3) 

(for SRMS and CCOR, SRMS and SRAN, and CCOR and SRAN, respectively), 

it can be noted that most methods are reasonably consistent for ali measures. 
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Since the missing lines are simulated in a sub-image in the most heterogeneous 

ba.nd 5, where more 'local' variations of the data are expected to occur, the 

method of linear interpolation does not perform as well as in sub-images in more 

homogeneous bands. However, for some of the simulated fines, good estimates 

of the missing values are still obtained for LI. For example, the estimates of the 

missing values in line 11, for LI, are in general good, with 82 percent of the 

absolute value of the residuais not exceeding 5 grey leveis [the largest residual 

(in absolute value) is 8]. However, as may be expected from the brief description 

of the neighbourhood of each missing line, in §5.8.3, large residuais are obtained 

for LI at the boundaries between different types of land cover, as detailed in that 

section. Henceforth, unless otherwise stated, the discussion is carried out using 

the absoiute value of the residuais. 

Although a large percentage of the missing values in line 27 is estimated 

within an error of less than 5 grey levels (78 percent), some large residuais are 

obtained for LI, particularly for the values which are associated to the pixels 

near the intersection of the missing line with the road that crosses the sub-image 

(between columns 18 and 21). The residuais are 24, 14, 20, and 19, for the 

pixels at columns 18 to 21, respectively. The largest residual (33) occurs at the 

boundary between bare sou, and soil with low density vegetation (column 88). 

The missing values in line 43 are reasonably well estimated using linear inter-

polation. The largest residual is 10, and 82 percent of the residuais do not exceed 

5 grey leveis. Most the missing values in line 59 are also well estimated from LI 

(78 percent); the largest residuais are associated to the pixels at the boundary 

between the area with moisture, and the area covered with low density vegetation 

(between columns 4 and 10). 

In line 75, the largest residuais occur for the pixels between columns 85 and 

89 (17, 16, 8, 12, and 7); 82 percent of the residuais are less than 5 grey leveis. 

Due to the greater heterogeneity of the data in the neighbourhood of line 91, 

only 45 percent of the residuais do not exceed 5 grey leveis. The iargest residuais 

are associated to the pixels between columns 48 and 54, and are 18, 12, 20, 17, 

16, 11, and 12. 

From Figures 5.8, 5.9, and 5.10, the similar performances of the purely spatial 

methods, LI and lp-SAR, can be appreciated. Note that the pixels that are not 

estimated well using LI, are usually not estirriated well using a lp-SAR. In certain 
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cases, the estimates from a 1p-SAR can be worse than those for LI, particularly 

when the data in the neighbourhood of the missing pixel are heterogeneous. As 

an example, consider the missing values in une 75 (shown in bold), at columns 32 

and 33. The data in lines 73 to 77, between columns 30 and 35 are given below: 

Column 

30 31 32 33 34 35 

Line 73 22 20 21 17 17 15 

Line 74 23 19 19 - 17 18 19 

Line 75 25 33 27 22 22 19 

Line 76 43 43 43 39 33 37 

Line 77 43 33 14 8 19 37 

The missing values at the sites at columns 32 and 33, for instance, are not esti-

mated well from LI (the rounded estimates are 31 and 28). However, even worse 

estimates of these missing values are obtained for the method that uses a 1p-SAR, 

since the data in the 'local' neighbourhood of these pixels (consisting of the 2 pix-

els above, and the 2 pixels below the missing ones) are heterogeneous. Although 

the estimates for the method that uses a lp-SAR incorporate information from 

ali sites in the 2 lines above and the 2 lines below the missing one, more weight 

is placed on the pixel values in the 'local' neighbourhood of the pixel where the 

missing observation occurs. The respective estimates for the 1p-SAR method, for 

sites 32 and 33 are 34 and 32. Since the method that uses a lp-CAR incorporates 

information only from the sites on the lines above and below the missing one, 

better estimates of the missing values can be obtained from this method than 

from a lp-SAR, since the data in this neighbourhood is more homogeneous than 

those in the enlarged neighbourhood of the lp-SAR. The rounded estimates of 

the missing values in the sites at columns 32 and 33, for the method that uses 

a lp-CAR, are similar to those obtained for 'LI (and bence better than those 

obtained for the lp-SAR), and are respectively equal to 30 and 28. 

In §5.8.2 it was mentioned that the range of the data in the adjacent neigh-

bourhood of each of the pixels between columns 85 and 89, in une 75, was rea-

sonably large. In fact, the pixels at these columns delimit the boundary between 

a moisture patch and soil with low density vegetation. The values of the pixels at 

lines 73 to 77, between columns 84 and 90 inclusive, are given below. The values 
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for the `defective' line 75 are shown in bold. 

Column 

84 85 86 87 88 89 90 

Line 73 65 47 49 48 47 42 46 

Line 74 52 32 43 53 48 39 43 

Line 75 46 28 38 70 68 51 41 

Line 76 52 58 66 71 64 49 45 

Line 77 57 62 68 , 62 52 45 40 

Note that the range of the data above and below the pixels in line 75, between 

columns 85 and 88 is large, particularly for the pixels at columns 85 and 86 (the 

ranges are 26 and 23, respectively). Since the one-parameter methods assign 

equal weights to the pixel values above and below the missing one, and due to 

the relatively large variation of the data in this 'local' neighbourhood, the purely 

spatial methods do not perform well. The residuais (in absolute value) using a 

lp-CAR method are 21, 16, 12, 14, and 4, for the sites at columns 85 and 89, 

respectively; the corresponding residuais for a 1p-SAR are 16, 15, 8, 11, and 5; 

and finally those for LI are 45, 53, 62, 56, and 44. 

The estimates obtained from the methods using spatial modelling are ali simi-

lar, as can be seen from Table 5.3. For ali the simulated missing lines in sub-image 

D1 (15), the estimates of the parameter /3, for the methods using first-order mod-

els, are dose to 0.25, that is, dose to the upper limit allowed for this parameter, 

to ensure the covariance matrix is positive definite. 

For some lines, estimates of the missing values have been obtained using 

= 0.25, and are almost always identical to those obtained using the maximum 

likelihood estimate of the dependence parameter /3. The maximum difference 

between the estimates (rounded up to the nearest integer) obtained from both 

approaches (maximum likelihood, and fixed at 0.25) is 1 grey levei. 

If a fixed value for the dependence parameter fl (say fi = 0.25) is assumed, 

great simplification may be achieved in the computation of the estimates of the 

missing values occurring sequentially in a line, from methods that use spatial 

modelling. If ali the values are assumed to be missing in each `defective' scan 

line ou the imagery, then the product ("V's  ")'V" (refer to equation 5.12) is fixed 

for a given value of /3, and needs to be calculated only once. Only the vector of 
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observations in the neighbourhood of each missing line changes, from one missing 

line to another. 

From Table 5.3 it can be noted that ali the methods using spatial modelling 

have a very similar performance, suggesting that the trend surface may be rea-

sonably flat. The estimates of the vector O, =[âo o, âoi, aio, â02, êt20, ânr, for 

the second-order trend surface methods are given in Table 5.8, for each simulated 

missing line. 

Table 5.8: Estimates of the parameters of the second-order trend surface with 

lp-CAR(1) and lp-SAR(1) errors, using the data in the neighbourhood of each 

simulated missing Ene: D 1 (15). 

lp-CART 

Line âoo 	âoi 	aio 	ii02 	â20 	â11 

11 38.98 	4.64 	1.09 	-0.01 	-0.37 	-0.01 

27 58.32 	1.06 	-0.29 	0.01 	-0.04 	0.00 

43 79.43 	-4.26 	-0.72 	0.01 	0.24 	0.00 

59 65.75 	-1.54 	-0.73 	-0.02 	0.19 	0.01 

75 66.65 	1.01 	-0.90 	-0.02 	-0.01 	0.01 

lp-SART 

Line . 	âoo 	â01 	alo 	â02 	â20 	âll 

11 41.49 	4.45 	0.95 	-0.01 	-0.36 	-0.01 

27 52.05 	2.58 	-0.06 	0.02 	-0.16 	0.00 

43 76.20 	-3.19 	-0.55 	0.01 	0.15 	0.00 

59 62.97 	-0.15 	-0.63 	-0.01 	0.07 	0.01 

75 62.98 	1.27 	-0.78 	-0.02 	-0.02 	0.00 

From Figure 5.4 (a), which shows the difference image for the data in the 

neighbourhood of each simulated missing line, it is possible to have an idea of 

where method TD-6 is expected to fail. Recai!, from Chapter 4, that the difference 

image can aid the identification of the pixels where Guindon's method may fail. 

Essentially, observation of the contrast between the pixels in the difference image, 

above and below the one corresponding to the missing value, may suggest if the 
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assumption under which Guindon's methods are based, is satisfied. Note, for 

instance, that method TD-6 does not estimate well most of the missing values 

in line 59, between columns 1 and 8 - refer to Figure 5.13 (b). It can be seen, 

in Figure 5.4 (a), that the pixels between columns 1 and 8, in the lines above 

and below the 'detective' one, are displayed in different colours (magenta for the 

pixels above, and cyan for the pixels below), which suggest a possible failure of 

Guindon's assumption. 

5.10.2 Results using the simulated missing tines in sub-

image D2 ( .1 5 ) 

The results obtained using sub-image D2(15) are, in general, similar to 

those using D1 (15). Note that methods TD-2, TD-7, and TD-14, perform better 

than LI, for ali measures. Poor estimates of the missing values using LI usually 

occur at the boundaries between distinct types of land cover, as for the simulated 

limes in D1 (15). However, if there is no large variation of the data in the 'local' 

neighbourhood of the missing one (1 pixel above and 1 below), good estimates 

from LI can still be obtained, even at the boundaries. This occurs particularly 

in line 7, despite the heterogeneity of the data in the neighbourhood of this 

fine. Note, in Figure 5.2 (b), that the boundary between the bare sou l (shown 

in yellow) and the sou l with low density vegetation (shown in cyan) is a vertical 

feature, which ensures small variations of the data in the 'local' neighbourhood 

of the missing values occurring at columns 76 and 77. The pixel values in Enes 

5, 6, 7, 8, and 9, for the sites between columns 76 to 79 are as follows: 

Column 

76 77 	1 78 79 

Line 5 147 123 119 109 

Line 6 162 132 117 107 

Line 7 162 130 116 109 

Line 8 158 135 120 112 

Line 9 165 151 131 114 

The pixels in lines 5 to 9, at column 76, are displayed in yellow, in Figure 5.2 

(b), whilst those at column 77 are displayed in green. Finally, those at columns 78 
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and 79 are dispiayed in cyan. Note that the variations of the data occur between 

pixels that are horizontally adjacent, and not between the vertically adjacent 

pixels. Hence, good estimates of these missing pixels are obtained using linear 

interpolation, although the data in the area are rea,sonably heterogeneous. The 

estimates of the missing values for the sites. between columns 75 and 78, from the 

methods that use spatial modelling are also good. The estimates for the values at 

sites between columns 75 to 78, using LI, are 160, 134, 119, and 110, respectively; 

whilst those for the method using a 1p-CAR the corresponding estimates are 159, 

138, 123, and 133; and finally, for the method that uses a lp-SAR the estimates 

are 160, 134, 118, and 109. Note the similarity between the estimates obtained 

for these three purely spatial methods. 

The fact that une 23 intersects the boundaries of several types of land cover 

characterized by linear features, but that transverse the image diagonally, explains 

the large number of residuais greater than 4 grey levels (32 percent), using LI. For 

instance, the pixel values in the lines above and below the missing one, at columns 

5, 6, and 7, are respectively 118 and 130; 90 and 131; 62 and 104, and delimit the 

boundaries between the sou l with low density vegetation and the reforested area. 

The lower values are associated with the pixels in the reforested area (shown in 

magenta) in Figure 5.2 (b), whereas the larger ones are associated with the pixels 

corresponding to low density vegetation (shown in cyan). The missing values at 

columns 5, 6, and 7 are respectively 131, 123, and 73, and the residuais from LI 

are 7, 13, and 10. The residuais obtained for the method using a 1p-CAR are 9, 

16, and 13, whilst those for the method using a lp-SAR are 4, 12, and 10. 

A higher percentage (46 percent) of the residuais obtained for LI, in une 39, 

are usually associated to the pixels at the boundary between the area with low 

density vegetation [shown in green, in Figure 5.2 (b)], and reforestation (shown 

in magenta). Note that the boundary between these two areas, in une 39, is a 

horizontal feature that comprises approximately 8 pixels (from column 55 to 62). 

Note also from Figure 5.2 (b) that even befoie line 39 intersects the boundary 

between these two areas, a contrasting response from the arca covered with low 

vegetation, above, and below, the missing une is observed, as mentioned in §5.8.3. 

Hence, a sequence of poor estimates are expected from LI, for the missing values 

at the sites delimited by coiumns 55 and 62, in une 39. The largest residual in 

this une is 25. 
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The comments drawn above for line 39, also apply for line 45. However, only 

22 percent of the residuais are larger than 4 grey leveis. The largest residual is 
21. 

From the greater homogeneity of the area intersected by missing line 61, as 

can be noted in Figure 5.2 (b), a good performance of L1 is expected. Only 9 

percent of the residuais are larger than 4 grey leveis, and the largest residual, 

associated with the pixel at the boundary between the reforested area, and soul 

with low density vegetation, is 15. Ali other residuais in this line do not exceed 
8 grey leveis. 

Only 25 percent of the residuais in line 77 exceed 4 grey leveis [note, in Figure 

5.2 (b), the homogeneity of the data in the entire neighbourhood of this line (5 

lines above and 5 below)]. The largest residual is 11. 

Finally, and as expected from the comments in §5.8.3, small residuais are 

obtained for L1, in line 93 [only 22 percent of the residuais exceed 4 grey leveis]. 

The largest residual (23) is associated with the pixel at the bottom right of the 

sub-image, where the missing line intersects a small reforested area. 

As mentioned in the previous section, the methods using spatial modelling 

have a similar performance to the method of linear interpolation, and perform 

similarly amongst themseives. As in the case of the simulated lines in D 1 (15), 
this suggests that the second-order surfaces (in methods lp-CART and lp-SART) 

are reasonably flat. The estimates of the parameters of the vector O are given in 
Table 5.9. 

In general, the missing values in the simulated lines in sub-image D2 are 
better estimated from method TD-6, than LI. For instance, only 5 percent of the 

residuais obtained for this method, in line 7, are greater than 4 grey leveis. The 

largest residual is 8. Although, in line 23, a smaller number of the residuais are 

greater than 4 grey leveis, using TD-6 (27 percent), than LI (32 percent), the 

range of the residuais obtained for TD-6 (58) is much larger than that for LI 

(26). 

In the previous chapter it was suggested that the occurrence of large residuais, 

from method TD-6, can be deduced from observation of the difference image. It 

seems plausible to assume that if large differences occur between the difference 

pixel values above and below the missing one, then the assumption on which 

Guindon's method are based is not a reasonable one. Examination of the pixei 
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Table 5.9: Estimates of the parameters of the second-order trend surface with 

lp-CAR(1) and lp-SAR(1) errors, using the data in the neighbourhood of each 

simulated missing line: D2(15). 

lp-CART 

Line âoo  &01 lilo 	ek02 ek20 ás  ii 

7 38.52 7.27 2.05 -0.01 -0.61 -0.01 

23 64.41 6.37 0.43 -0.03 -1.43 0.00 

39 90.03 -0.26 -0.19 -0.05 0.12 0.00 

45 71.23 -1.54 -1.48 0.07 0.70 0.01 

61 83.47 -6.87 1.58 0.04 0.37 -0.02 

77 64.48 -1.46 1.55 0.00 0.06 -0.01 

93 59.52 6.08 1.03 -0.01 -0.47 0.00 

, lp-SART 

Line iloo  âoi «10 '&02 â20 '&11 

7 40.97 6.01 1.94 -0.01 -0.52 -0.01 

23 62.23 4.27 0.21 0.00 -0.02 -0.98 

39 92.44 -0.50 -0.17 0.00 -0.03 0.05 

45 89.01 -0.15 -0.63 -0.01 0.07 0.01 

61 76.16 -3.70 1.81 0.04 0.13 -0.02 

77 64.46 -0.95 1.51 0.02 0.04 -0.01 

_ 	93 52.84 10.82 1.20 -0.01 -0.84 0.00 

values above and below the missing one, in the difference image obtained from 

D1 (15) and D1 (25), that is, Wi (ip -1,j)-ta 2 (ir -1)] and [41 (ip+1, j)-ut(ip +1)1 

where t 1  refers to date 10/07 (date of acquisition of sub-image D 1 (15)), t 2  refers to 

date 24/06 (date of acquisition of the template), and i p  refers to the pt/  

missing line, p=7, 23, 39, 45, 61, 77, and 93, indicates the following: 

1. that the largest residual for method TD-6 (33), in line 23, is observed for the 

pixel at column 81 (j = 81), for which the above differences are respectively 

40 and 43 (suggesting that the assumption for the method holds). The 

reason why the method fails to estimate the missing value well is the fact 
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that the difference [uk  (27 81)-42 (27, 81)] = 67, is significantly larger than ti 	, 

those for the lines above and below, indicating the Guindon's assumption 

may not be a reasonable one. 

Note that because the value of 4, (27,81) corresponds to the missing one, 

the difference [u,(27, 81) - 42 (27, 81)] is not available, and the observation 

of a large residual for this pixel value, for TD-6, would not be predicted. 

2. for the second largest residual (21) obtained for method, in line 23 (at 

column 89), the following differences are observed: 8 for the pixel above the 

missing one and 17 for the pixel below. The values of the pixel corresponding 

to the missing one, in the difference image is -9. 

3. for the third largest residual (17) observed in line 27 (at column 50), the 

above differences are, respectively, 22, 6, and 23. 

4. for the residual of 15, observed in line 27, at column 80, the values of the 

pixels above and below the missing one, in the difference image, are 44 and 

42, respectively. The one corresponding to the missing value is 56. 

For ali other simulated missing lines, method TD-6 performs better than LI. 

For instance, the largest residuais in each of lines 39, 45, 61, 77 and 93, for LI, 

are 25, 21, 15, 11, and 23, whilst for method TD-6 they are 13, 13, 12, 11, and 

13, respectively. And whereas the percentages of residuais greater than 4 grey 

leveis, for L1, are 17, 32, 46, 22, 9, 25, and 22, for lines 7, 23, 39, 45, 61, 77, and 

93, respectively, they are equal to 5, 27, 30, 17, 15, 19, and 20, for method TD-6. 

5.11 Conclusions 

This chapter concerned the application of methods that use spatial modelling 

to estimate missing lines in the imagery, arising from line dropout. The two 

classes of spatial models most commonly applied to remotely sensed data, viz., 

the conditional autoregressive, and the simultaneous autoregressive models, have 

been investigated here, using data from a sub-image in D 1 , and from another 

from D2. 

The main interest was to evaluate the results obtained from the methods us-

ing spatial modelling, with those obtained for the simpler methods in Chapter 4 
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(other single band, or template band/date methods), to decide if the implemen-

tation of more complex, and time consuming, methods would be warranted. 

The advantage of the purely spatial methods, is that they do not require that 

information from another band(s), or date(s) be available. Also, for the methods 

that use a template band to work generally well, it is essential that the objects 

on the ground respond similarly in the different bands (in other words, that their 

transfer functions be somewhat linear); and the methods using information from 

a template date require that few changes occur between the pa.ssages. In general, 

for these methods to work well, it is not the amount of changes that occur between 

these passages that matters, but how contrastingly different the areas of change 

are in the specific band under study, from one passage, to another. 

The results in this chapter indicate that the linear interpolation method, and 

the methods using spatial modelling have a very similar performance. However, 

over relatively homogeneous regions, the methods using spatial modelling should 

perform better than linear interpolation alone, since they incorporate informa-

tion from a larger number of pixels, and may not be as affected by some 'local' 

variations of the data (data in the lines above and below), as LI. 

From the visual observation of the data in the adjacent neighbourhood of 

the missing line, it is possible to have a general idea of how the purely spatial 

methods will perform; and from observation of the difference images (for sub-

images in different bands, or different dates), the performances of the template 

band, or template date methods can, in general, be reasonably deduced. 

Although, as mentioned above, it might be reasonable to expect that over 

relatively homogeneous regions, the methods that use spatial modelling should 

perform better than linear interpolation, it is questionable if the estimates thus 

obtained are significantly better than those obtained for LI. Considering that the 

methods that use spatial modelling are far more demanding, in terms of com-

puting, than linear interpolation, and considering that they still do not provide 

`reasonable' estimates of the missing values at the boundaries of regions of con-

trasting response, or over dynamic areas, their use does not seem to be justified in 

the estimation of missing values arising from une dropout, especially considering 

the large amount of missing values that may need to be estimated. 

If the missing values occur over reasonably homogeneous areas, and if a fixed 

value for the dependence parameter i3 is assumed for the one-parameter methods 
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(1p-CAR, lp-SAR, lp-CART, lp-SART), then the computational effort is greatly 

reduced, and these methods may be preferable to linear interpolation, if the 

number of missing values is not too large. 

Also, the application of methods that use higher-order models does not seem 

to be justified in the estimation of missing values occurring in heterogeneous areas, 

as they are unable to improve significantly the estimates of the missing values 

occurring at the boundaries between regions of contrasting responses, which are 

usually poorly estimated from the methods that use low-order models. 

If few changes occur in the particular area where the missing values occur, 

between two dose passages, then better estimates of the missing values may 

be obtained from the use of template date methods, then from purely spatial 

methods. Incorporation of the data from a neighbouring band to the one where 

the missing values occur may also prove to be useful, especially when the data in 

the neighbourhood of the missing values is very heterogeneous, and where large 

'local' variations of the data may be expected. 

It has been shown that even when the data is heterogeneous, good estimates 

from LI can still be obtained. However, this depends essentially on the structures 

of the objects on the scene, on the location of the missing line on the imagery, 

and how contrastingly different is the information in the neighbourhood of the 

missing line. 

Without a visual examination of the `defective' image, and of the difference 

images (for different bands, and different dates) it is not possible to predict if 

better estimates will be obtained from single band methods, or from methods that 

use a template band, or a template date. Depending on the structures present 

on the image, and on the location of the missing line, it may also be possible to 

foresee if the results from the use of methods based on spatial modelling will be 

better than those for the method of linear interpolation. 
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Chapter 6 

Estimation of Clusters of 

Missing Values 

6.1 Introduction 

Landsat images are very frequently affected by the presence of clouds, which 

may either completely block any information on the Earth's surface, or else pro-

duce values that are distorted, and do not represent the true radiance (brightness) 

of the objects on the ground. 

In order to recover the ground radiance information that does not reach the 

sensor due to the presence of thick clouds, Hord (1982) suggests the replacement 

of the affected pixel values by the values of the corresponding pixels on another 

passage. This has been the only approach found in the literature. 

Approaches for recovering the radiance values distorted by the presence of 

thin clouds are more frequent, and usually consist of modelling the distortion 

(noise) introduced by the cloud. Chanda & Majumder (1991), for instance, note 

that: 

`According to Mitchell et al. (1977), the `noise' effects of cloud are not 

a strictly additive or multiplicative process alone, but are a combina-

tion of both. A simple transformation, such as `logarithm', can then 

be applied to make the signal and noise additive. Finally, a filtering 

technique is to be applied to separate out signa l from noise, followed 

by an appropriate inverse transformation which returns the filtered 

194 



signal to the picture domain.' 

Unfortunately, as thick clouds prevent any information from the ground reach-

ing the sensor, the recovery of the `true' radiance values from the objects on the 

ground cannot be approached in the same manner as that described above for 

thin clouds. 

Clouds, being highly refiective, generally show in the image as bright areas, 

which usually have an associated congruent darker area at a specific distance 

and orientation - their shadows' (Haralick &-. Fu, 1983). Unlike most clouds, 

which can usually be identified by visual inspection, 'amas of shadows are harder 

to identify since the observed refiectance depends both upon the estent to which 

the ground is obscured and on the nature of the ground surface' (Gurney, 1982). 

Grey leveis within and between shadows may vary considerably, and can be easily 

confounded with other classes of ground cover. 

A pixel value may a1so be `contaminated' by cloud, if cloud is present within 

the field of view of the sensor. 

Although not actually missing, pixel values from areas covered by thin clouds, 

shadows, or those contaminated by cloud, can be deliberately deleted from the 

image data, and treated as missing. The approaches suggested in this chapter for 

the estimation of missing values arising from thick clouds can also be considered 

in the estimation of these `missing' values. 

The acquisition of cloud-free imagery varies depending on the location of the 

region of interest, and the time of the year. In Britain, for instance, coastal 

districts are relatively less cloudy than upland areas, while the south-east and 

the western coast have the highest percentages of useful imagery (Legg, 1991). 

Nevertheless, a review of Landsat Multispectral Scanner `Quicklook' images in 

the National Remote Sensing Centre archive by Legg (1991) indicates that, on 

average, only one satellite pass in six over the United Kingdom results in cloud-

free imagery - see also Legg (1988). 

Because of the frequent occurrence of cloud covered Landsat images, and in 

view of the fact that the most demanding potential of remotely sensed data is 

the mapping, or monitoring, of agricultural crops, then the estimation of missing 

values due to cloud cover is an important task. However, as the methods pro-

posed for the estimation of missing values from doud cover must either rely on 

the spatial information available, andfor on data acquired at other passages, es- 
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timates of missing values in extensive clouded areas are not expected to be good, 

unless the clouded area is very homogeneous, or that few changes occur between 

passages. 

In this chapter, the performances of some of the methods introduced in Chap-

ter 4 (§4.2 and §4.3), and Chapter 5 (§5.6), are evaluated in the estimation of 

rnissing values occurring in clusters, as if arising from the presence of small, thick, 

clouds. Some new methods that use temporal information are also proposed, and 

evaluated. As the presence of thick clouds prevents the acquisition of information 

on the ground in ali bands of the TM (except the thermal), none of the template 

band methods introduced in Chapter 4 can be used. 

Some of the template date methods in Chapter 4 are also not studied in this 

chapter, since the information they require is not available in the case of clusters 

of missing values. These methods are TD-2, TD-3, TD-6, TD-7, and TD-8 — refer 

to Table 4.1 in §4.3. 

To evaluate the methods, small clusters of missing values are simulated in 

some sub-images from D 1 , and D2, and the true values contrasted with those 

obtained from each method. 

The missing values have been simulated in two configurations: in one, they 

occur as an oblong clump with 'holes' — see Figure 6.1, over selected areas in 

some sub-images in Di ; and in another they occur as a diagonal, compact patch 

— refer to Figure 6.13, over selected areas in some sub-images in D2. 
However unrealistic these simulated configurations may appear, they do allow 

the identification of the situations where particular methods fail to produce good 

estimates, which can then be generalized to the case of larger clouds, and/or 

possibly more realistic configurations. Also, the simulation of 'holes' provides the 

opportunity to investigate the kind of spatial information that the purely spatial 

methods require, to produce good estimates of the missing values. 

As in Chapter 4, and Chapter 5, the performances of the methods are evalu-

ated for their ability to consistently give small values for the SRMS, CCOR, and 

SRAN. 

For the visual evaluation of the methods, the images obtained by replacing 

the missing values with those estimated from the various methods (test images), 

and the residual images, are observed for each method. From these images, the 

distortions introduced by each method, on the particular features present on the 
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image can be detected, and the methods thus evaluated. Note that the test 

images only differ from the original sub-image in the sites where observations are 

missing. 

The chapter is set out as follows: section 6.2 introduces the proposed methods 

for the estimation of clusters of missing values; section 6.3 introduces the simu-

lated 'cloudy' areas, and sections 6.4 and 6.5 presents and discusses the results 

obtained for each method, respectively. Conclusions are drawn in section 6.6. 

6.2 Proposed Methods for the Estimation of 

Clusters of Missing Values 

6.2.1 Notation 

Suppose that observations are gathered on an n 1  by n2 rectangular lattice, and 

that m out of n = n i  n2  observations are missing. Assume that these observations 

are missing on sites that form a clump or cluster, in the interior of which some 

observations may still be available. Assume also that none of the missing values 

occur in the first or last row, or first or last column, of the retangular lattice. 

Let 5 be the set of sites in a n 1  by n2  rectangular lattice, chosen so as to enclose 

the missing cluster, and let T be the set of missing sites. 

Assume that the missing values correspond to pixels (i, j) E T, and that they 

occur on the sub-image acquired at time t 1  in band k, and that other images, 

acquired at times t 2 , t3 , in band k are available. Assume also that if missing 

values occur in these other passages, they do not occur at sites for which informa-

tion is not available at time t 1  (that is, T h  n Tid  = d 1, where Tta  denotes 

the set of missing sites in the passage acquired at time td). 

As previously, let 	j) denote the estimate of the missing pixel (i, j), on 

the image acquired in band k, at time t. 

6.2.2 Proposed met ho ds 

Most of the methods proposed here are the same as some of those introduced in 

Chapter 4 (§4.2 and §4.3), and in Chapter 5 (§5.5). However, unlike in those chap-

ters, where the missing values correspond to pixels (i, j), j E Ai C {1, 2, ... 
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the missing values here correspond to pixels (i, j) E T. 

The first method, to be referred to as CL-1, consists of estimating the missing 

values sequentially, from top left to bottom right, lexicographically, by averaging 

the values at sites (i — 1, j) and (i, j— 1). Then, the estimate of the missing value 
at site (i,j) E T, if (i — 1, j) and (i,j — 1) çrr is 

.241  (i — 1,j)+  uil,(i,j— 1) 
• 2 

If (i —1,j) E T, then u(i — 1, j) is replaced by4i — 1, j), and similarly if 

(i, j — 1) e T, then u(i, j — 1) is replaced by it(i,j — 1). 

Note that several variations of this method are possible. For instance, the 

method may include information from more than two sites, if this information 

is available; or, instead of estimating the missing values from a single starting 

point (top left), the method may allow different starting points (say, top left, 

top right, bottom left, and bottom right), in which case the estimation process 

converges to the centre of the lattice. The method proposed here (CL-1) may be 

preferable to these variations, due to its computational simplicity, and possibly 

speed. Since these variations have not been experimented with here, it is not 

possible to evaluate if they perform significantly better than the method proposed, 

and at what cost (diminished speed, computational complexity, etc). 

The second method, herein referred to as CL-2, is analogous to method TD-1 

in Chapter 4 (§4.3.2), that is 

(i 7  j) E Ir tl 	5 	 t2 	5 	t2 	tl 7 	 (6.1) 

where A = .s it̀ dst. Here, 4, and s tki  are the mean and the standard deviation of 

the data corresponding to the sites in 25 — T, at time t i , respectively; and i.42  and 
3 tk2  are the mean and standard deviation of the data corresponding to the sites in 

tS, at time t 2 , respectively. 

The third method, to be referred to as CL-3, is analogous to method TD-4 

in Chapter 4 (§4.3.2). The method uses information from the sites in ZS — T at 

time t i , and from the sites in ZS, at time t 2 . Note that depending on the size of 

the lattice that encloses the missing cluster, the results for method CL-3 and for 

a method analogous to TD-5 (in Chapter 4), are similar. 
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Method CL-3 is 

	

= p{4(i ,  • N. 	 k 
) ) 4} ütl, (i,i) E T 	 (6.2) 

where p is the slope of the straight line regression of 4  on  4 ,  using the data 

corresponding to the sites in 5 — T, acquired at times t i  and t 2 ; and 4  and fA 

are the means of the data corresponding to the sites in Z5 — T, at time t i , and to 

the sites in Z5, at time t 2 , respectively. 

The fourth method, henceforth referred to as CL-4, is similar to method TD-

8, in Chapter 4. Unlike that method, which in the first step replaces the missing 

values from line drop by those estimated from TD-2, this method replaces the 

missing values by those estimated from CL-3, say 4 ,  and then estimates the 

missing values using: 

	

1,j) 	1, 
üstki ( i , i) = 242 (4 i) { 

Uk  
ut1 	

+ 
Uni + j) 

 } /2, (i,j) E T. 	(6.3) 

Note that CL-2, instead of CL-3, could also be used to replace the missing 

values in the first step of method CL-4. However, as better estimates of the 

missing values are expected for method TD-4, than for TD-1 (refer to §4.5.1), 

then only the use of the former method has been considered with method CL-4. 

The fifth method, herewith referred to as CL-5, incorporates temporal in-

formation from more than one passage, using a straight linear regression of the 

form: 

	

k I • .‘ 	 - k 	-k Ut i (t, 3) = 	 it itçj 	a2{ut3  kt, j) — tzt3 	ut, 	(6.4) 

where a i  and a 2  are the least squares estimates of the a i  and eg2  in the linear 

regression model 
k 	, 	, 	k U = 	Critit 2  -r a24 -r Et, 

and E represents uncorrelated error terms with mean zero and common variance 

a2 . This method is similar to method TD-9 in Chapter 4, and uses information 

from ali sites in Z5 — T at times t i , 2 and t3 . Note that depending on the size of 

the lattice that encloses the missing cluster, the results using method TD-9, or 

method TD-10, are similar. 

The sixth method, herewith referred to as CL-6, expresses the missing value 

at site (i, j) as a linear combination of the corresponding pixel value and its first-

order neighbours ou a template date, acquired at time t 2 . The method can be 
formally expressed as: 

= bo 14 142 (i,i) b242 (i,AN 	(i,j) E T. 	(6.5) 
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for e as defined for CL-5; and 

11 14 ( i, 	= 	(i — 1,j) 	-I- 1,j) + u/4(i,j — 1) + 42 (i,j + 1). 

The values of bo , b1  and b2  in 6.5 are the least squares estimates of fi o , #1 , and 
82 , in the linear model 

= fio + 01142 	+ ,8211 14 ti, 	+ e 	 (6.6) 

A different definition from the one given above, for 4(i, j)N, has also been 

considered, which includes the information from higher-order neighbours of site 

(i, j) (consisting of the values at sites at lags g, h = —2, —1,0,1,2, g and h not 

simultaneously equal to -2 or 2). Since the results thus obtained did not improve 

the the estimates of the missing values obtained when using only the information 

on the sites that are adjacent horizontal and vertical to site (i, j), they are not 
included. 

Since the results in Chapter 5 indicate that the application of methods using 

spatial modelling of higher-order does not improve the accuracy of the estimates 

of the missing values, then only methods 1p-CAR, lp-SAR, and lp-CART of §5.6 

are considered here. These methods are henceforth referred to as CL-7, CL-8, 

and CL-9, respectively. Results for a method using third-order trend surface with 

lp-CAR errors, henceforth referred to as CL-10, are also obtained. 

In order to clarify the way the estimates of the missing values occurring in 

clusters are obtained, using the spatial modelling methods proposed here, some 

considerations are drawn below. 

For the case of a missing value corresponding to an isolated site, using a 

lp-CAR method (refer to §5.5.1), the estimate is found using the values of its 

first-order neighbours. If /3 is assumed to be 0.25, then the estimate of the missing 

value is simply the average of the values of its four first-order neighbours (that 

is, its adjacent horizontal and vertical sites). 

If using a lp-SAR method, the estimate of the missing value corresponding 

to an isolated site (see §5.5.4) is a linear combination of the pixel values at the 

sites that are adjacent horizontal, vertical, and diagonal to it, and at lags O and 

±2, and ±2 and O, with weights as shown below (the missing value is represented 
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by a 

Se  

Sb Sa Sb 

Se Sa + Sa Se 

Sb Sa Sb 

Se  

.2 

	

P 	 02  where s., Sb, and 8, are respectively equal to 

	

i +02  5  1 	  and +02  	 1+402 • 
If the missing values occur in a compact cluster (as in (a) below, with the 

missing sites indicated in bold), then the estimate of a missing value using a 

lp-CAR, is an average of the values of its first-order neighbours, and of the first-

order neighbours of the other missing sites. The estimate of the missing value at 

site 15, for instance, is found by averaging the values at sites 9, 10, 14, 17, 20, 

23, 27 and 28, with weights as indicated in (b). For missing site 15, the values of 

c., cb , and c, are 1.17, 0.33, and 0.17, respectively. 

(a) (b) 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Ca a 

Ca  Cb 

Cb Ce  

Cb Ce  

The estimate of a missing value at site (i, j), in a compact cluster, using a 

lp-SAR (refer to §5.5.4), is found in a manner similar to that for a 1p-CAR, 

but includes the information from the sites that are its first- and second-order 

neigbhours (that is, those which are adjacent horizontal, vertical and diagonal, 

and those at lags O and ±2, and ±2 and O), and the information from the first-

and second-order neighbours of the other sites in the compact cluster. 
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6.3 Simulated 'Clouded' Áreas 

6.3.1 Introduction 

In arder to evaluate the performances of the methods presented in §6.2.2, 

missing values are simulated in areas selected from some sub-images in the first, 

and in the second data sets, respectively. Two different configurations, shown in 

§6.3.2 and §6.3.3, are simulated. 

Estimates of the missing values occurring in each simulated 'clouded' area are 

obtained for each method. By replacing the missing values with the estimates for 

any given method, a test image is generated for that method. 

For the selected areas from D i , estimates for methods CL-2, CL-3, CL-4 are 

obtained using the two possible template dates, whilst for those selected from D2, 

only the nearest passage is used as the template. Method CL-5 is not applied to 

the sub-images in D2, since in this data set there is only one template date that 

can be reasonably used with the methods. 

6.3.2 Selected areas from Dl 

Missing clumps of values with the configuration displayed in Figure 6.1, have 

been simulated in six sub-images from D l . A in the figure, indicates a missing 

value. On four of these sub-images [(D1(13), D l  (14), D1 (15), and D 2 (25) - refer 

to Table 3.1 in Chapter 31, an area of 23 by 15 pixels containing the missing 

values was extracted, as shown in Figure 6.1, and treated independently from the 

rest of the sub-image. The area, A i , is bounded by lines 29 and 51, and columns 

33 and 47 on the original sub-image. It is shown in Figures 6.2 to 6.5 (marked 

as 1), for D1 (13), D1(14), D1 (15), and D1 (25), respectively. Let A i (dk) denote 

the area limited by these lines and columns ou sub-images from D l , acquired at 

time d, in band k. 

Ou two of the sub-images [Dl  (14) and D1 (15)], missing values with the con-

figuration shown in Figure 6.1 have also been simulated in another area (A 2 ), 

also of size 23 by 15, which is bounded by lines 70 and 92, and by columns 25 

and 39 on the original sub-images. This area is marked as 2 in Figures 6.2 to 6.5. 

Denote by A2 (dk) the area delimited by these lines and columns on sub-images 

in Dl , acquired at time d, in band k. 
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Figure 6.1: Configuration of the missing sites in arcas A 1  and A2. 

Figure 6.2: Location of arcas A 1  and A2 in sub-image D 1 (13). 
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Figure 6.3: Location of arcas A 1  and A2 on sub-image D 1 (14). 

Figure 6.4: Location of areas A 1  and A2 on sub-image D 1 (15). 

204 



Figure 6.5: Location of areas A i  and A2 on sub-image D 1 (25). 

Figure 6.6 shows a 3-dimensional representation of the data in area A 1 (14). 

The `valley' across the figure is associated with the road that crosses sub-image 

D 1 (14), from top left to bottom right - see Figure 3.5. The areas above and below 

the road, in A i , are relatively homogeneous, and are cultivated with wheat. 

In Figure 6.7 a three dimensional representation of the data in area A 2 (15) 

is given. The two depressions across the figure are associated with the areas of 

intense moisture indicated by C in Figure 3.5. The area is heterogeneous, and 

includes soil with varying degrees of moisture. 

The number of missing sites in either area A i , or A2, is 105, corresponding to 

approximately 30% of the total number of sites in each area. 

Let d = 1, 2,3 refer to dates 10/07/86, 24/06/86, and 08/06/86, respectively, 

and k = 3,4,5 to bands 3, 4, and 5, in this order. 

The mean, standard deviation (stdev), minimum and maximum [(m,M)], and 

the range of the data in areas A i  (dk) and A 2 (dk), d = 1,2,3, k = 3,4,5, are 

given in Table 6.1. These statistics are given for the data in the entire 23 by 15 

area (complete data), that is, to the data corresponding to the sites in J. Since 

the statistics for the data corresponding to the sites in Z.5 — T (incomplete data) 

are similar to the ones presented in Table 6.1, they are not included. 

The correlations, rddb,eb , between the complete data in areas A i (db) and A i (eb), 

1 = 1,2, acquired at different passages, are given below. These correlations, for 
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R 

Figure 6.6: 3-dimensional representation of the data in arca A 1 (14). 

the incomplete data, are similar to the ones presented for the complete data (the 

maximum difference between these correlations is 0.052). 

rd1 3 , 23  = 0.635; 

rd14 ,34  = 0.859; 

— O 590. 25,35 -- 	 5 

rd2525 — 0 799- 1, 	--  

rd1- 3 ,33  — 0.671; 

rd1 5 ,25  = 0.649; 

r4.4,24 — — 0.548; 

rd 535  -= 0.806. 

rd1 4 , 24  = 0•907; 

rd1 5 ,35  = 0.610; 

rd?4,34 = 0.476; 

Figure E.1 (a) and (b), in Appendix E, gives the plots for the complete data 

in areas (13) and A 1 (23), and A 1 (13) and A 1 (33), In these plots, the digital 

numbers (DN) correspond to the sites in the n i  by n2  lattice, labelled by the 

first n positive integers, in lexicographic order [that is, in the ordering, site (i, j) 

precedes (i, j -4- 1) for j < n 2  and (i, n2 ) precedes (i 1,1)1. Hence, site number 

31 corresponds to site (3,1) (une 3 and column 1), in the lattice. The periodicity 
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Figure 6.7: 3-dimensional representation of the data in area A 2 (15). 

sometimes observed in these plots occurs due to the similarity of the pixel values 

at sites that are geographically dose. For instance, the pixel value at site 31 

(i = 3, j = 1) is more likely to be similar to the pixel value at site 46 (i = 4, j = 1), 
than to the value at site 45 (i=3,j=15). 

Similar plots to those displayed in Figure E.1 (a) and (b) are given in Appendix 

E for the following data: 

in areas A 1 (14) and A1 (24), and A 1 (14) and A 1 (34) - Figure E.2 (a) and (b), 
respectively; 

in areas A 1 (15) and A 1 (25), and A 1 (15) and A1 (35) - Figure E.3 (a) and (b), 
respectively; 

in areas A 1 (25) and A1(15), and A1(25) and A1(35) - Figure E.4 (a) and (b), 
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Table 6.1: Descriptive statistics of the data in areas A1 and A2, in ali sub-images 

in D1. 

Area Mean Stdev (m,M) Range 

Ai (13) 26.24 2.24 (22,35) 13 

Ai(23) 26.18 2.24 (22,35) 13 

A1(33) 22.96 2.31 (19,33) 14 

Ai (14) 55.54 6.38 (32,63) 31 

Ai (24) 59.00 7.23 (33,68) 35 

A1(34) 58.53 7.23 (34,69) 35 

A1(15) 55.85 3.71 (48,69) 21 

Ai (25) 52.44 3.19 (44,64) 20 

A1(35) _ 50.73 3.81 (43,63) 20 

A2(14) 28.25 12.34 (6, 70) 63 

A2(24) 35.68 12.50 (8, 76) 68 

A2(34) 39.26 13.68 (8,64) 56 

A2(15) 40.36 17.44 (5,89) 84 

A2(25) 41.35 14.66 (7,90) 83 

A2(35) 40.89 13.00 (7,73) 66 

respectively; 

Note, however, that these plots are more useful in the detection of global 

changes that may have occurred between different passages, rather than in the 

detection of local changes, which affect small arcas. 

From Table 6.1, it is noted that the data in area A 1  are most homogeneous 

in sub-images in band 3. This is evident from both the narrower range, and the 

lower standard deviation of the data in A 1 , in this band. Arca A1  comprises the 

portion of the wheat fields that is crossed by the road - refer to Figure 3.5. The 

largest variations between the values of the pixels that are geographically dose 

occur at the boundary between the road and the fields (the largest variation is 

6). 

The variation of the data at the boundary between the road and the fields, 

in arca A 1 (14) can be clearly seen in Figure E.2 (a) and (b). The lower values, 

between sites 120 and 285 are associated with the road. Note, from the plot, 
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that the data in the wheat fields are reasonably homogenous. In this band, there 

are usually 2 or 3 pixels in each column, which correspond to the road (and 

contaminated neighbouring pixels). 

Data in areas A i  (15) and A1 (25) are also reasonably homogeneous. The pixel 

values corresponding to the road are, in this band, higher than those associated 

to the fields, but large variations between the pixel values associated to the road, 

or those associated to the wheat fields, do no occur [the largest variation, in either 

area A1 (15) or A 1 (25) is 131. 

From Figures E.1, E.2, E.3, and E.4, in Appendix E, it can be seen that the 

objects on the ground respond similarly in band 3, from one passage to another. 

This similarity is also observed in bands 4, and 5, from which it can be inferred 

that no major changes occurred in A 1 , between the different passages. 

The similarity of the sample autocorrelations, for the data in A 1 (d3), d = 
1, 2, 3, shown in Figure 6.8 to some selected lags, also suggests that few relative 

changes on the ground may have occurred between these passages. Figure 6.8 

(e) and (f) shows that a mild anisotropy is observed on the data in A 1 (d3), for 

d= 1, 2, 3. 

The plots of the sample autocorrelations to some selected lags, for data in 

Ai  (d4), and A 1 (d5) d = 1, 2,3, are given in Figures 6.9 and 6.10, respectively. 

Again, note the similarity of the sample autocorrelation to these lags, for the data 

on ali passages, which, as for A 1  (d3), might suggest that few relative changes on 

the ground may have occurred between ali passages. 
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Figure 6.8: Sample autocorrelations for the data in area A i , in band 3, acquired at the different passages: (a) r g ,o , (b) ro,h, (c) rg,i, (d) r9 ,- 1, (e) r, (f) r2,12.7 
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Figure 6.9: Sample autocorrelations for the data in area A 1 , in band 4, acquired 
at the different passages: (a) r 9 ,0 , (b) ro,h , (c) r9 , 1 , (d) r9 ,-1, (e) rl,h, (f) r2,h, 
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Figure 6.10: Sample autocorrelations for the data in area A 1 , in band 5, acquired 
at the different passages: (a) r9 ,0 , (b) re,h , (c) r9, 1 , (d) r9 ,_ 1 , (e) ri ,h, (f) r2 ,h , 
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As for the data in bands 3 and 4, the data in area A1, in band 5, display some 

sort of anisotropy, characterized by larger values of the autocorrelations at lags 

(g, h) than at lags (g, —h). 

Area A2 is very heterogeneous, and comprises mainly sou l with intense mois-

ture, and sou with low density vegetation. 

The plots for the data in A 2 (14) and A2 (24), and in A2 (14) and A 2 (34), are 

given in Figure E.5 (a) and (b) in Appendix E, respectively. The figure shows 

that data in the top third of A2(24), and A2(34) are homogeneous, [especially 

those in A2(34)], and that there are significant differences between the data in 

the six first lines of areas A2(34) [and A 2 (24), to a lesser extent], and A 2 (14). 

The plots of the data in areas A 2 (15) and A2 (25), and in A2 (15) and A 2 (35) 

are given in Figure E.6 (a) and (b), respectively, in Appendix E. From the plot 

it can be observed that in area A 2 (25), the data in sites 1 to 90 are very ho-

mogeneous, but that from site 90 onwards, large variations occur between the 

values of the pixels that are geographically close.The pixel values in the areas of 

intense moisture are very low (vary from 7 to 19), whilst the pixel values corre-

sponding to soil with low density vegetation (shown in cyan, in Figure 6.5) vary 

from approximately 48 to 69. At the bottom left of the area, higher pixel values, 

associated with a small patch of bare sou l (shown in green), vary from 74 to 90. 

The main differences between the data in areas A 2 (15) and A2 (25) occur in 

the first six limes (from sites 1 to 90). From Figures 6.4 and 6.5 it can be seen that 

part of the area delimited by these lines, in area A 2 (15) has more moisture than 

the corresponding area in A 2 (25). This explains the lower pixel values observed 

in Figure E.6, in Appendix E, between sites 1 to 90. Note that in the rest of the 

area the data in A 2 (15) and A2(25) are similar. 

Since the features in area A2 are more pronounced in the north east direction 

- see Figure 6.7, this causes the sample autocorrelations to decay slower at lags 

(g, h), than at lags (g, --h). This is also noticed in Figures 6.11 and 6.12 [(a and 

b), (c and d)], which display the plots of the sample autocorrelations for data in 

A2(d4) and A2 (d5), d = 1,2, 3, respectively, to some selected lags. 
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Figure 6.11: Sample autocorrelations for the data in area A2, in band 4, acquired 
at the different passages: (a) r9 ,0 , (b) rO,h5 (c) 7'9,11 (d) 	(e) ri ,11, (f) r2,113 
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Figure 6.12: Sample autocorrelations for the data in area A2, in band 5, acquired 
at the different passages: (a) r 9 ,0 , (1)) ro,h, (c) rg,i, (d) r9,-1, (e) r , h, (f) r2,h, 
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6.3.3 Selected Áreas from D2 

The configuration of the missing values displayed in Figure 6.13, has been 

simulated in three sub-images from D2. In each of the three sub-images, an area 

of 25 by 25 pixels containing the missing values was extracted, as shown in Figure 

6.13, and treated independently from the rest of the sub-image. 

1 ■ 

I.  
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+ + + + + 
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+ + + + 4- -F + 
+ + + + + + + + 
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, 
- 

r r 
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Figure 6.13: Configuration of the missing sites in arcas A3 and A4. 

On two sub-images [D 2 (25) and D2 (45)], the area surrounding the missing 

sites, A3, is bounded by lines 53 and 77, and columns 61 and 85 on the original 

sub-images. The area is shown in sub-images D 2 (25) and D2 (45) in Figures 6.14 

and 6.15 , respectively. 

From these figures it can be seen that area A3 is fairly homogeneous in both 

sub-images, consisting only of low density vegetation (indicated as C, in Figure 

3.17). 

In another sub-image [D 2 (64)], the missing sites are enclosed in the area de-

limited by lines 17 and 41, and columns 1 and 25 (A 4 ) on the original sub-image. 

The arca is shown in Figure 6.16. 

Area A4 consists of low density vegetation (marked as 1 in Figure 6.16) and 

reforestation (marked as 2 in Figure 6.16). The boundary between the two types 

of land cover is drawn in the figure. 
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Let A 3 (db) and A4(db) denote the areas in sub-images from D2 acquired 

at time d, in band b, which are bounded by lines 53 and 77, and columns 61 

and 85, and by lines 17 and 41, and columns 1 and 25, respectively, where 

d = 1,2,3, 4,5,6 refers to the dates 09/09/90, 08/08/90, 20/07/89, 04/07/89, 

17/07/88, and 01/07/88, respectively, and b = 4,5 refers to bands 4 and 5, re-

spectively. 

The number of missing values in arcas A3 and A4 is 144, corresponding to 

approximately 23% of the total number of sites in each arca. 

Descriptive statistics of the data in arcas A3 and A4, in the sub-images ac-

quired at dose passages, are given in Table 6.2. The statistics are given for the 

complete data, and include the mean, standard deviation (stdev), the minimum 

and maximum [(m,M)], and the range. 

Table 6.2: Descriptive statistics of the data in arcas A3 and A4, in sub-images 

acquired at a dose passage, in the same band. 

Area Mean Stdev (m,M) Range 

A3(15) 112.81 8.44 (97, 140) 43 

A3(25) 99.39 5.68 (85, 117) 32 

A3(35) 90.67 7.84 - (75, 123) 48 

A3(45) 73.61 6.41 (60,97) 37 

A4(54) 41.12 5.27 (30,53) 23 

A4 (64) 36.89 3.35 (29,45) 16 

The correlations, rdldbm , between the complete data in areas '14 (db) and A i (eb), 

1 = 3, 4, acquired at different passages are: re/1 5 ,25  = 0.724; r45 ,45  = 0.858; and 

rd14,64 = 0.808. As for the selected areas in D 1 , the statistics for the complete, 

and the incomplete data, are similar. The maximum difference between the cor-

relations for the complete, and the incomplete data is 0.014. 

The plots of the data in arcas A 3 (15) and A3(25), and A3 (35) and A3(45) are 

given in Figures E.7 and E.8, respectively, in Appendix E. 

Data in arcas A3 (25) are very homogeneous, as can be seen from Figure E.7. 

The largest variation between the values of the pixels in the immediate neighbour-

hood of any site in the area (consisting of the sites that are adjacent horizontal, 
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vertical, and diagonal) is 9. 

Area A 3 (45) is reasonably homogeneous, but larger variations between neigh-

bouring pixels occur. For insta.nce, in the intersection of lines 22 and 23, with 

columns 1 to 5, the pixel values are as follows: 

Column 

Line 1 2 3 4 5 

Line 22 90 97 84 83 81 

Line 23 80 74 67 69 72 

Because arca A3 comprises only one type of ground cover, the differences in 

the data, observed at different pa.ssages, are possibly due to the different degrees 

of sou l moisture. Note for instance, the similar pattern of the data in Figure 

E.8, and the consistently higher radiance values in A 3 (35), rather than in A 3 (45), 

suggesting greater sou l moisture ou the passage at 20/07/89, than at 04/07/89. 

Figure 6.14: Location of area A3 in sub-image D 2 (25). 

Plots of the sample autocorrelations at some selected lags for data in A3(15) 

and A 3 (25), and A 3 (35) and A 3 (45) are given in Figures 6.17 and 6.18, respec-

tively. From Figures 6.17 and 6.18 it can be seen that 7-9 , h  rg ,_ h , which suggests 

that data in A3, is approximately isotropic, on both passages. 
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Figure 6.15: Location of ama A3 in sub-image D2 (45). 

Figure 6.16: Location of area A4 in sub-image D2 (64). 
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Figure 6.17: Sample autocorrelations for the data in arcas A3(15) and A3(25): 
(a) r9 ,0 , (b) r0 , h , (c) 7-9 , 1 , (d) r9 ,_ 1 , (e) ri , h , (f) r2 , h , g = O, . . . 8, h ---, 0,...,8. 
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Figure 6.18: Sample autocorrelations for the data in areas A3(35) and A3(45): 
(a) rg ,o , (b) roih , (c) rg , i , (d) rg ,_ i , (e) ri,h, (f) r2,h, g = 0, ... 8, h = 0,...,8. 
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The plot of the data in areas A 4 (54) and A4 (64) is given ia Figure E.9, in 

Appendix E. 

Data in area A 4(64) are very homogeneous, and despite the boundary between 

the reforested area and the sou l with low density vegetation, no contrasting vari-

ations between the pixel values occur in band 4. The largest variation between a 

pixel value associated with sou, and another associated with reforestation is 6. 

Figure E.9 also shows that data in areas A4 (54) and A4 (64) are most dissimilar 

in the last seven rows (from site 451 onward). 

The plot of the sample autocorrelations for the data in areas A 4 (54) and 

A4 (64), is given in Figure 6.19. 
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Figure 6.19: Sample autocorrelations for the data in arcas A 4 (54) and A4(64): 
(a) r9 ,0 , (b) r0 , h , (c) r9 , 1 , (d) r9,-1, (e) ri,h, (f) r2 ,h , g = O, ... 8, h = 0,..., 8. 
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6.4 Results for D 1  and D2. 

In this section, the results (numerical and visual) for ali methods are presented 

and discussed, for each simulated area from D 1  and D2. 

Whenever there is a choice of the template date to be used with the methods, 

let CL-kH denote the method that uses the higher correlated template, and CL-

kL, the method that uses the less correlated template date, k . 2, 3, 4. 

In order to visually evaluate the methods, the following information is given 

in Figures 6.20 to 6.25: 

1. (a) a frame containing: 1. the original area; 2. simulated area; test images 

for the following methods: 3. CL-1; 4. CL-2; 5. CL-3; 6. CL-4; 7. CL-5; 8. 

CL-6; and 9. CL-8. 

2. (b) a frame containing the residual images for methods: 1. CL-1; 2. CL-2; 

3. CL-3; 4. CL-4; 5. CL-5; 6. CL-6; and 7. CL-8; and 

3. (c) the frame with the difference images, using data from corresponding 

areas, in sub-images acquired in the same band, at different passages. 

Since the test images, and the residual images, are displayed in the same 

contrast, the properties of each of the methods can be examined. The visual 

results obtained for methods CL-7, CL-9, and CL-10 are not presented, due to 

their similarity with those for method CL-8. 

Although none of the photographs in this chapter include the histogram and 

the range of colours, note that yellow, in the residual images, indicate the largest 

positive residual, whereas magenta is associated with the largest negative residual. 

The range of colours is usually compressed to enhance the differences. Thus, 

yellow in one image may be associated with residuais of approximately 12 [e.g., 

those in Figure 6.21 (b)1, whilst in another image it may be associated with 

residuais of approximately 30 [e.g., those in Figure 6.25 (b)]. 

6.4.1 Results for area Al. 

Table 6.3 gives the values for SRMS, CCOR, and SRAN, for each method, in 

arca Al. 
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The values for ACC, the proportion of pixels estimated within a small error, 

are also included in the table, although not used when evaluating the overall 

performance of the methods. The error is usually assumed to be +2 grey levels, 

in area A1 (13), and +4 grey levels in areas A1(14), A i  (15) and A 1 (25). 

Table 6.3: Values for SRMS (x100), CCOR (x100), ACC (x100), and SRAN, 

on Ai(13),A 1 (14),A 1 (15), and A 1 (25). 

Methods  
Ai (13)  Ai  (14) 

SRMS CCOR ACC SRAN . 	(m,M) SRMS CCOR ACC SRAN (m,M) 
CL — 1 70 30 30 3.57 (-4, 4) 70 25 32 4.08 (-13, 13) 
CL— 2H 84 32 38 5.36 (-4, 8) 43 08 19 2.98 (-9, 10) 
CL —2L 80 31 40 3.57 (-3, 5) 64 18 34 3.61 (-9, 14) 
CL —3H 78 32 44 4.46 (-4, 6) 43 08 20 2.82 (-7, 11) 
CL —3L 75 31 43 3.12 (-4, 3) 62 18 32 3.29 (-7, 14) 
CL — 4H 94 43 52 7.14 (-5, 11) 45 09 20 3.45 (-11, 11) 
CL — 4L 91 46 52 4.02 (-5, 4) 67 20 28 4.23 (-12, 15) 
CL — 5 67 22 30 3.13 (-4, 3) 43 08 21 3.14 (-8, 12) 
CL — 6 74 26 33 3.57 (-3, 5) 47 08 23 3.14 (-10, 10) 
CL — 7 62 22 29 3.57 (-4, 4) 65 18 37 3.92 (-10, 15) 
CL — 8 62 22 31 3.13 (-4, 3) 58 15 26 4.23 (-12,15) 
CL — 9 64 23 30 3.57 (-4, 4) 65 18 36 3.92 (-10, 15) 
CL — 10 64 23 30 3.57 (-4, 4) - 	65 18 36 3.92 (-10, 15) 
Method 	II 	Ai (15) 	 1 	 Ai (25) 

CL — 1 86 61 35 4.58 (-8, 9) 87 56 20 4.08 (-8, 5) 
CL — 2H 93 47 33 6.47 (-7, 17) 92 47 21 6.58 (-14, 7) 
CL —2L 97 47 31 6.47 (-13, 11) 96 45 33 5.33 (-9, 8) 
CL — 3H 82 47 39 5.39 (-7, 13) 82 47 19 5.96 (-13, 6) 
CL —3L 82 47 30 5.12 (-8, 11) 81 45 31 4.39 (-8, 6) 
CL — 4H 90 47 38 5.93 (-8, 14) 95 47 30 6.27 (-12, 8) 
CL —4L 112 58 36 6.74 (-11, 14) 107 53 33 6.27 (-10, 10) 
CL — 5 77 40 24 5.12 (-7, 12) 76 39 18 5.33 (-11, 6) 
CL — 6 85 45 22 5.12 (-7, 12) 93 47 30 6.27 (-14, 6) 
CL — 7 81 54 29 4.31 (-11, 5) 85 52 30' 4.08 (-9, 4) 
CL — 8 92 66 37 5.93 (-13, 9) 97 57 39' 3.76 (-8, 4) 
CL — 9 82 56 30 4.31 (-11, 5) 85 51 28 4.08 (-9, 4) 
CL —  10  82 55 29 4.31 (-11, 5) 85 51 28' 4.08 (-9, 4) 

a±3 grey levels 
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Table 6.4 gives the maximum likelihood estimates of [3, of the standard devi-

ation, and the function value divided by 100, which are respectively denoted by 
and L. 

Table 6.4: L, 14, and & for methods CL-7 to CL-10, in area Al. 

Method 

A1 (13) A1 (14) 
L (3 er L A êr 

CL-7 22.18 0.2527 1.21 28.24 0.2531 2.90 
CL-8 19.77 0.2535 2.20 27.13 0.2416 2.65 
CL-9 22.01 0.2526 1.18 28.14 0.2529 2.86 

CL-10 21.84 0.2528 1.15 27.99 0.2526 2.83 
Method A1(15) A1(25) 

CL-7 26.20 0.2519 2.17 26.08 0.2462 2.16 
CL-8 24.55 0.2243 1.90 24.00 0.2134 1.85 
CL-9 25.72 0.2376 2.07 25.75 0.2244 2.13 
CL-10 25.70 0.2307 2.06 , 25.70 0.2300 2.11 

From Table 6.4 it can be noted that the results from the different methods 
are very similar, and that the value of f3 is near the boundary, possibly due to the 
presence of some features on the areas (road), which makes the data non homoge-

neous. The maximum likelihood estimates of the parameters of the second-order 

surface [that is, âoo, aio, â02, â2o, and ân ] are given below. 

1p-CART 

Area âoo  âo1 âi. O â0 2 â 20 &II. 

A1 (13) 26.30 -0.09 -0.10 0.00 0.00 0.02 
A1 (14) 59.67 -0.72 -0.07 -0.01 0.01 -0.01 
A1 (15) 57.23 -0.33 0.07 -0.01 0.01 -0.01 
A1 (25) 53.71 -0.23 -0.13 -0.05 0.00 0.03 

The estimates of the parameters of a third-order trend surface, using A 1 (13), 

[doo, doi, dii, do2, d20, d12, c, do3, a301 1  are 25.45, 0.33, -0.14, -0.07, 0.02, - 
0.00, 0.04, 0.00, and 0.00. These estimates, and those for the second-order surface 
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given above indicate that the fitted surfaces are very smooth (that is, the rneans 

are approximately constant). 

The test images, residual images, and `cut' images for methods CL-1, CL-

kH , k -= 2, ... , 6, and CL-8, for areas A 1 (13), A1(14), A1(15) and A 1 (25), are 

displayed in Figures 6.20 to 6.23, respectively. In Figure 6.20 the numbers assoei-

ated with each image (original, simulated, and the test images for each method) 

are displayed. The residual images in this figure are also numbered according to 

their corresponding methods. The same sequence of presentation is maintained 

in the other figures. 
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c 

a 

Figure 6.20: (a) 1. Original area A 1 (13); 2. Simulated 'clouded' ama; Test images 

for methods: 3. CL-1; 4. CL-2H; 5. CL-3H; 6. CL-4H; 7. CL-5; 8. CL-611; 9. 

CL-8; (b) Residual images for: 1. CL-1; 2. CL-2H; 3. CL-3H; 4. CL-4H; 5. 

CL-5; 6. CL-6H; 7. CL-8; (c) Difference images: 1. A 1 (13) — A 1 (23) (+128); 2. 

A 1 (13) — A1(33) (+128). 
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a 

c 

Figure 6.21: (a) Area A 1 (14), simulated 'clouded' area., and the test images for 

arca A 1 (14), displayed in the same order as in Figure 6.20 (a); (b) Residual 

images, displayed in the same order as in Figure 6.20 (b); (c) Difference images: 

1. A 1 (14) — A1(24) (+128); 2. A 1 (14)— A 1 (34) (+128). 
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The greater homogeneity of the data in the diference image in Figure 6.20 

c (I), relative to c (2), suggests that fewer relative changes in land cover took 

place between the passages acquired at 10/07 and 24/06, than between those 

gathered at 10/07 and 08/06 This explains why the results are usually better 

(smaller SRMS, CCOR, and SRAN) for methods CL-2L, CL-3L, and CL-4L than 

for methods CL-2H, CL-3H, and CL-4H, respectively, in area A 1 (13). 

In A1 (14), the high range of the residuais obtained for method CL-1 and for 

the purely spatial methods is due to the inability of these methods to estimate 

well the missing vaiues occurring along the road, and neighbouring arcas. 

From the sample autocorrelations for the data in A 1 (14), given in Figure 6.9 

(a) and (b), it is noted that the autocorrelations decay slower in the vertical di-

rection than in the horizontal direction, which might suggest that the use of a 

method that takes into account this particular behaviour of the data, (by weight-

ing differently the pixel values in the horizontal, and in vertical direction, for 

instance), may be more appropriate. 

From the homogeneity of the diference images in Figure 6.21 c (1) [A 1 (14)-

A1 (24)], and c (2) [A1(14)-A 1 (34)], it can be inferred that few changes occurred 

between these passages, and especially between those acquired at 10/07 and 

24/06. Note that although there exists little diference between rd1 4,24  (0.907) 

and rc/1 4 ,34  (0.859), the results obtained for methods CL-2H, CL-3H, and CL-4H 

are much better than those obtained for CL-2L, CL-3L, and CL-4L, respectively. 

This is probably due to the greater `degree' of change that took place between 

the passages acquired at 10/07 and 08/06, than between those gathered at 10/07 

and 24/06. The estimates of the missing values in sites above the road are usu-

ally better using CL-3L than CL-311 (note the more uniform difference image 

in Figure 6.21 c (2), than in c (I), in the area above the road), but are poorer 

elsewhere. Note that although the road is a permanent feature ou this area, the 

diference image in Figure 6.21 c (2) indicates that changes in response from this 

particular feature seem to have occurred, between the two passages. As previ-

ously mentioned, there are usualiy 2 to 3 pixels which correspond to the road, in 

each column of the lattice representing area A 1 (14) — see Figure 6.3.2 (area A 1  in 

band 4), and Figures 6.2 (arca A 1  in band 3), and 6.4 and 6.5 (arca A 1  in band 5). 

In fact, the pixels shown in magenta, in Figure 6.3.2 are pixels associated to the 

road, whilst those neighbouring the road, shown in cyan, represent contaminated 
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pixels (road and wheat fields). The differences shown in Figure 6.21 c (2) are 

associated to differences in response from these contaminated pixels, from one 

passage to another. 

The missing values occurring on permanent features in the area (such as roads, 

streams, etc.) are usually better estimated from methods that incorporate spatial-

temporal information, than from purely spatial methods alone. Note, for instance, 

the estimates of the missing values in A 1 (14), from purely spatial methods, and 

from methods using a template date. Observation of the test images in Figure 

6.21 (a) shows very clearly that the single band methods cannot estimate well 

the missing values occurring along the road, due to the lack of the `reasonable' 

spatial information that these methods require. The distortions introduced by 

these methods, on this particular feature in the image, are readily observed in 

the figure. 

In both areas A 1 (15) and A1(25), the purely spatial methods do not estimate 

well the missing values occurring along the road (shown in faint yellow, crossing 

the arca from top left to bottom right). Note, especially in A 1 (25), that the 

estimates of the missing values on the narrow strip corresponding to the road, 

obtained for methods CL-1 and CL-8 are smoothed, causing the corresponding 

test images to appear `blurred', as shown in Figures 6.22 (a) and 6.23 (a). 

6.4.2 Results for area A2. 

The values of SRMS, CCOR, ACC, and SRAN, for areas A 2 (14) and A 2 (15) 

are given in Table 6.5. In the computation of ACC, the error is usually assumed 

to be ±8 grey leveis for A 2 (14), and ±10 grey leveis for A 2 (15). 

233 



Table 6.5: Values of SRMS (x100), CCOR (x100), ACC (x100), and SRAN in 
area A2. 

Method  
CL — 

, Agis) SRMS CCOR ACC SRAN (m,M) SRMS CCOR ACC SRAN (m,M) 1 
CL — 2H 
CL — 2L 
CL — 3H 
CL — 3L 
CL — 4H 
CL — 4L 
CL - 5 
CL — 6 
CL — 7 
CL — 8 
CL — 9 
CL — 10 

49 
87 
89 
67 
65 
60 
59 
68 
70 
53 
48 
57 
58 

28 
51 
50 
51 
50 
36 
33 
52 
50 
31 
23 
36 
36 

32" 
48 
46 

37" 
38°  
23 
25 

39a  
37 

44" 
28" 
36a 
29 

2.43 
3.16 
3.56 
2.67 
2.67 
2.91 
2.91 
2.67 
2.83 
2.43 
2.51 
2.83 
3.07 

(-15, 15) 
(-13, 26) 
(-17, 27) 
(-12, 21) 
(-11, 22) 
(-10, 26) 
(-10, 26) 
(-12, 21) 
(-12, 23) 
(-12, 18) 
(-14, 17) 
(-12, 23) 
(-12, 26) 

61 
58 
54 
53 
44 
50 
40 
43 
49 
62 
57 
61 
61 

29 
21 
13 
21 
13 
18 
11 
13 
15 
28 
24 
26 
27 	, 

40 
43 
39 
36 
25 
37 
26 
25 
34 
47 
41 
47 
46 	, 

3.09 
3.15 
2.75 
3.03 
2.35 
3.32 
2.40 
2.29 
2.58 
3.09 
3.04 
3.04 
3.04 

(-24, 30) 
(-28, 27) 
(-25, 23) 
(-26, 27) 
(-19, 22) 
(-24, 34) 
(-19, 23) 
(-19, 21) 
(-21, 24) 
(-21, 33) 
(-25, 28) 
(-21, 32) 
(-21, 32) 

grey lereis 

Table 6.6 gives the maximum likelihood estimates of ,3 and the standard de- 
viation, and the function value divided by 100, respectively denoted by êr, and 
L. 

Table 6.6: L,Â',and'er for methods CL-7 to CL-10, in area 112. 

Method  	L 
A2(14) A2(15) 

/3 â. L A' ar 
CL-7 32.00 0.2534 5.00 34.52 0.2533 7.21 
CL-8 29.30 0.2501 4.17 31.04 0.2455 6.12 
CL-9 31.38 0.2534 4.57 33.94 0.2525 6.65 

CL-10 31.33 0.2533 4.53 33.93 0.2525 6.64 

Note, from Table 6.6, that there is only a slight gain in applying methods 
that use a trend surface with lp-CAR(1) errors (CL-9 and CL-10), than applying 

method lp-CAR, which has a constant mean. Note that due to the heterogeneity 
of the data in area A2, the estimate of the parameter fl, is dose to the boundary 
(upper limit). The estimate of (near the boundary), for methods CL-9 and 

CL-10, indicate that the data are still heterogeneous, and that the trend in the 
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data was not properly removed. 

The maximum likelihood estimates of the parameters of the second-order sur-

face are given below, for areas A 2 (14) and A 2 (15). 

lp-CART 

Área êroo  ás oi  á' 10 432 â20 (111 

-A2 ( 14) 

A2 (15) 

14.50 

38.39 

1.98 

1.23 

3.31 

—2.79 

—0.01 

—0.07 

—0.01 

0.01 

—0.16 

0.15 

The test images and the residual images, for methods CL-1, CL-kH, k 
2, ... 6 and CL-8, in areas A 2 (14) and A 2 (15) are given in Figures 6.24 and 

6.25, respectively. The test images and the residual images in these figures are 

displayed in the same order as in Figure 6.20. Note that the test images in 

Figure 6.25 correspond to the template date methods that use a lower correlated 

template (methods CL-kL, k = 2 to 6). The range of the colours in Figure 6.24 

has been compressed to [0,80] (the minimum and maximum values of the data in 

area A2 (14) is 6 and 70, respectively); whilst the range of the colours in Figure 

6.25 has been compressed to [0,112] (the minimum and maximum values of the 

data in area A 2 (15) is 5 and 89, respectively). 
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c 

Figure 625: (a) 1. Area il 2 (15); 2. Simulated 'clouded' arca; Test images for 

methods: 3. C1,-1; 1. CL-2L; 5. CL-3L; 6. CLAL; 7. CL-5; 8. CL-6L; 9. 

CL-8; (b) Residual ir-naus for: 1. CL-1; 2. CL-2L; 3. CL-3L; 4. CL-4L; 5. 

CL-5; 6. CL-6L; 7. CL-8; (c) Differenee images: 1. A2(15) — 112(25) (+128); 2. 

14 2 (15) — A 1 (35) (+128). 
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Due to the heterogeneity of the data in A2, the purely spatial methods CL-1, 

CL-7 to CL-10 were not expected to estimate well the missing values occurring in 

this area. However, due to the changes that occurred in area A 2 (14) and A2 (24), 

between the two passages, the estimates for the methods using a template date 

are in general poorer than those obtained for the single band methods. 

The test images in Figure 6.25 (a), from template date methods, are obtained 

using A2 (25) as the template, to show the high association between the areas 

where the template date methods fail, and the areas of change [as indicated in 

the difference image in Figure 6.25 c (1)] ), from one passage to another. Note, in 

this diference image, that changes occurred in the area mainly on the first 6 lines 

(area of change shown in yellow), between the passages acquired at 10/07 and 

24/06 [A2(15) and A2(25)], and also between those at 10/07 and 08/06. In this 

area of change, better estimates of the missing values are obtained for the purely 

spatial methods, than for the methods using a template date, as can be seen in 

the residual images in Figure 6.25 (b). However, the single band methods fail 

to estimate well the pixel values corresponding to the areas of intense moisture. 

Since the difference images in Figure 6.25 ( c) indicate that these boundaries are 

reasonably unchanged, from one passage and another, this explains the better 

estimates obtained for the missing values occurring in this arca using template 

date methods, than using single band methods. 

Obviously, in a real situation, the difference image is not available over the 

arcas where the missing values occur, and the decision of which template to use 

must rely solely on the observation of the difference images in the neighbourhood 

of the missing cluster. There is no certainty of which template will give the best 

estimates of the missing values, as sometimes a less correlated template may give 

better estimates than a better correlated one. 

Since method CL-5 uses information from two template dates, it may estimate 

better the missing values associated to arcas of change in one template, but which 

are not associated to change, in another. For example, the pixels shown in yellow 

and magenta, in fine 8 of the difference image displayed in Figure 6.25 c (1), 

which indicate change, from one passage to another [A 2 (15) and A2 (25)], are not 

observed in Figure 6.25 c (2). As in this arca the values of a i  and a2 , in equation 

6.4, are 0.567 and 0.556, respectively, the information from a second template 

helps to improve the accuracy of the estimates of the missing values which occur 
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over areas of change in one of the templates, but not over arcas of change, in the 

other - see Figure 6.25 b (5). 

Because data in A 2 (14) are more homogeneous than those in A 2 (15), the 

purely spatial methods perform better in A 2 (14) than in A 2 (15). The residual 

images in Figure 6.24 (b) indicate, again, the high correspondence between the 

arcas in the image where the template date methods fail, and the arcas of change, 

between one passage and another. 

6.4.3 Results for area A3. 

The values for SRMS, CCOR, ACC, SRAN, and the range for the residuais 

are given in Table 6.7, for ali methods, on area A3. In the computation of ACC, 

the error is usually assumed to be ±4 and ±3 grey leveis, in areas A 3(25) and 

A3(45), respectively. 

Table 6.8 gives the maximum likelihood estimates of j3 and the standard de-

viation, and the function value, respectively denoted by 'g, á'. , and L. 
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Table 6.7: Values of SRMS (x100), CCOR (x100), ACC (x100), and SRAN in 
area A3. 

Method 

A3(25) A3(45) 

SRMS CCOR ACC SRAN (m,M) SRMS CCOR ACC SRAN (m,M) 
CL - 1 58 13 31 2.46 ( -8,6) 33 7 24 2.02 (-7, 6) 
CL - 2 68 23 38 3.52 (-10,10) 36 7 25 2.02 (-7, 6) 
CL - 3 66 23 43 2.81 (-10,6) 32 7 21 1.71 (-6, 5) 
CL - 4 70 30 43 4.04 (-10,13) 32 6 20 1.71 (-7,4) 
CL - 6 64 19 43 2.81 (-10,6) 31 6 22 1.56 (-6,4) 
CL - 7 48 13 15 1.76 (-5, 5) 34 5 22 1.56 (-5, 5) 
CL - 8 51 15 25 2.11 (-8,4) 34 7 24 1.87 (-8,4) 
CL - 9 49 13 25 2.28 (-8,3) 3.5 6 20 1.71 (-8, 3) 
CL - 10 49 12 25 2.28 (-8, 3) 35 6 20 1.71 (-8, 3) 

Table 6.8: L,A,andâ for methods CL-7 to CL-10, in area A3. 

A3 (25) A3 (45) 
Method L ,â á' L ô- 

CL-7 52.80 0.2517 2.45 53.42 0.2517 2.58 
CL-8 51.02 0.2368 2.19 50.01 0.2486 1.80 
CL-9 52.24 0.2516 2.35 50.17 0.2516 1.99 

CL-10 51.47 0.2517 2.30 50.14 0.2517 1.98 
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The estimates of the parameters of the second-order surface, using data in 

A3(25) and A3 (45) are given below. 

lp-CART 

Area ii00 c'ioi âio â02 &20 âll 

' A3(25) 

A3(45) 

98.93 

83.39 

0.83 

0.85 

—0.49 

—2.21 

0.01 

0.01 

—0.03 

—0.04 

0.01 

0.06 

As for areas A 1 , the estimates given above for the second-order surface indicate 

that the surfaces are very flat, and hence the results obtained for methods CL-7, 

CL-9, and CL-10 are ali similar (there is only a slight improvement from the use of 

a third-order surface). The estimates of the parameter fi, ali near the boundary, 

indicate a possible trend in the data, which could not be properly removed using 

trend surface analysis. The results in Table 6.8 also indicate that the methods 

are very similar, with a slight gain from the use of a 1p-SAR. 

The test images and the residual images, for methods CL-1 to CL-4, CL-6, 

and CL-8, are given in Figures 6.26 and 6.27, for A 3 (25) and A3(45), respectively. 
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a 

Figure 6.26: (a) 1. Original area A 3 (25); 2. Simulated 'clouded' area; Test images 

for methods: 3. CL-1; 4. CL-2; 5, CL-3; 6. CL-4; 7. CL-6; and 8. CL-8; (b) 

Residual images for: 1. CL-1; 2. CL-2; 3. CL-3; 4. CL-4; 5. CL-6; and 6. CL-8; 

(c) 1. A3 (25); 2. A 3 (15); 3. A3 (25) — A3 (15) (-1-128). 
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a 

c 

Figure 6.27: (a) Test images for arca A 3 (45), displayed in the same order as in 

Figure 6.26 (a); (b) Residual images, displayed in the same order as in Figure 

6.26 (b); (c) 1. A 3 (45); 2. A 3 (35); 3. A3(45) — A3(35) (+128) 

243 



From Figure 6.26 (c) and Figure E.7 in Appendix E, it can be noted that some 

differences in the land cover exist between areas A 3(15) (acquired at 09/09/90) 
and A3 (25) (acquired at 08/08/90), especially between tines 20 and 25, and 

columns 1 to 5. This explains the greater concentration of values estimated 

with greater error in this area, for methods using a ternplate date. Note that 

due to the similarity of the pixel values in the area bounded by the above lines 

and columns, the purely spatial methods are able to estimate well the missing 

values in the area. However, because of the dissimilarity of the information on 

neighbouring areas to the one indicated by the arrow in Figure 6.26 c (1) (pixels 

in cyan, surrounded by pixels in magenta), methods CL-1 and CL-7 to CL-10 do 

not estimate well the missing pixel values that occur in that small area (6 pixels). 

Since the data in area A3 (45) are reasonably homogeneous, and as there are 

few differences between areas A3(45) (acquired at 04/07/88) and A 3 (35) (acquired 
at 20/07/88) - refer to Figure E.8, ali the methods estimate the missing values 

reasonably well. The largest (positive) residuais, for the purely spatial methods, 

occur in line 22. As mentioned in §6.3, in the description of this area, large 

variations between neighbouring pixels occur at the intersection of lines 22 and 

23, with columns 1 to 5. As missing values are simulated to occur in Ene 22, 

it is expected that the purely spatial methods, especially those that use spatial 

modelling, do not estimate these values well. The largest residual for method 

CL-1 is 7, and is associated to the first missing pixel in line 22 (column 3). 

6.4.4 Results for area Azi• 

The values for SRMS, CCOR, ACC, and SRAN, for all methods, are given 

in Table 6.9, for area A4. In the computation of ACC, the error usually assumed 

was ±2 grey leveis. 

Table 6.10 gives the maximum likelihood estimates of 8 and the standard 

deviation, and of the function value divided by 100, respectively denoted by /j, 

and L. 

The results in Table 6.10 indicate, again, the similar performance of the meth-

ods, with only a marginal improvement of the method using a lp-SAR(1) model, 

with respect to the other methods using spatial modelling. The estimates of the 

parameters of the second-order surface, that is,;à âcn, â025 â20, and lin ] 
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Table 6.9: Values of SRMS (x100), CCOR (x100), ACC (x100), and SRAN in 
area A4. 

A4 (64) 

Method SRMS CCOR ACC SRAN (m,M) 

CL — 1 73 27 59 3.58 (-7,5) 

CL — 2 63 19 51 2.98 (-5,5) 

CL — 3 61 19 58 2.68 (-5,4) 

CL — 4 68 24 49 3.88 (-6,7) 

CL — 6 58 17 52 2.68 (-4,5) 

CL — 7 60 19 47 2.98 (-7,3) 

CL — 8 68 22 47 3.58 (-6,6) 

CL — 9 63 19 50 2.98 (-5,5) 

CL — 10 65 21 55 	, 2.98 (-5,5) 

Table 6.10: L, iá‘, and er for rnethods CL-7 to CL-10, in area A4. 

A4 (64) 
Method L 14 â 

CL-7 46.58 0.2517 1.50 
CL-8 41.71 0.2356 1.23 
CL-9 45.54 0.2511 1.38 

CL-10 45.00 0.2513 1.33 

are 39.07, -0.07, -0.52, 0.01, 0.01, and 0.01, respectively. Note again that the 
estimate of the parameter (3, for ali methods, is near the upper limit, possibly 
due to the heterogeneity of the data in the area, as can be observed from Figure 
6.28. 

The test images and the residual images for methods CL-1, to CL-6, and CL-8, 
are given in Figure 6.28 (a) and (b), for A 4 (45). The photographs are presented 
in the same order as those in Figure 6.26. 
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a 

c 

Figure 6.28: (a) Area A4 (25), simulated arca, and the test ima.ges for arca A 4 (25), 

displayed in the same order as in Figure 6.26 (a); (b) Residual images, displayed in 

the same order as in Figure 6.26 (b); (c) 1. A 4 (45); 2. A 4 (35); 3. A 4 (45) — A 4 (35) 

(+128) 

246 



The range of colours in Figure 6.28 (a) has been adjusted (from 24 to 56) to 

be approximately the same as the range of the data in the area (the minimum 

and maximum values are 29 and 45, respectively), to enhance the differences 

between the two types of ground cover in the area (see Figure 6.16). The failure 

of the purely spatial methods to estimate the missing values occurring at the 

boundary between the sou l with low density vegetation, and the reforested area 

is very clear from this figure. The residual pixel shown in magenta, in Figure 

6.28 b (1) and b (6) corresponds to the pixel indicated by the arrow, in (a) (note 

that the value of this pixel is not similar to any of its immediate neighbours 

(sites that are adjacent horizontal, vertical or diagonal to it). From Figure 6.28 

(b), the association between the areas of change, and the failure of the methods 

that use a template date can again be observed. Although, numerically, there is 

not a significant improvement in the performance of the template date methods, 

over the purely spatial methods, at least visually they are far superior, since they 

preserve ‘intact' the boundaries between the areas of sou l and reforestation. 

6.5 Summary of Results 

In order to evaluate the methods, an approach similar to that used in Chapter 

4 and Chapter 5 is also implemented here. Hence, ranks from 1 to 13 are assigned 

to each method, for each measure, on each of the 6 simulated 'clouded' areas from 

D1 . Similarly, ranks from 1 to 9 are formed for the methods that are applied to 

the areas chosen from D2. By averaging these individual ranks, an average rank 

is obtained for each methods, for each measure. This average rank indicates the 

average performance of the method, for a given measure. 

The average ranks (AR) of each method, for SRMS, CCOR, and SRAN are 

given in Table 6.11, for D 1  and D2. 
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Table 6.11: Average ranks of the methods, for RMS, CCOR, and RAN, for the 
simulated areas from D1, and D2. 

• 
Di 

SRMS CCOR SRAN 
Method AR Method AR Method AR 

CL-5 3.50 CL-5 3.75 CL-5 4.17 
CL-3L 5.50 CL-6 4.83 CL-3L 4.33 
CL-7 5.67 CL-3L 6.33 CL-7 5.50 

CL-31.1 6.00 --- CL-2L 6.33 CL-8 5.67 
CL-9 6.25 CL-4H 7.00 CL-9 5.92 

CL-10 6.42 CL-3H 7.08 CL-1 6.17 
CL-8 6.50 CL-2H 7.08 CL-10 6.50 
CL-6 . 7.17 CL-7 7.17 CL-6 6.58 
CL-1 7.67 CL-8 7.42 CL-3H 7.17 

CL-4H 8.00 CL-9 7.67 CL-2L 8.42 
CL-2H 8.67 CL-10 7.83 CL-4L 9.83 
CL-4L 9.50 CL-4L 8.67 CL-4H 10.33 
CL-2L 10.17 CL-1 9.83 CL-211 10.42 

D2 

SRMS CCOR SRAN 
Method AR Method AR Method AR 

CL-6 2.67 CL-7 2.50 CL-7 2.50 
CL-7 2.83 CL-9 3.33 CL-9 3.50 
CL-3 4.17 CL-6 3.50 CL-6 4.00 
CL-9 4.83 CL-10 3.50 CL-10 4.00 . 

CL-10 5.33 CL-3 5.50 CL-3 5.00 
CL-8 5.67 CL-2 5.50 CL-2 6.33 
CL-1 6.00 CL-8 6.50 CL-8 6.67 
CL-4 6.33 CL-1 6.50 CL-1 6.67 
CL-2 7.17 CL-4 6.83 CL-4 7.00 
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From the average ranks in Table 6.11 it can be noted that ali methods are 

reasonably consistent for the 3 measures, in the second data set (the maximum 

difference between the average rank of any method, for any two measures, does not 

exceed 2.0). For the first data set, the methods in Table 6.11 are also reasonably 

consistent for the 3 measures. The maximum difference between the average 

ranks of any method, for any two measures, is 3.8. 

In order to clarify the overall performance of the methods, in each data set, 

new ranks are formed for the methods, a,ccording to their position on Table 6.11 

(rank 1 for the method at the top). These 3 new ranks (one for each measure) are 

then averaged, to give the results in Table 6.12, where i a  and 3 7.a  are the mean 

a,nd standard deviation of the new ranks. 

Table 6.12: Mean and standard deviation of the new ranks assigned to the meth-

ods, for SRMS, CCOR, and SRAN: D 1 (15) and D2(15). 

Dl D2 

Method -I', sr. Method fa 	I 	sra  

CL - 5 1.00 0.00 CL - 7 1.33 0.58 

CL - 3L 2.50 - 0.87 CL - 6 2.33 1.16 

CL - 7 4.67 2.89 . CL - 9 2.67 1.16 

CL - 6 6.00 3.46 CL - 10 4.33 0.58 

CL - 3H 6.50 2.50 CL - 3 4.33 1.16 

CL - 8 6.67 2.52 CL - 8 6.67 0.58 

CL - 9 6.67 2.89 CL - 2 7.00 1.73 ' 

CL - 10 8.00 2.65 CL - 1 -  7.67 0.58 

CL - 2L 8.83 4.86 CL - 4 8.67 0.58 

CL - 4H 9.00 3.61 

' CL - 1 9.33 3.51 

CL - 2H 10.17 3.33 

CL - 4L 11.67 , 0.58 

From the results in Tables 6.11 and 6.12 it can be seen that method CL-1 

does not perform well, on average, for any of the measures. One of the reasons to 

justify this poor performance is the fact that most of the areas where the missing 

values have been simulated feature particular structures that do not favour the 
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purely spatial methods — refer, for instance, to Figures 6.21 and 6.28. Also, the 

fa,ct that, in general, few changes occurred in the selected arcas, between the 

passages where the missing values are simulated, and the template dates, suggest 

a good performance of methods that incorporate the temporal information. 

It can also be noted from Table 6.12 that method CL-5 performs consistently 

better than the other methods, for the three measures. Since, in general, no 

significant changes occur between the selected arcas from D i , from one passage 

to another, the estimates of the parameters for this method (a i  and a2 , in equation 

6.4) are, in general, similar. Hence, the estimates of the missing values occurring 

in areas of change, in one template, which do not correspond to areas of change, 

in the second template, are `smoothed' from the contribution of this additional 

template, whose data are more similar to those in the original sub-image. 

As in Chapter 4, a poor performance of methods CL-2 and CL-3 (which 

correspond to methods TD-1 and TD-4, in that chapter, respectively) is expected 

when the missing values occur over areas where changes have occurred between 

the original sub-image and the template date. It is also expected that whenever 

the original sub-image and the template are not well correlated, the estimates of 

the missing values will closely resamble the corresponding values in the template 

image. This is also expected from methods CL-5, (especially if the missing values 

occur in areas of change in both templates), CL-4 (which uses the estimates from 

CL-3), and CL-6. 

From the observation of the visual results presented in section 5.4, it can 

be seen that the purely spatial methods do not perform well in heterogenous 

arcas, in particular at the boundaries between different types (classes) of land 

cover that have contrasting responses. As the estimate of a missing value, from 

CL-1, is obtained by averaging only the information from two of its immediate 

neighbours, it is very sensitive to the occurrance of 'local' changes (such as those 

indicated in page 218, for A 3 (45). As method CL-1 estimates the missing values 

sequentially, a `poor' estimate of a missing value may also affect the estimates of 

subsequent missing values. 

The results for the methods using a second- or a third-order trend surface with 

lp-CAR errors are similar to those obtained for the lp-CAR. Since the simulated 

missing clusters are enclosed in relatively small lattices, and since the missing 

values, in the first iteration of the method of maximum likelihood, are replaced 
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by the mean of the remaining value in the lattice, then it was not expected that 

these methods would have better estimates of the missing values than method 

1p-CAR. 

Since the methods that use spatial modelling include information from a much 

larger number of pixels, the effect of the occurrance of very 'local' changes may not 

be as pronounced as for CL-1. Note, however, that unlike in Chapter 4, when the 

information from the line above, and the line below the missing one, was assumed 

to be intact, in the case of clusters of missing, this may not be the case. Since 

the purely spatial methods estimate a missing value by weighting the information 

carried by its neighbours, it is fundamental that its value be similar to those in its 

neighbourhood (especially its adjacent horizontal and vertical neighbours, whose 

information is more heavily weighted). Since the methods using spatial modelling 

average the information from a larger number of pixels than CL-1, they usually 

perform better in homogeneous areas than CL-1, as indicated in Tables 6.3, 6.7 

and 6.9). 

In heterogenous areas the single band methods do not perform well, and there 

is not much difference in the results obtained for CL-1, or the methods that use 

spatial modelling. Depending on the nature of the structures on the area, the 

methods that incorporate information from a template date may improve the 

accuracy of the estimates that are obtained from these methods. Good estimates 

of the missing values that occur over specific permanent features in the area (such 

as roads, boundaries between agricultural plots, boundaries between reforested 

areas and other types of land use, etc.) are usually obtained from the application 

of methods that incorporate information from another passage. However, if the 

missing values occur over areas of change, from one passage to another, then 

better results may be obtained from single band methods. 

Unfortunately, the amount and degree of change that has taken place between 

two passages is only known if none of the images is affected by cloud. Otherwise, 

this information is missing over the 'cloudy' patches, and there is no way to access 

if differences occurred or not, between the two dates of image acquisition. Hence, 

it is not possible to say if the estimates for the methods that use a template date 

will be better than those for the methods that use only the spatial information. 

For small areas of cloud cover, observation of the changes in the areas surrounding 

the missing cluster may be useful, and may indicate if changes occurred or not 
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over the clouded area. 

6.6 Conclusions 

This chapter concerned the estimation of missing values occurring in small 

clusters, as if arising from the presence of small, thick, clouds. Since the estima-

tion of missing remotely sensed data of this nature has deserved little attention 

in the literature, this investigation may bring some light into the sort of results 

that may be expected from the application of simple methods, as well as more 

sophisticated ones. 

Good estimates of missing values occurring in reasonably homogeneous areas 

can be obtained from the purely spatial methods, as large 'local' variations are 

not expected to occur. Also, considering the form of spatial interpolation of the 

methods using spatial modelling, and that of method CL-1, a better performance 

of the former methods may be expected. However, the estimates of the missing 

values in heterogenous areas, and at the boundaries between areas of contrasting 

response, from the single band methods proposed here, are not expected to be 

good. In this case, the information from another passage can be very useful and 

relevant, if few changes occur in the area affected by cloud, from one passage to 

another. 

In the case of missing values from line drop, the occurrence of changes, 

from one passage to another, can be reasonably deduced from observation of 

the changes in the area neighbouring the missing lines. Then, the adequacy of 

the use of methods that incorporate information from another date could be as-

sessed. However, over areas of extensive cloud cover, the differences in land cover, 

between the passages cannot be reasonably assessed, and it is difficult to decide 

if the use of template date methods is adequate or not. 

The effect of the choice of the area that encloses the missing cluster, on the 

estimates obtained for the template date methods, and on the estimates of the 

parameters of the trend surface in method lp-CART has not been investigated. 

However, since the results for the template date methods in Chapter 4 indicated 

that, in general, better estimates of the missing values are obtained using data 

from a neighbourhood of the missing line, instead of the data from the entire 

image, it seems that this will aliso be the case here. However, this should be 
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further investigated, particularly on the possible effects of different sizes of the 

enclosing area, on the estimates of the trend surface. 

Considering again the form of spatial interpolation implied by the purely 

spatial methods, these methods are not expected to estimate well the missing 

values occurring in large, compact, clusters. The presence of some 'holes' in the 

configuration of large clusters of missing values may improve the estimates of the 

missing values. However, since the pixel values associated to pixels in the `hole' 

may be contaminated by the cloud (in which case they do not refiect the true 

radiance value of the features on the area on the ground), it is doubtfull if their 

information will improve significantly the estimates of the missing values. 
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Chapter 7 

Information Loss on the 

Parameters for Spatial Processes 

7.1 Introduction 

In this chapter, the formulae are given for the Fisher information loss on 

parameters for the mean and variance of a Gaussian univariate process occurring 

on a rectangular lattice, when there are missing values in the data. 

Since there has been interest to advance statistical theory ou the loss of infor-

mation when some sites are unobserved (Haining et al., 1989, Martin, 1989), it 

seems relevant to include results for processes other than the one-parameter first-

order conditional autoregressive process, which has been the focus of attention in 

Haining et al. (1989), and Martin (1989). 

The loss of information ou the mean for the one-parameter first-order CAR 

when observations are missing from a regular rectangular lattice has been dis-

cussed numerically by Haining, Griffith, and Bennett (1989), assuming that the 

process has a constant mean. Martin (1989) has then deduced the general formu-

lae for the loss on the mean and on the dependence parameter )3 for any process 

defined by its inverse covariance matrix. He also provides an approximate formu-

lae for the loss for the specific case of the 1p-CAR(1) with contant mean. Some 

of those results are also given in Martin (1990b). 

Krug & Martin (1991b) generalize the results in Martin (1989) and produce 

the exact as well as the approximate formulae for the loss of information ou a con-

stant mean for general conditional autoregressive and simultaneous autoregressive 
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processes. 

The need to develop approximate formulae for the loss arises from the fact 

that the exact formulae generally requires the inversion of a matrix, which is 

only feasible algebraically for a small number of missing values. Besides, approx-

imation formulae can also give a very useful insight into the effects of different 

conflgurations on the loss, something that would otherwise require extensive nu-

merical evaluation to be achieved. 

Some notation in introduced in section 7.2, and in sections 7.3 to 7.5 the loss 

of information on processes with a constant mean is considered. The material in 

these sections is essentially that in Krug & Martin (1991b). 

As the formulae given in these sections are only valid when the missing sites 

are interior ones, section 7.6 investigates the appropriateness of their use when 

this assumption is relaxed, and some, or ali the missing sites lie on the boundary 

of the lattice. This investigation is carried out for a lp-CAR(1) and a 2p-CAR(2) 

processes. The influence of the number of missing sites on the loss of information 

on p is also tackled in section 7.6. Section 7.7 discusses the loss of information on 

the dependence parameter /3, giving results for a lp-CAR(1) process when m = 4 

and m = 5, and stationarity is assumed. 

7.2 Notation 

Let .4,0{S(u)} denote the Fisher information on the parameters and O from 

the sites S(u) at which the observations u are collected. 

The Fisher information on the parameters yb and O is the expected value 

of minus the second derivative, with respect to (k and O, of the log likelihood. 

From the inverse of the information matrix, the asymptotic covariance matrix of 

the maximum likelihood estimators of the parameters can be found. Mardia Sz 

Marshall (1984), and Martin (1984) give the formulae for the information loss on 

the parameters for the mean and variance of a Gaussian process, when data are 

available at ali sites where observations are made. 

Assume that the n observations have a constant mean p and that the n-vector 

u is normally distributed "..t1„,Vcr2 ) where a2  is a scale parameter, and 
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V = o'var(u) is the scaled dispersion matrix of u, which depends on the 

vector (p. If the vector u contains missing observations let it be reordered so that 

= (y, z) where y is the (n — m)-vector of observed values, and z is the m-vector 

of non-observed values. Let S(z) be the set of missing sites. 

Denote by L 4,{rn, S(z)} the loss of information on 0, for a given configuration 

of the missing sites. The loss is /00{S(u)} — /954,{S(y)}. 

Define m k  to be the number of pairs of sites in S(z) that are lag k apart, with 

mo  = rn and m_k rrtk . A (two-step) directed (k, 1) path is said to exist between 

sites i and j in S(z) if there exists a site r in S(z) such that i k = r and 

r / = j. Denote by pk,i the number of directed (k, I) paths in S(z). Then 

pki  = p_i,_k  for any k and /, and pk,_k = 712k. 

The definitions of the lag k neighbour matrices Wk and Tk given in Chapter 

5 (§5.2) are required herein. Let (W k )z, denote the submatrix of Wk corre-

sponding to the missing sites S(z). For the approximation formulae the sum of 

the elements in certain (z, z) submatrices is required. Now 1, 7,' (Tk) zz lm  = rnk, 

(T k)zz(Tz)zzl,n = Pk,l, and 1(TkTi)„1,,, = 	It then follows that 

(Wk) zz lm  = 2rnk , 	 (7.1) 

imi  (Wk)zz(W1)zzlm = Pk,l+ Pk,-1+ Pl,k P-1,k 	 (7.2) 

(W Wi)„i m  2(Mi-k rni+k)• 	 (7.3) 

7.3 Loss of Information on 

7.3.1 Introduction 

In this section, the exact and the approximate formulae for the loss of 

information on h, for the general CAR and general SAR processes are given. 

The loss of information on j due to the m missing values at sites in S(z), de-
noted L Árn, S(z)} , follows from theorem 2.1 in Martin (1989), which states that 

for a general process N (AO ,V o- 2 ) the loss of information on is given by 

Li {m, S(z)}.5,2  = 	- A'ynyl Ay  
(7.4) 

= (A, - V,yV;JAy )1 V"(A2  V,InvlAy ) 
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For a process with constant mean, AO = /21 and equation 7.4 becomes 

iinv-1  — 	= vzz(
vzz )- 1 vzx 	ci (vzz )- 1 c. 	(7.5) 

for c = 

In ali cases considered until §7.6, e = V1 = al„ and 

,{m, S(z)}a 2  = a2 1:(V") -1 1,,, 	 (7.6) 

Let L*p {m, S(z)} = L „{m, S(z)}a2  a2  = 1(V2Z) -1 1„ be the scaled loss of 

information on the mean 

From equation 7.5 it is seen that the exact loss of information on p requires 

the inversion of V", which is only feasible for small m. However, Martin (1989) 

notes that there are three situations when this inversion is not needed: 

(i) when V" has constant row sums, so that 1, is an eigenvector of Vzz, i.e. 

V"1„ = €l„. The scaled loss is then 	S(z)} = m/e. 

(ii) the missing sites can be reordered so that V" is block diagonal. In this 

case 4{m, S(z)} E L7{mi , S(z i )} where S(z) = U,S(zi) and zi is the compo-

nent for the i th  group. The groups are then said to be isolated. 

(iii) a recursive formula can be used to obtain the loss from the formula for a 

subset of S(z) - see Martin (1989, p. 4634). For some configurations this method 

can be very useful when the subset is chosen appropriately. 

When analytic inversion of V" is not feasible, an approximation to the loss 

may be useful. This can be found if an approximation to (Vzz) - ' is avail-

able. When V" is of the form I — A and g, the largest absolute value of the 

eigenvalues of A, is less than one, (V") -1  = (I — A) -1  can be expanded as 

I A + A2  -I- . If g is small, (Vzz) -1. can be approximated by the first few 

terms. The approximations below use (V")-1 	+ A + Az .  
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7.3.2 Loss on p for the general CAR process 

A definition for CAR and SAR processes has been given in Chapter 5, (§5.3 

to §5.5), along with their stationarity conditions. 

Assume henceforth, unless otherwise stated, that the sites in S(z) are ali 

interior sites and that the stationarity conditions are satisfied. This ensures that 

c -. V1,,, = alm , where a is constant for each process, and that the results do 

not depend on the boundary assumptions. Another consequence is that the loss 

does not depend on the actual sites in S(z), but only on the configuration of the 

missing sites. Provided the sites remain interior sites, the loss is unchanged when 

the missing sites are translated, or reflected horizontally or vertically. 

The approximate formula for the loss for the general CAR, for low values 

of the 1 flk  I, is found using the expansion of (V") -1  = {In, — E 
which, restricted to terms up to second-order in the parameters is given by 

Im  + E fik(Wk). + E E PisA(wk)zz(Wr).. 

Hence, using results 7.1 and 7.2, L {m, S(z)} P- .5 

m +2 E mok  + E 2(pk ,k  +m? 4. 5-- \---( _i_ rak,„ . z_, z_,,pk,/ , Pk,--i + Pl,k + P-1,k)fik131- ( 7 . 7) 
k 	 k 	 10k 

Note that in the double summation [3k9, occurs twice. For any arbitrary 

ordering of the vectors in K, this sum can be re-expressed as 2 E Ei>k(Pk,/ + 
Pk,--1 + pi,k + p_i,k)04. A similar remark holds for equations 7.8 and 7.9. 

Some examples of exact formulae are now given. Firstly, when m = 1, 

L7,{1, S(z)} = 1. Secondly, some general examples when 1,„ is an eigenvector of 

V" (see 7.3.1) are: 

(i) m = 2 and the two missing sites are lag k apart: L{2, S(z)} = 2/(1 — 

Thus there are as many different values for the loss when m = 2, and hence 

as many essentially different configurations, as there are different values of fi k  

(including O). 

(ii) m = 4 and each missing site is in a comer of a rectangle with sides de-

fined by vectors k 1  and k2 : L*4 {4, S(z)} = 4/(row sum of V") = 

4/(1 — felk i  — 1(3k2 - 13ki-i-k2) ,  for any d> 2, provided ,8k 1 +k2  = 19k1-k2- 
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(iii) m = 8 and each missing site is in a comer of a block with sides defined 

by vectors k1 , k2 , k3: L*4 {8, S (z)} = 8/(row sum of V"), for any d > 3, provided 

= fik.-k, for i,j = 1,2,3 and the 0±k1Ik2±k3  are equal. 

(iv) m = 8, d = 2, and each missing site is the vertex of an octagon of 

sides s and sV"i and vertices, after translation, of (O, O), (8,0), (28, s), (28,2s), 

(8,3s), (0,3s), (-8,2s), (—s, s): L*1,{m, 5(z)) = Mrow sum of V"), provided 

the fik  occurring in V" only depend on the squared distance k. 

7.3.3 Loss on p for the general SAR process 

The first approach to find the loss of information on p for a SAR process 

comes from its corresponding CAR representation, as already introduced in §5.3 

in Chapter 5. 

If V" is taken as b{I,, — EkE K:  /37,(Wk ) 22 } and b-1. as approximately 1 — 

EkEK,  /32, then, substituting for the 3 in equation 7.7, and neglecting terms 

above second order in the 13k , gives the approximation to S(z)} 
Alternatively, 4{m, S(z)} = 	(V") -1 1, can be found directly from the 

expansion of (Vzz) -1  which up to second-order in the parameters is 

I + E ,6k(Wk)z. + E E fik0:{(Wk)2z(Wi)zz - (TikTi)..} 
for ali sums ranging over K„, and assuming that the expansion is valid. 

Either method leads to L{m, S (z)} being approximately 

m 2 E mkOk + E{2(Pk,k + mk) - rn}OZ (7.8) 
+ E Eiok{(Pk,1 + Pk,-1 Pl,k P-1,k) ink-1} 

for low 1 fik  I, where ali sums are over K8 . 

If m = 1 then L7,{1, S(z)} = b. 	Recai! also that if 1,n, is an eigen- 

vector of V", then the loss can be found directly. 	In particular, when 

m = 2, L{2, S(z)} = 2/(row sum of V"). Other results follow from those 

in subsection 7.3.2 for the CAR. 

7.3.4 The case of the symmetric SAR process 

For the symmetric SAR, V" is 

I - 2 E fik(Wk). + E E fikfil(WkW/). 
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and the expansion of its inverse, to second order terms in the parameters is 

I + 2 E Ok(wk)zz + E E 001{4(W k ) zz (W 1 )2z  — (W kW i) z ,} . 

Then, directly, using results 7.1, 7.2, and 7.3, or using equation 7.8, gives 

for low I fik I that L*m {m, S (z)} gr.: 

m + 4 E nikfik + 2  E{ 4(Pk,k -1-  mk) — (7n + 7n2k)}fil, 
(7.9) 

-I- 2 E E1o,{2(p, /  + pk,_i -I- pu + p_i,k) — (mk +i -I- mk_i)}fikfii. 

7.4 Application to some conditional autoregres-

sive processes 

In sections 7.4 and 7.5, some particular cases are considered when data are miss-

ing from a two-dimensional n i  by n2  rectangular lattice. The approximation for 

the loss of information on the mean II for the cases of the two-parameter first-order 

and a two-parameter second-order CAR are presented in this section. The exact 

results and the corresponding approximations are given for the one-parameter 

first-order CAR when m.5, and for the two-parameter first-order CAR when 

m=4. 

For the first- and second-order CAR processes discussed here a site i is interior 

if it is not in the outer layer of the rectangular lattice, i.e. if it is not in the first 

or last row, or in the first or last column of the lattice. 

7.4.1 Notation 

For simplicity, a different notation is introduced for sections 7.4 and 7.5. Some 

notation introduced in Chapter 5 is also used here. 

Let /h, denote the number of pairs of sites separated by lags ±h and ±v. Then 

110+ loi  is equal to mi  in Martin (1989). Also, /ho  = mk for k = (h, 0), lov = mk 
for k = (O, v), and /hi, = mk + mi for k = (h, v) and / -, (h, —v) when h , v O. 

Define ph = Pkje  for k = (1,0) and pv = Pk,k for k = (0, 1) as the number of 

non-returning paths obtained respectively from two horizontal unit links and from 

two vertical unit links. Let pd be the number of paths involving one horizontal 

and one vertical unit link. Then Pd = pk,i + Pk,-1 + Pl,k + p_i,k for k = (1,0) 
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and 1 = (O, 1) is the sum of the elements of the (z, z) submatrix of U/hUiv  - see 

equation 7.2. Denote by p t  the sum of ph and pv . Note that pt  pd is equal to 

m2  used by Martin (1989). 

Let pdd denote the number of paths formed by two diagonal links and let Pb 

be the number of paths involving one diagonal and one horizontal (or vertical) 

link. Then pdd = Pk,k Pk,1 Pk,--1 pi,k + + p1,1 where k = (1,1) and 1 = 
(-1, 1), and pb is the sum of the elements of the (z, z) submatrix of U1 U2, which 

can be expressed in terms of the pk,/ using equation 7.2. 

Two examples, referred to in subsections 7.4.4 and 7.5.2, are given below. 

Example 7.1 

Consider the 'T' shaped configuration for m = 5, numbered ( 1 :3  . Here, lio = 
5 

2 [1 — 2,2 — 3] , 101 = 2 [2 — 4,4 — 5] ,l = 2 [1 — 4,3 — 4], 

= 2 [1 — 2 — 3,2 — 4 — 5] ,pd = 2 El — 2 — 4,3 — 2 — 4] , pdd  = 1[1 — 4 — 3] 

and pb = 6 [1 — 4 — 5,3 — 4 — 5,1 — 4 — 2,2 — 1 — 4,2 — 3 — 4,2 — 4 — 3]. 

Note that the configuration 	1 : 	contributes 1 to pd [1 — 2 — 4] and 2 to Pb 

[1 — 4 — 2 , 2 — 1 — 4]. 

Example 7.2 

For this configuration the number of pairs and paths are: 

110 = 3 [1 — 2,2 — 3,5 — 6] , 101 = 1 [1 — 4] , = 2 [2 — 4,4 — 5], 120 = 1 [1 — 3] , 
102  = 2 [2 — 5,3 — 6] , 112 = 3 [1 — 5,2 — 6,3 — 5] , 121 = 2 [3 — 4,4 — 6] , 

/22 = 1 [1 — 6] ,pt  = 1 [1 — 2 — 3] , pd = 1 [2 — 1 — 	 , pdd = 1 [2 — 4 — 5] and 

Pb = 5 [ 1  — 4 — 5,4 — 5 — 6, 3 — 2 — 4,2 — 4 — 1, 1 — 2 — 4]. 

7.4.2 One-parameter first-order CAR 

The one-parameter first-order CAR has one parameter for its horizontally and 

vertically adjacent neighbours. It is defined by V -1  = — flUi . The stationarity 

condition is I i< and a is 1 — 40. 

Consider the configuration numbered ( :23  

58 
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For a first-order CAR, two sites i and j are isolated if j is not an adjacent 

horizontal or vertical neighbour of i. 
The approximation for .1{nz, S(z)} for low 1 fi 1 was given in Martin (1989), and 

is m +2(110+101)0+2(k +Pd +110+101)02 . Thus the more compact the configura-

tion of sites in S(z), the greater the loss. Martin (1989) also gave exact formulae 

for m = 2, 3, 4 for all possible configurations. 

In Table 7.1 the exact and approximate values for L{5, S(z)} are given in 

order of increasing loss for O < fi < -1 for ali possible different configurations 

of five missing values. A denotes a missing site, and brackets denote isolated 

groups. The approximation is very good for low and still good for higher fi. For 

example, the maximum difference between the true value and the approximation 

is 0.06 when fi = 0.1, and 0.65 when fi = 0.2. 

Each configuration depicted in Table 7.1 is one of a family of configurations 

having the same loss. For the 5-connected case 7.1(h), for instance, the following 

configurations (plus their reflections and rotations) give the same loss: 

(++++ 	( 4. " 	í +++ 	+ 
+ + + + + 

The formulae for cases 7.1(a) to 7.1(g), and 7.1(j) are obtained directly from 

results in Martin (1989). The loss (+ +)(++)}, for instance, is simply 

L;{3, (+ + +)} + L{2, (++)}. 
The ranking in order of loss is constant for ali O < fi < 1. The loss increases 

as the missing points are more compacted together, and, for ali configurations 

the loss 44 {5, S(z)} increases as fl increases. 

7.4.3 Two-parameter first-order CAR 

The two-parameter first-order CAR has one parameter for horizontal neigh-

bours and one for vertical neighbours. Its inverse covariance matrix is V -1  = 

- - 0U1v. The stationarity condition is 1 a 1 fi 1 < 1,and a is 

1 — 2a — 20. For an n 1  by n1  lattice, V -1  is positive definite when I a 1 -I- 1 fi l< 

[2cos{r/(n i  + 1)}} -1 . When a = fl the one-parameter first-order CAR of sub-

section 7.4.2 results. The condition for two sites to be isolated is the same as in 

subsection 7.4.2. From equation 7.7, for low values of 1 a 'and 1 fi 1, L s,*{m,S(z)} 

is approximately equal to 
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Table 7.1: 	S(z)} for ali different configurations cif 5 missing points and a 
one-parameter first-order CAR. 

I CASE 1 CONFIGURATION 1L:, 	I APPROXIMATION I 
7 . 1 (a)  (+)(+)(+)(+)(+) 5 5 
7 . 1 (b)  (++)(+)(+)(+) 5-30 5 + 20 + 202  
7.1(c) (++)(++)(+) 5 + 4,8 + 402  1-13 

7 . 1 (d)  (+ + +)(+)(+) 5+40-402  
1 - 2/32 5 + 40 + 602  

- 7.1(e) (+ + +)(++) 5+P-802 5+60+802   (1-202) 0 -0) 
7.1(f) . 	 (+ 1- ++)(1-) s+p-(32  

1 _13 _02 5 + 6,8 + 1002  
7.1(g) (+ + + 

+ 	(+) 5+0-302  1 _32 5 + 60 + 12,82  
7.1(h) (+++++) 5+8(3-(32  

1_302 5 + 80 + 14/32  

7.1(i) 
( + + + ) 

-I- 
+ 

5+8,5-4,32  -403  
1-02+204 5 + 80 + 1602  

7.1(j) ++ 
( ++ ) 

5-2Ø 
1 -20 5 + 8fl + 16/3 2  

7 . 1 (k) (+++ +) 
+ 

5+80 5 + 80 + 20,82  1_402 

7.1(l) ( + + + \ 
k ++ 	, 

5+100-302  -4/33  
1 _5/1242/34 5 -I- 100 + 220 2  

m + Moa + 2/oit6 + 2(Ph + iio)a2 + 2(pv /o]. )fi2 2Pda13. 
Thus, for positive dependence in both directions, a, 0 > 0,and not too 

large, then the more compact the sites in S(z), the greater the loss. If a > /3 then 
horizontal compactness has a higher loss than vertical compactness. 

Exact formulae for ali configurations when m = 2 and m = 3 can easily 
be obtained. Ali can be obtained directly from Martin (1989) except 	:+ 
for which L{3, S(z)} is (3 + 2a + 2/3 — 02  — 02  + 2a0)/(1 — a 2  02 ). 	The 
exact formulae and approximations for {4, S(z)} are presented in Table 7.2 for 
some configurations of four missing sites. Only those configurations for which 

results cannot be obtained immediately from Martin (1989) are presented, in 

increasing order of loss, for a = 3> 0. Note that configurations 7.2(c), 7.2(d), and 
7.2(e) have a different form when rotated through 90°, the loss being found by 

263 



interchanging a and /3. 

Table 7.2: L;{4, S(z)} for some different configurations of 4 missing points and 
a two-parameter first-order CAR. 

!CASE i CONFIGURATION  I 	L*0 	I 	APPROXIMATION 	I 
7.2(a) (++) (.++ ) 45,W1215 4 + 2at + 2,3 + 2•22  + 20'2  

7.2(b) 
( ++ 

44-2a+213-20 2 -2/0+24 
1-a2-#3 4 + 2a + 20 -I- 2a 2  + 2,82  + 2a13 

7.2(c) 
++++ 

41-404-20-4cr2-21324-40-4ce34-2a3/3 
1-2a2 —,19 2 1-a4  4 + 4a + 2/3 + 4a2  + 2f32  + 40 

7.2(d) 
+ + + 

4 -1-4a-f-2/3-2a 2 -2A z+20-2 0 2  
1-2a2- 132 -Fa 2 ,3 2  4 + 4a -I- 2/3 + 6a2  + 2/32  + 2afi 

7.2(e) + 

+ + + 
4+4a+2,3-203 -2132+40 

1-2a2--/33 4 + 4a + 2/3+ 6a 2  + 2fl2  + 4aft 

7  -2(i) 
(++++ ) 

4 4 + 4a + 4fl + 4a2  + 4f32  + 80 1—a-0 

If a, f3 > 0, a fl, then the larger Iosses occur for those configurations with 

the 1arger numbers of adjacent sites along the direction of greater weight. Hence, if 
a > )3 then L*0 {4, (S(z)} is always greater for configurations 7.2(c), 7.2(d) and 
7.2(e) than for their corresponding 90 0  rotation. The loss for the more com-

pact case 7.2(f) is not consistently greater than the 'I" shaped case 7.2(e) for 
a, f3 > O, a For small values of (up to 0.05) associated with increasingly 

higher values of a (a > 0.11 when ,0 is 0.01 anda? 0.23 when )3 is 0.05) the loss 
is greater for case 7.2(e) than for case 7.2(f). The approximate condition, for 

small a, for configuration 7.2(f) to have a smaller loss than 7.2(e) is )3 < ot2 . 
Under the same condition configurations 7.2(f) and 7.2(d) also interchange posi-

tion. Configuration 7.2(c) has a higher loss than case 7.2(d) when a < 13. The 
order when )3 = 0, a > O is 7.2(a) and 7.2(b), 7.2(c) and 7.2(f), 7.2(d) and 7.2(e). 
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7.4.4 Two-parameter second-order CAR 

From equation 7.7, for low 1 a 1 and 1 /3 1, L*p {m, S (z)} 

m -I- 2(110 -f- loi)o-F 2410 + 2(pt + Pd 4-  110 + 101)a 2  + 2(Pdd + 111)132  + 280. 

If a, /3> O then the more compact the sites in S(z) the greater the loss. How-

ever, positive dependence can occur with a > O and j3 < O for example, the 

doubly-geometric process (Martin, 1979) has /3 = —a2, and positive correlations 

when a > O. In this case the effect of increasing compactness is less clear. 

As an illustration of the use of the formula, the approximation for the scaled 

loss on the mean for the 'T' shaped configuration of Example 7.1 is Lr, {5, S(z)} ...-:..,.. 
5 + 8a + 4/3 + 16a2  + 6132  + 120. The exact value can be found easily using a 

recursion, and is 

(5 -I- 8a -I- 4fi — 4a 2  — 4fi2  +12a/3 — 4a 3)/(1— 4a2  + 602  — 4a2/3 + 2a4 ). 

Now, consider the exact formulae when m = 2. There are three possible con-

figurations, viz., isolated, horizontally or vertically adjacent, and diagonally adja-

cent. From §7.3.2, the scaled loss is 2 over the row sum of V. Thus, L{2, S(z)} 
is 2, 2/(1 — a) and 2/(1 — ,8) respectively. 

7.5 Application to some Symmetric Simulta-

neous Autoregressive Processes 

In this section the formulae for the approximations for the loss of information 

on ti for some special cases of symmetric simultaneous autoregressive processes 

are presented along with some exact results. The exact formulae for the loss as 

well as the corresponding approximation for low values of the parameters of the 

models are given for three missing values for the one-parameter first-order SAR. 

For ali SAR processes discussed in this section a site i is interior if it does not 

lie in the two outer layers of the rectangular lattice, i.e., if it is not a site in the 

first or last two rows or first or last two columns of the lattice. 
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7.5.1 First-order syrnmetric S AR 

From equation 7.9, the approximation for L*p {m, S(z)} is 

m 4110a + 4101 P+ (8ph + 8110  - 2120  - 2rn)a2  

-1-(8pt, + 86 - 2102 - 2m)#2  • (3pd 4111)0. 

For the one-parameter first-order SAR with a = )3, V -1  is 

(In  - Pi.11 )2  and the approximation for L*t,{m, S(z)} becomes 

m 4(110  + loa@ + {8pt + 874+8(40+10i)- 2( 120+102)- 4111 - 4m}P 2 . 

Thus configurations with many diagonal or lag 2 adjacencies can have smaller 

losses than isolated sites. Otherwise greater compactness leads to greater loss. 

Exact results for the one-parameter first-order SAR when m = 2 can be ob-

tained immediately from the result in subsection 7.3.3. They can also be obtained 

by putting /3 = O in the results in subsection 7.5.2. Table 7.3 gives the scaled 

loss S(z)} in increasing order for O < < 4, for all configurations when 

m = 3. Approximations up to second order in )3 are also given. The notation o 

refers to those sites for which the observation is available. The loss 4{3, S(z)} 

increases as increases (for O </3 < -,1) and as the configuration includes more 

sites that are horizontal or vertical neighbours of each other. 

Note that if 1 I is allowed to be large, as is possible for the non-stationary pro-

cess, a slightly different order results. In this case the leading term in {m, S(z)} 

is {(U)zz } -1 1,703-2 , and the largest loss is associated with those configura-

tions which have no diagonal neighbours and no lag 2 neighbours, i.e. 7.3(g) and 

7.3(j). 

For the one-parameter process, if the unobserved sites form a closed chain in 

which each element has exactly one horizontal (or vertical) neighbour and exactly 

one diagonal neighbour, then 1, is an eigenvector of V", and 1.47,{m, S(z)} = 

m/(1 - 2[3+ 6)3 2 ). An example is the octagon mentioned in subsection 7.3.2 when 

s = 1. 

Now, consider the case when m = 2 for the two-parameter first-order SAR. There 

are six different configurations, viz., 1(a) : diagonally adjacent sites, 1(b) : sites 

lag (2, O) apart; 1(c) : sites lag (O, 2) apart; 1(d) : isolated sites; 1(e) : horizon-

tally adjacent sites; and 1(f) : vertically adjacent sites. As noted in subsection 

7.3.3, the scaled loss is 2/(row sum of Vzz). Since the diagonal element of V" 

is 1 + 2a2  -F 2)32 , only the off-diagonal element need to be specified. These are 
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2afi, a2 , /32 , 0, —2a, —2/3 for configurations 1(a) to l(f), respectively. The 

approximate loss is 2 — 4a 2  — 4fi 2  plus —40, —2a2 , —2#2 , O, 4a I- 8a 2 , and 

4fi -1- 8fi2  respectively. 

If a = /3 > 0 then the order of increasing loss is 1(a), 1(b) and 1(c), 1(d), 1(e) 

and l(f). The ranking of the configurations in increasing order of loss is not 

consistent if a fi , a, /3> O. For instance, configuration 1(b) has smaller loss 

than 1(a) for any value of a > 2/3, and 1(c) has smaller loss than 1(a) for any 

8> 2a. Also, if a > /3 then configuration 1(b) has smaller loss than 1(c), but 

configuration 1(e) has larger loss than 1(f). If a > O, /6 ----- O then 1(b) has smallest 

loss, and 1(e) has largest loss, with the other configurations having the same loss. 
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Table 7.3: Lu*{3,S(z)} for ali different configurations of 3 missing points and a 

one-parameter first-order SAR. 

[CASE i CONFIGU RATION j 	L*0 	I APPROXIMATION • 

7.3(a) ( + + N 
3+50 

3 — 22,32  1+902+12/34 

7.3(0 
( +++ ) 

3+4/33 
3 — 20,82  1+8,33+0,  

7.3(c) ( + o + ) 
3+1802+230 4  3 — 18,82  (1+4(3 2 )(1+8/32+11/34) 

7.3(d) (+o+ o 4-) 3+8# 2  
3 — 16/32  1+8/32+14/34 

7.3(e) (+) 
( ++ ) 

3+140 2  
3 — 1682  (1+40 2 )(1+679n 

7 . 3(f) (+)(+ o +) 
3+1302 

3 — 14/32  (1+402)(1-1-50) 

7 . 3 (9) (+)(+)(+) -4-137 1 	
3 

3 — 12fl 2  

7.3(h) 
+ + o 

3+40+/60 2 4.8)3 3 +2804  
(1+40 2)0+02+1204) 

_ 

3 + 4)3 — 8)3 2  

7.3(i) 
-1- 

3+40+18,32+12,33+3904  
(1+4,32)(1+402+15)94) 3 + .48 — 6,82 

7 . 3(j) (+)(++) 
3-2/3+12 02 

_ 

3 + 4,3 — 40'2  (1+402)(1-20+4/32) 

7.3(k) 
( ++ ) 

3+8/3+14,8 2  
3 + 8)3 + 8/32  (1+202+204) 

7.3(0 (+++) 3+80+1302  
1+02+2004 3 + 8)3 + 10/32  
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7.5.2 Two-parameter second-order symmetric SAR 

Two sites i and j for a second-order SAR are isolated if, besides satisfy-

ing the conditions for being isolated in subsection 7.5.1, site j is also not a lag 

(+1, ±2), (±2, ±1) or (±2, ±2) neighbour of site i. 

From equation 7.9 the approximation for L*0 {m, S(z)}, provided the values of 
I a 1 and I fl I are not too large, is : 

m + 4(110+ loi)ct + 4110 + {8Pg + 8Pd + 8(110 +101) — 2(120 + 102) — 4111 — 4m}a2  

+{8pdd + 8111 — 4(120 + 102) — 2122 — 4m}13 2  + {8pb — 8(110 + Au) — 4(112 + 121)}0. 

As an illustration of the use of this approximate formula consider Example 

7.2 given in subsection 7.4.1. For this configuration L{6, S(z)} 

6+ 16a +8)3 +10a 2  —14)32  — 120. The exact formula for this example is difficult 

to obtain. 

Now consider the exact formulae when m = 2. Again, the scaled loss is 2 

divided by the row sum of V. The diagonal element of V" is 1 +4a 2 +4)32 . There 

are six possible configurations: 2(a) : diagonally adjacent sites; 2(b) : sites at lags 

(2, 0) or (0,2) apart; 2(c) : sites at lags (2, ±1) or (1, ±2), apart; 2(d) : sites at lag 

(2, ±2) apart; 2(e) : isolated sites, and 2(f) : horizontally or vertically adjacent 

sites. The off-diagonal element of V" is —23 -I- 2a2, ct2 + 202 , 2ces,  02, O, and 

—2a+ 4a )3 respectively. The approximate loss is 2 — 8a 2  —8)32  plus 4)3 — 4a2 + 8)32 , 
_ 2(22 _ 4/32 ,  _40,  _ ,..2 zp , O, and 4a -1- 8a 2  — 8a)3 respectively. 

If a > O, , 3 =-- O then the order of increasing loss is 2(a), 2(b), 2(c) and 2(d) 

and 2(e), 2(f). This order can change appreciably as # varies. 

7.6 Information loss with boundary sites 

The exact formulae and the approximations given in the previous sections 

are valid under the assumption that the missing sites are ali interior ones. This 

section evaluates the effect of using those formulae when not ali missing sites 

satisfy this condition. For instance, if the failure of a detector causes the first, 

and/or the last une on imagery to be `defective', ali the missing values along the 

`defective' lines occur at sites that are not interior, when conditional autoregres-

sive processes are considered (see §5.3). Most frequently, however, the missing 
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values arising from line dropout occur at sites that are interior ones. The effect 

of the using the formulae for the loss of information assuming that ali missing 

sites are interior, when they are not, varies with the size of the lattice. This 

is also aproached in this section. The discussion is restricted to the cases of a 

2p-CAR(1) and a 2p-CAR(2) processes, as defined in §5.5.2 (one parameter for 

the horizontal neighbours and one for vertical neighbours) and §5.5.3 (one param-. 

eter for horizontally and vertically adjacent neighbours, and one for diagonally 

adjacent neighbours), respectively. 

Assume initially that only one line on the image is defective. This assump-

tion is dropped latter, with results for multiple defective lines being merely an 

extension of the results for a single faulty fine. 

First the discussion is carried out for the two-parameter first-order conditional 

autoregressive process. 

7.6.1 The case of a 2p-CAR(1) process 

If the missing line is not the first or the last one, then there are only two 

boundary sites to consider, viz., the first and last sites in the defective fine. 

If ali sites in S(z) are interior then V"1„ is a vector of constant values a, 

a = 1 — 2a —2/9, and the loss of information on g can be evaluated from equation 

7.6, that is 

Lg {rn,S(z)}0 -2  . a2 11n (V") -1 1,. 

However, when there are two boundary sites amongst the m missing, (V"1.)' = 

[a* a a a ... al for a as above, and a* = 1 — a — 20. 

Let the m by m matrix(V") -1  -= {vZ, 1 }, k,1 = 1, . .. , m be partitioned as 
follows: 

[

viK1  Vi`2  ] 

n, n2  
where 

• VII  is a 2 by 2 matrix with elements v i*,i , v 	vm* ,1 , and vni* ,,n ; 

• n2  is a 2 by m — 2 matrix with elements v 1 , and v, 1 = 2, ... , m — 1; 
and 
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• V;2  is a rn - 2 by m - 2 matrix obtained from (V") -1  by the deletion of 

the first and last row, and first and last column. 

The exact loss of information on p is then given by 

L{M, S(Z)}0-2 = a21rni _2 ‘Tv 2* 2 -i m_2  

+ a*2 	vi*,m vm*  + vm*  ,m1 	 (7.10) 

+ aa*[ErLí 1 (14', 1  +v„,*, 1  + 14; 1  + ty;;m )] 

Equation 7.10 can be simplified as 

L,{m, S(z)}0- 2  = a2 1',71- 2 -V22 1,n_ 2  2a*2  [via  -I-  vi (7.11) 
+ 2aa*[ 1 (v;, 1  + 

Hence, if the loss of information on p is calculated using equation 7.6 in-

stead of equation 7.11, the difference between the exact and the approximate 

loss due to the m missing sites in S(z) (exact loss - approximate loss), denoted 

D[L „{m, S(z)}u 2} is 

m-i 
2a(2 - 3a - 40)(4, 1  + 	+ 2a(1 - 2a - 20)[ 	(v7,1  + 	(7.12) 

1=2 

Note that D[L„{m, S(z)}crl depends only on the values v, 1  associated with 

the boundary sites. Also, as ali the missing sites occur on a single line, then ali 

the elements in matrix V" [and hence, in (V") -1 )] have dependence only in the 

horizontal direction, that is, have elements that depend only on a. 

Two boundary sites 

The difference in loss of information on p has been evaluated for the stationary 

2p-CAR(1) process for some sets of a and )3, and m = 92. For each set, the 

percentage difference in loss (PDL) is calculated as minus 100 times the ratio 

between the difference loss, and the loss obtained from equation 7.6, that is, 
x Du,“{m,s(z)}0-2]  

The calculations are performed for -0.25 < a, # < 0.25 

with respective increments of 0.05 and 0.02 for a and /3. The PDL for these sets 

of a and /3 are given in Figure 7.1. 

From Figure 7.1 and equation 7.12, the following conclusions can be drawn: 

271 



0.5 

o 

P 
D -0.5 
L 

-1.5 

-2 I--L 
-0.23 	-0.16 	-0.07 	0.01 	0.09 	0.17 0.23 

/3 

-•- -0.20 H-  -0.15 -*- -0.10 -e-  -0.05 cy .. 
-- 0.06 	-G-  0.10 	-=6-  0.16 	-E-  0.20 

Figure 7.1: Piot of the PDL for a 2p-CAR(1) process when two of the missing 

sites lie on the boundary, for m = 92, and using different sets of a and fl. 

• for m=92 the percentage difference in loss is negligible. The smallest and 

largest absolute values of the computed PDL are 0.151 (for a = —0.05 and 

fl = —0.19), and 1.603 a = 0.20 and fl = 0.05. 

• for a > O and any fl., the loss of information of ft computed via equation 

7.6 always underestimates the exact loss, and becomes larger as a and f3 
increase. 

• for a < O and any fl, equation 7.6 always overestimates the loss. The 

difference becomes larger as I a 1 and fl increase. 

• for a = 0.0 the difference between the exact loss and that calculated via 

equation 7.6 is zero. This follows directly from 7.12. 
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Figure 7.2 (a) and (b) gives the plot of the percentage difference in loss for 

several values of 772 , and different sets of values of a and fl, assuming only two 

boundary sites amongst the missing; whilst in (c) and (d) it is assumed that all 

the missing values lie at the boundary (discussed in the next section). 

From Figure 7.2 (a) and (b) it can the seen that the PDL becomes increasingly 

smaller as the number of missing sites increase, and that for large value of m the 

PDL is negligible, unlike when a small number of missing sites occur. Considering 

that the number of missing values in the image, arising from line-dropout is 

usually large, then the loss of information on ft, calculated via equation 7.6 is a 

very good approximation. 
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Figure 7.2: Piot of the percentage difference in loss for a 2p-CAR(1) process, 

for different values of m, and assuming (a) two boundary sites when a O and 

< O; (b) two boundary sites when a O and /3 > O; (c) ali boundary sites when 
a O and ,6 < O; (d) ali boundary sites when a O and > O. 
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7.6.1.2 Ali missing sites on the boundary 

If the 'detective' line on the image is the first, or the last one, ali miss-

ing values occur at sites that are not interior. In this situation (V"1„)' = 

[ai  a2  a2  ... a2  ai ] for a i  = 1 - a - ,6 and a2  = 1 - 2a - ,G. 
The difference between the exact loss of information on // and that obtained 

from equation 7.6 is 

D[L,,{m, S(z)}a 2] = 2(a + )3)(2 - 3a - 3/3)(eí a  -1- vt,,n ) 

+ A(2 - 4a - 30) E21  E71712 1" V70,1 	 (7.13) 
+ 2(a + 20 - 2a 2  - 5a0 - 302) Er.:21 (vL, + v ,,). 

Unlike equation 7.11, which has only terms involving the two boundary sites, 

the equation for the difference in loss in 7.13 involves ali elements in (V") -1 . 

The difference in loss is not negligible, as in the case of only two boundary sites, 

even for large values of m. Figure 7.3 gives the plot of the percentage difference 

in loss for some values of -0.20 < a, )3 < 0.20, and m = 92, from where it can be 

seen that the largest absolute value of the PDL (86 %) occurs for a = 0.05 and 

)3 = 0.19. 

From Figure 7.3 it can be seen that for any a, and sma11 )3 (-0.01 <3 < 0.01), 

the PDL is approximately zero, and the difference between the exact loss and that 

calculated via equation 7.6 is negligible. From equations 7.12 and 7.13 it can be 

seen that the difference in loss is always greater when ali sites lie on the boundary, 

than when there are only two boundary sites. This can also be observed in Figure 

7.2 (c) and (d), which gives the plot of the PDL for some sets of a and )3, and 

different values of m. From this figure it can be noted that unlike in the case of 

two boundary sites, when the PDL always decreases as the number of missing 

sites increases, the PDL for the case of ali boundary sites increases as m increases 

when a and /3 have different signs. Otherwise, the PDL decreases with increasing 

m. 

7.6.2 Difference in loss for the 2p-CAR(2) process 

7.6.2.1 Two boundary sites 

If ali the missing sites are interior, then a = 1 - 4a - 4/3 for a two-parameter 

second-order CAR process. A site is said to be interior if it does not lie on the 
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7.6.1.2 Ali rnissing sites on the boundary 

If the `defective' line on the image is the first, or the last one, ali miss-

ing values occur at sites that are not interior. In this situation (V"1)' = 

[al  a2  a2  a2 ai] for a i  = 1 - a - f3 and a 2  = 1 - 2a - /3. 

The difference between the exact loss of information on and that obtained 

from equation 7.6 is 

D[L „{m, S(z)}(7 2] = 2(a + 13)(2 - 3a - 30)(14, 1  + vt„,) 

+ 0(2 - 4a - 30) Er-121 	vZ,1 	 (7.13) 

2(a + 2/3 - 2a2  - 5afi - 3/3 2)ErI 1 (v7, 1  + 

Unlike equation 7.11, which has only terms involving the two boundary sites, 

the equation for the difference in loss in 7.13 involves ali elements in (V") -1 . 

The difference in loss is not negligible, as in the case of only two boundary sites, 

even for large values of m. Figure 7.3 gives the plot of the percentage difference 

in loss for some values of -0.20 < a, 13 < 0.20, and rn = 92, from where it can be 

seen that the largest absolute value of the PDL (86 %) occurs for a = 0.05 and 

/3 = 0.19. 

From Figure 7.3 it can be seen that for any a, and small /3 (-0.01 </3 <0.01), 
the PDL is approximately zero, and the difference between the exact loss and that 

calculated via equation 7.6 is negligible. From equations 7.12 and 7.13 it can be 

seen that the difference in loss is always greater when ali sites lie on the boundary, 

than when there are only two boundary sites. This can also be observed in Figure 

7.2 (c) and (d), which gives the plot of the PDL for some sets of a and /3, and 

different values of m. From this figure it can be noted that unlike in the case of 

two boundary sites, when the PDL always decreases as the number of missing 

sites increases, the PDL for the case of ali boundary sites increases as m increases 

when a and /3 have different signs. Otherwise, the PDL decreases with increasing 

m. 

7.6.2 Difference in loss for the 2p-CA.R(2) process 

7.6.2.1 Two boundary sites 

If ali the missing sites are interior, then a = 1 - 4a - 4/3 for a two-parameter 

second-order CAR process. A site is said to be interior if it does not lie on the 
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Figure 7.3: Plot of the PDL for a 2p-CAR(1) process when ali the missing sites 

lie on the boundary, for m = 92, and using different sets of a and /3. 

first or last une, or first or last column of the lattice. 

When there are two boundary sites amongst those missing, then (Vzs1„)' = 

[a* a a a ... a*1 for a = 1 — 4a — 40 and a* = 1 — 3a — 2/3, and the difference 

between the exact loss and that calculated from 7.6 is 

D[L,{m, S(z)}a 2] = 2(a + 20)(2 - 7a - 6/3)(4 ,1  vt,„) 
(7.14) 

+ 2(a -I- 2)3)(1 - 4a - 40) E:7_1:2 1 (v1a 	). 

Since ali the missing sites occur on a une, the elements in V" are either zero, 

or else a function of a, and are exactly as for the case of a 2p-CAR(1), in §7.6.1. 

Figure 7.4 gives the plot of the percentage difference in loss obtained using 

equation 7.14 for a set of values a and # satisfying the stationarity condition 

given in Chapter 5 (§5.5.2). 
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Figure 7.4: Piot of the PDL for a 2p-CAR(2) process when two of the missing 

sites lie on the boundary, for rn = 92, and using different sets of a and #. 

The following conclusions can be drawn from Figure 7.4 and from equation 

7.13: 

• for any a, and /3 = —a/2, there is no difference between the exact loss and 

that obtained from equation 7.6. This follows directly from 7.14. 

• for any a > O and /3> —a/2, the absolute value of the PDL increases as a 

and i3 increase, and the exact loss is underestimated from equation 7.6. 

• for a <O and any #, the PDL is negligible (less than 5%). 

• the PDL increases as a and /3 increase, but is always negligible (less than 

5%) for fl < O. 
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7.6.2.2 Ali boundary sites 

When ali missing sites lie on the boundary of the image (either first, or 

last line), then for a 2p-CAR(2) process (V"1„)' = [al  a2  a2 	ai] for 

= 1 — 2a — 0, and a 2  = 1 — 3a — 2/3. The difference between the exact 

loss and the approximate loss computed from equation 7.6 with a = 1 — 4a — 40 

is 

D(Lp{m,S(z)}1,7 2 ) = 2(4a + — 12a2  — 280 — 1502 )(v 1  + 

+ (2a + 40 — 7a2  — 200 — 12(32 ) Er: E71.; 1 vz,, (7.15) 

+ 2(3a + 50 — 10a 2  — 25a0 — 1402 ) Er1; 1 (t);` + 

Figure 7.5 gives the plot of the percentage difference in loss obtained for a 

2p-CAR(2) process, using equation 7.15, and some sets of values of a and 0 
within the stationarity range of the process. From Figure 7.5 it is seen that most 

conclusions drawn for the case of the 2p-CAR(2) with two boundary sites are still 

valid here, when ali sites are boundary sites. The loss in much greater than for 

the case of two boundary sites, and is only negligible for any fixed a, when 13 is 

dose to the value of at which the PDL is zero. 

Figure 7.6 (a) and (b) gives the PDL for different values of m, and for some 

sets of values of a and /3 when there are only two boundary sites. Figure 7.6 (c) 

and (d) gives the PDL for the same values of m and of a and /3, when ali missing 

sites lie at the boundary. 

Figure 7.6 (a), (b), (c) and (d) shows that the PDL usually decreases as 

m increases, and is much greater when ali the missing sites are boundary sites, 

especially when a, 0 > O. Note that for the case of two boundary sites [Figure 7.6 

(a) and (b)1 and a 2p-CAR(2) process, the difference between the approximate 

and exact loss when /3 < O is very small, even for small values of m, and becomes 

negligible as m increases. When a < O and /9 > O, the PDL becomes negligible 

as m increases, being largest (in absolute value) when 1 a 1 is small. 

For any a and /6 < O the PDL decreases as 1 a 1 increases, whereas when 

> O the PDL increases as 1 a decreases. The approximate formulae usually 

overestimates the exact loss of information on g when ,3 < O and there are only 

two boundary sites amongst those missing. 

When ali missing sites are boundary sites, the largest absolute value of the 

PDL occurs when a, 0 > O. The PDL increases as a decreases, and is always 
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Figure 7.5: Piot of the PDL for a 2p-CAR(2) process when ali the missing sites 

lie on the boundary, for m = 92, and using different sets of a and fl. 

negative. Thus, the approximate formulae underestimates the exact loss. 
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Consider now the case of multiplelines missing from the failure of one detector. 

As every site on a defective line is isolated from any other site on another faulty 

line, that is, no two sites in two distinct lines are adjacent horizontal or vertical 

neighbours, then V" is block diagonal, and the loss of information on Ít is simply 

the sum of the individual losses for a single line. 

If the faulty line is not the first, or the last one on the image, then the 

loss of information on ft for a 2p-CAR(1) process can be computed from the 

approximation formulae given in subsection 7.4.3, for small values of I a 1 and 

1 /3 I. If the number of missing sites per line is large, then the approximation 

formulae is still good even for large values of a and fl, given that they are within 

the stationarity range of the process. This also holds for the 2p-CAR(2) process, 

except when a -I- /3 is dose to 

However, if the faulty line is the first, or the last one, then the use of formula 

7.6, or of the approximation formulae for the loss on g is not recommended for 

any of the processes, even for low values of a and /3 and nt is large. The greatest 

discrepancy between the exact loss and that calculated via equation 7.6 occurs 

when a+13 is dose to 

The difference between the exact loss on and that evaluated under the 

assumption of ali missing sites being interior ones depends on the exact location 

of the sites in S(z). The ranking of the loss is not as easily determined as when 

ali the missing sites are interior ones. 

Consider, for instance, case 7.2(a) in Table 7.2. There are several different 

configurations of the missing sites, all with different values for the loss on p. 

Figure 7.7 shows 6 out of the 10 possible configurations of 4 missing sites, when 

there are two isolated groups with neighbouring sites. The loss on p for config-

urations (a) to (f), for the stationary lp-CAR(1) process, when 13 = 0.24 are: 

0.0948, 0.1812, 0.4485, 0.4126, 0.6506, and 0.8886. The loss becomes greater as 

more missing sites occur at the boundary of the lattice. When ali sites are in-

terior, the loss on /2 is 0.0084. As ,6 > O decreases, the loss on tt increases, and 

for ,6 -= 0.05 it is respectively 2.7815, 2.8682, 2.9604, 3.0421, 3.1341, and 3.2261 

for configurations (a) to (f) in Figure 7.7. The loss when the sites in the two 

isolated groups are interior ones is 2.6947. Therefore, the formulae for the loss 

on assuming that ali missing sites is interior can be used as an approximation 

for the exact loss for clusters of missing with boundary sites, when there are few 
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Figure 7.7: Configurations with different loss on p when m = 4 and there are two 

isolated groups with two neighbouring sites. 

boundary and edge sites. In this case the approximation formulae provided for ali 

processes can also be used if the conditions imposed upon those approximations 

are satisfied. 

7.7 Loss of Information on ,8 for the stationary 

lp-CAR(1) process 

Let Lp {m, 8(z) }.2  denote the loss of information on the dependence parameter 

fl, due to m missing values at sites in 8(z). 

The formulae for the loss of information on fl are much more complicated than 

those provided for the loss on ti. Martin (1989) deduces the general formulae for 
the loss on fl using the conditional distribution of z I y, and especializes to the 

case of a lp-CAR(1). The expression for the loss of information on 0, for this 

process, can be simplified to 

Lp{m,S(z)}cr 2  = 13-2 [tr{(V 22 ) -1 V „} + 51  - tr(Vzz) -1  - ltr(V22 ) -2] (7.16) 
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From equation 7.16 it is seen that even for the simple case of the lp-CAR(1) 

process the formulae for the loss of information is complicated and requires the 

knowledge of Vzz , which is not sirnple to obtain. Moreover, the loss depends not 

only on the value of fl, but also on the size and shape of the lattice, and on the 

number and the actual sites S(z) that are unobserved. 

Martin (1989) gives the general loss of information on ,6 for the lp-CAR(1) 

when m = 1, 2, 3, and gives the results assuming stationarity. Thus, for instance, 

when m 2 and the missing sites i and j are neighbours, Lp{m, (i, j) = (vii  + 

vij 28vii)/[62(1 _ 02)) ___ (2 02)(1 + 02)/[02(1 02)2] .  Assuming stationarity, 

vii+vii+2,8vii  is replaced by 2f(1 +fip i0), where f var(uij )/cr2  = (1-4,6p10 ) -1 . 

When m = 4, there are 10 cases to consider. In half of these cases the missing 

sites i ,j, k, 1 are connected. In the remaining cases the configuration of the missing 

sites consists of disconnected groups, and as for the loss of information on g, the 

loss is a sum of terms of the form Lp{m i , S(z i )}. 

Unlike in the case of the loss on g, the loss on /3 for a chain does depend on 

the shape of the chain. (apart from rotations and refiections). Thus, the losses 

on for configurations (++++) , 	, and 	++ 	are ali different. + 

First, the case of 4 connected sites is investigated. The missing sites can form 

a connected line from i to 1, and in this case the formula, assuming stationary is 

Lp{4,(+ +-F)}a' = (-4 + 9)32  - 	- 936  + 2,38 )/[0(1 - 3/3 2  + f34 )] 2  
(7 . 17) 

- 6,32 )f (6 - 4/3 2 )0fPlo 402 .fP20 2P3fP30]/(1 - 30 2  + 04)} 

The configuration of the four missing sites can also have a 'step' shape, in 

which case p20  and p30  in equation 7.17 are replaced by p n  and p12 , respectively. 

Since pn  > p20, and P12 > p30 for ali > 0, the loss for the 'step' shape is always 

slightly greater than for the linear case. The four sites can also form a chain with 

an shape. In this case equation 7.17 changes slightly, with the coefficient of p 20  

now being 2,82  and p30  being replaced by p12•  It also includes a term in Pu,  with 

coefficient 2,6 2 . The loss is slightly smaller than for the 'step' case, but slightly 

greater than for the linear configuration. This is due to the greater number of 

sites linked diagonally in the 'step' case than in the shape case. As p ii  > P20 
for ali > 0, then the loss is expected to be slightly greater in the former case 

than in the latter. 
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Other configurations for four missing sites include the compact form ( ++: ) 
and ( +:+ ). 

For the compact configuration, the loss of information on fi is given by 

L0{4, ( +++4_ ) } = 4/{/3 2 (1- 4/32 ) 2 }{(-1+302 -4,84 )+(1-402 )[(1- 2 /3)2 f+ 2fifpio 

+ 20 2fPn]}, 

whilst for configuration ( ++++ ) the loss is 

L0{4, ( +:+ ) 	}...., {[)32(1_ 3)32 )2]} -1{(_4 + 9/32 ..,_ 9)34) + (1 __ 30 2) 

(4 - 6fi2 )f + 6fifpio + 2P2 fp20 + 402 fpi ,11} 

Table 7.4 gives the loss on f3 for the stationary 1p-CAR(1) process for some 

values of 0 > 0, and m = 4. The results in the table are found using equation 

7.16, and the values of vgh obtained from the inversion of V -1  = I - /3131 , using 

a 9 by 9 torus lattice. These values are an approximation which is good for low 

values of P. , but less good for 13 = 0.24. The values of vgh, for sites separated by 

lags (g,h) are given below, for some values of g and h. The loss of information on 

fl, for configurations 7.4 (f) to 7.4 (j) in Table 7.4 are found by summation. For 

instance, the loss on fi for configuration 7.4 (f) is L0{4, (+++)(+) } = 

1,013, (+++) } + L0{1, (+) }. 

(g,h) 
i(3  

0.05 0.10 0.15 0.20 0.24 
(0,0) 1.01023 1.04405 1.11456 1.27047 1.76737 
(0,1) 0.05115 0.11014 0.19094 0.33808 0.79935 

(0,2) 0.00260 0.01186 0.03435 0.09920 0.43890 

(0,3) 0.00013 0.00130 0.00649 0.03222 0.28573 
(0,4) 0.00000 0.00016 0.00149 0.01369 0.22592 
(1,1) 0.00515 0.02274 0.06202 0.16038 0.56217 

(1,2) 0.00039 0.00358 0.01579 0.06287 0.37183 
(1,3) 0.00002 0.00051 0.00371 0.02405 0.26284 

(2,2) 0.00003 0.00074 0.00518 0.03071 0.28539 
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Table 7.4: Loss on fi for the stationary lp-CAR(1) process. 

CASE I CONFIGURATION 
0 

0.05 1 0.10 1 0.15 I 0.20 1 0 .241 
7.4(a) 

( ++++ ) 12.56 14.51 19.06 31.15 83.08 

7.4(b) (+ + + +) 13.53 15.35 19.45 29.87 72.50 

7 .4(c) 

+ + -f4.  

13.53 15.37 19.51 30.02 72.85  

7 .4(e) + + 
13.53 15.36 19.52 30.21 74.40 

7.4(d) 
+ 
++ 

 
( 	) 13.54 15.39 19.57 30.16 73.15 

7.4(f) (+ + +)(+) 14.48 16.17 19.77 28.89 65.44 

7.4(g) 
+ ) (+) 14.48 16.19 19.83 29.02 65.72 

7.4(h) (+ +)(i- +) 14.49 16.15 19.81 28.79 64.06 

7.4(i) (+ +)(+)(+) 15.43 16.99 

_ 

20.09 27.92 58.67 

7.4(j) (+)(+)(+)(+) 16.37 17.84 20.37 27.05 53.29 

From Table 7.4 it can be noted that for low values of (,8< 0.15), the loss of 

information on # is greater for the case of isolated sites, whereas the converse is 
true for larger values of 0. 

The loss of information ou fi has also been calculated for m = 5. There are 

23 possible cases to consider. In 12 of these cases, ali the sites are connected. 

For some of the configurations of the missing sites, the formulae for the loss of 

information ou fl are similar. For instance, for configurations (+++++) , ++: , 

+: 	, ++ +: , 	++++ 	, 	) and 	+: 	the loss of information 

on is 
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L0{5, S(z)}o -2  = [02 (1 — 3,3 2 ) 2 (1 — /92)2]_1(_5 -1- 20 /32  — 20[34  — 12,86 + 9)38 ) -I-
[#2 (1 — 3)3 2 )(1 — /32 )] -1  { (5 — 12fi 2  -I- 3,34 )f -I- 40(2 — 3)32 )f p io  -I- additional terms 
which are indicated below, along with the respective coefficients }. 

Configuration f P20 fP30 fP40 f pn fP12 fP13 fp22 

(+++++) a b c -- -- -- -- 
f ++ 

++ 

k 	+ 
-- -- -- a b -- c 

f ++++ 
+ 

) d h -- g h c -- 

++++ b -- c 

++++ 
f -- -- e b -- c 

+ 	\ 

+ 

( 

g -- -- d b c -- 

+/ 

(

+++ j i -- -- j b -- -- 
+ 	+ 

where a, b, c, d, e, f, g, h are as follows: 
a= 1(32 (6 — 402 ); 
b = 4,83 ; 
c = 2,34 ; 

d = 02 (4 — 2)52 ); 
e --, 2/32 ; 

f= 02 (1 — ,8 2 ); 

g = 2[32 (1 — /32 ); 

h = 2,83 ; 

i = 2/32 (1+ )3 2 ); and 

j = 02 (1 — fl2 ). 
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++ 
For configurations ( ++ +++ ) , ( ++ ) , (+++ + ) ,the expression for the 

+ 	+ 
loss of information on /3 is 

L0{5, 5(z)}o- 2  = [02 (1 - 402  + 204 ) 2] -1 (-5 + 2002  - 2404  - 8,86 + 4,58)+ [32(1— 

402 +2,34)]-1{(5_12#2+204)f + 8,3(1—#2)fpio + additional terms as indicated 
below, along with the respective coefiicients } 

Configuration fp20 fP3o fPn fPi2 

( ++++ ) 
+ 

k 1 m n 

/ ++ 
++ o -- p q 

+ 
+ + + \ 

+ m -- k q 
+ 	i 

where: 

k = 402 ; 

1 = 2,33 ; 
m = ,62 (4 - 202 ); 

n = 203 ; 

o = 2fl2 ; 
p =  
q -= 03 . 

Finally, 

4{5, ( -:++ + ) } cr 2  = [02 (1 - 50 2  + 204 ) 2 ] - ' (-5 + 250 2  - 4204  - 10/36  4- 408 ) + [02 (1 - 

50 +204 )]' {(5 -150 2 1-204 )f + 20(5 -4/32 ).fino +20 2f Po2 + 20 2 (5 —0 2  )fPii  +403fp12 } 

and 
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Li4 {5, ( + 4.1.- +  ) } a' = [f(3 2 (1- 4,8 2 )9_1 (-5 + 20/32  - 32fid ) -I- [/32 (1- 4)(32 )] -1 {(5 - 
+ 

12,62 )f -f- 813 f poi + 402 fP0,2 + 80 2fpn} 

Table 7.5 gives the loss of information on fi for some values of # and 23 pos-

sible configurations of missing sites, when m = 5. The ranking of the loss for the 

configurations displayed in Table 7.5 depends ou the value of fi > O, as can be 

observed from Figure 7.8, which shows the plot of the loss of information on ,3 
for some configurations of 5 missing sites. Note that for small /3> O, the config-

uration with ali isolated sites gives the largest loss, whilst for larger values of #, 

the largest loss is associated with the more compact configuration. 
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Table 7.5: Loss of information on 0, for different configurations of 5 missing sites. 

CASE CONFIGURATION 
# 

0.05 	I 	0.10 	I 	0.15 	I 	0.20 	I 	0.24 

7.5(a) + + 
( + + + ) 15.69 18.13 23.83 39.15 106.12 

7.5(6) ( + + -1- ) 16.66 18.97 24.29 38.33 98.63 

7.5(c) 
( ++ ) (+) 16.65 18.97 24.15 37.91 96.40 

7.5(d) ( + + + ) 16.68 19.01 24.35 38.15 

_ 

95.57 

7.5(e) 
( +++ 

+ 	) 
16.67 18.99 24.29 37.96 95.28 

7.5(f) (+ 	) 
+ 16.67 18.99 24.29 37.99 95.20 

7 . 5(g) 
++ 

(+++ ) 16.68 19.05 24.40 38.07 93.99 

7.5(h) ( + -I- -.1- ) 
16.68 19.03 24.34 37.93 93.69 

7.5(i) ( +++ ) 
16.68 19.03 24.35 37.93 93.68 

7 . 5(j) ( -I- + -I- ) 16.68 

_ 

19.03 24.34 37.92 93.67 

7 .5(k) 
( +++   \  

+  ) 
16.67 19.00 24.29 37.79 93.39 

7.5(0 ( + + ++ ) 
+ 

16.68 19.00 24.28 37.77 93.32 

-7.5(m)  (+ + + + +) 16.67 18.98 24.22 37.56 92.96 
7.5(n) ( + + + ) 

(+) 17.62 19.82 24.61 36.97 87.72 

7.5(o) ( ++ ) (+) 17.63 19.85 24.66 

. 

36.92 86.47 

7-5(p) 
/ 

-1- 	) 
(+) 17.63 19.83 24.60 36.78 86.17 

7 . 5 (0  ( + + ++ ) (+) 17.62 - 19.81 24.54 33.63 85.82 

7.5(r) ( ++ ) (++) - 17.63 19.81 24.64 36.66 84.42 

7.5(s)  (+ + +)(++) 17.63 19.79 24.59 36.52-  84.14 
7.5(1) ( ++ ) (+)(+) 18.57 20.65 24.92 35.78 79.04 

- 7 - 5(")  (+ -4-  +)(+)(+) 18.57 20.63 24.86 35.65 78.76 
7.5(v)  (++)(++)(+) 18.58 20.61 24.91 35.56 77.38 
7.5(w)  (++)(+)(+)(+) 19.52 21.46 25.18 34.68' 71.99 
7.5(x) (+)(+)(+)(+)(+) 20.46 - 22.30 25.46 33.81 66.61 
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Figure 7.8: Exact loss of information on /3 for some configurations when rn = 5, 
and some values of fl > O. 

Martin (1989) also gives an approximate formulu for the loss on information 
on 13, for the stationary lp-CAR(1) process for general m, when fl is small. The 
formula can be expressed as 

(4m — mi ) + (36m + 23m 1  — 6m2  — 4m3  -I- 41n  + 2120)162 	(7.18) 

where m3  is the number of 4-circuits of the type ( +4.  4+  ) . 
Figure 7.9 gives the plot of the exact and the approximate loss of information 

on fi, for fi = 0.10, for ali configurations in Table 7.5. In this figure, configuration 

1 refers to case 7.5(a) in Table 7.5, 2 to case 7.5(b), and so on. From this plot 

, it is can be noted that the approximation is very good for /3 .-- 0.10. It has 

been observed that the approximate formulae for the loss is reasonable even for 
fl = 0.15. 
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Figure 7.9: Exact versus approximate loss of information on 13 for the configura-
tions in Table 7.5, and 	0.10. 
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Chapter 

Conclusions 

This study concerned the estimation of missing values arising in remotely 

sensed data, due to line dropout, or from the presence of small cloud cover. 

Although only two relatively small TM-Landsat sub-images have been used, 

and only a few bands were made available, the investigation allowed the identi-

fication of the methods that work usually well, and the conditions under which 

better estimates of the missing values can be obtained. 

In the case of missing values arising from line-dropout, good estimates of 

the missing values can be obtained from very simple methods, such as linear 

interpolation, and the use of more sophisticated methods may not be warranted. 

This is particularly the case when the estimates of the missing values are used 

only to visually correct the image (cosmetic purpose), and no further analyses 

of the data is envisaged. Since better results are always expected from linear 

interpolation than from the method of adjacent line replacement, and considering 

the small computational effort that is required to implement the former method, 

it is recommended that this method be . routinely used to estimate the missing 

values from line-dropout, during the pre-processing stage of image processing. 

Furthermore, since the method of linear interpolation allows the identification of 

the lines that have been replaced (as in the case of adjacent line replacement), it 

is alway-s possible to apply other methods a posteriori, if more accurate estimates 

of the missing are required. This may not be easily achieved if other methods, 

such as those using multispectral and/or multitemporal data, are used. 

In this investigation it has been shown that data from other passages is an 

important source of information that should not be neglected, especially in the 
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case of missing values arising from cloud cover, when multispectral information is 

not available. In the case of missing values arising from une drop, the information 

in the neighbourhood of the `defective' lines, in the original sub-image and the 

template image, may indicate the amount, and degree, of changes that occurred 

between the passages, and the quality of the estimates from template date meth-

ods can be reasonably inferred. However, in the case of large clusters of missing 

values, it is not possible to access the extent of the changes that occurred from 

one passage to another, thus making it difficult to foresee the kind of results that 

the template date methods will have. 

The facts that remotely sensed imagery usually contains a diversity of land 

covers, and that different methods perform well under different situations, makes 

it reasonable to expect that better estimates of the missing values are obtained 

from the use of a `switching' method, which explores the individual potential of 

each method, for the specific data at hand. The main difficulties of this approach 

are the choice of the methods to be used, and the definition of which switching 

rule to apply. In the present study a reasonable `switching' method could not 

be identified, which would consistently have better numerical results than the 

method of linear interpolation alone. As mentioned in Chapter 4, further research 

in this area is warranted. Although the use of `switching' methods seem more 

appropriate in the estimation of missing values arising from line dropout (due 

to the availability of the information in the 'local' neighbourhood of the missing 

lines), they can also be reasonable alternatives as methods to estimate missing 

values arising from cloud cover, if it is believed that different passages may contamn 

pieces of information that are individually more appropriate for the template date 

methods being considered. 

It is important to realize, however, that the development of a `switching' 

method should be specific for the characteristics of the image where the missing 

values occur, and involves the analysis of the data in this passage, as well as in 

other passages acquired in different bands, and/or different dates. The results 

in Chapter 4 are important to rule out the application of methods which do not 

perform well generally. 

Although the methods that use spatial modelling may have better estimates 

of the missing values occurring over reasonably homogeneous areas, the estimates 

are usually not significantly better than those obtained for the method of linear 
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interpolation (in the case of the missing values arising from line-drop), or possibly 

for other methods which use a reasonable form of spatial interpolation (in the case 

of clusters of missing values). Moreover, the methods that use spatial modelling 

have several drawbacks that need to be taken into consideration. They are much 

more computing demanding than other simpler methods, and may not be easily 

implemented, if the number of missing values is large. It has been pointed out that 

some simplification can be achieved if a fixed value for the dependence parameter 

# is assumed, as usually the maximum likelihood estimates for this parameter, 

for most of the situations investigated here, are near the boundary (upper limit). 

This, however, does not completely ameliorate the problem when the number of 

missing values is large. 

Another problem in the application of methods that use spatial modeffing 

is the fact that these methods are expected to work well for data that are rea-

sonably homogeneous, or when the non-homogeneity of the data is adequately 

accounted for. The methods using trend surface analyses in this study have not 

been adequate to remove the heterogeneity of the data. It is possible that the 

application of methods that use a 'step function', for instance, to account for the 

non-stationarity on the mean, due to the presence of different types of land cover 

in the imagery, may improve the estimates of the missing values for methods 

using spatial modelling. This is another area which needs to be further explored. 

In the case of missing values occurring in large clusters, it is not expected 

that single band methods should perform well, unless the missing values occur 

in areas which are very homogeneous. The form of spatial interpolation implied 

by the methods that use spatial modelling studied here requires that the data 

in the neighbourhood of the missing values be `relatively' similar to those that 

are missing, if good estimates are desired. Since it is not always reasonable to 

assume that remotely sensed data are homogeneous, particularly if data from 

the entire image is considered, then other methods of estimation may be more 

adequate than the single band methods studied here. It is important to bear 

in mind the undue difficulties in obtaining sensible estimates of missing values 

occurring in large clusters, due both to the 'natural' heterogeneity of the data, 

and the likelihood of changes in land cover occurring between the passages, over 

more extensive areas. Still, an overall better performance of the template date 

methods than the single band methods can possibly be expected, in this case. 
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The examples provided for some specific cases of conditional autoregressive, 

and simultaneous autoregressive processes show that the loss of information on the 

mean, for low values of the parameters of the models, can be quickly and efficiently 

computed using the approximate formulae, which does not involve the analytic 

inversion of a matrix, which is only feasible for a small number of missing values. 

Besides, from the approximate formulae, it is possible to have a good insight into 

which configurations of the missing sites lead to larger loss. The results show 

that under positive dependence, for a given number of missing sites, a cluster of 

missing sites (as that occurring from cloud cover) is more serious than a missing 

line (as that occurring from line dropout). Although the approximation formulae 

were restricted to second-order terms in the parameters, higher order terms could 

be included, which would involve longer paths in S(z). Also, although it has been 

assumed that the processes have a constant mean, it is possible to allow the mean 

to include trend and other fixed effects. It is also possible to obtaine results for 

other processes, such as multivariate and spatial-temporal processes, and more 

results on the loss of information on the model parameters, i3k . Exact formulae 

for the loss on ¡c, for higher order CAR and SAR processes, and for a larger 

number of missing values can also be obtained. Ali these possibilities are open 

for further research. 
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Appendix A 

Tables for Chapter 3 
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Table A.1: Sample autocorreiations rg,h for g = 0, ... , 19, and h:---- -6, ... , 6 and 
±19: D1(13). 

I, AG II 	O  1 2 3 4 5 6 7 8 9 
-19 

. . 

0.141 0.141 0.150 0.158 

. 

0.176 0.177 0.182 
. . . 

0.180 0.172 0.157 

-6 0.414 0.420 0.411 0.398 0.374 0.357 0.338 0.325 0.308 0.281 -5 0.475 0.464 0.452 0.431 0.409 0.387 0.362 0.344 0.327 0.300 -4 0.545 0.521 0.490 0.459 0.437 0.419 0.390 0.365 0.343 0.316 -3 0.626 0.591 0.534 0.489 0.461 0.448 0.419 0.387 0.358 0.331 -2 0.729 0.676 0.598 0.536 0.491 0.467 0.441 0.405 0.372 0.341 -1 0.872 0.777 0.669 0.579 0.516 0.474 0.445 0.408 0.374 0.340 0 1.000 0.842 0.703 0.591 0.521 0.465 0.432 0.395 0.360 0.327 1 0.872 0.803 0.687 0.584 0.509 0.454 0.420 0.384 0.351 0.316 2 0.729 0.709 0.634 0.558 0.491 0.441 0.404 0.372 0.341 0.307 3 0.626 0.613 0.569 0.517 0.465 0.421 0.385 0.357 0.329 0.299 4 0.545 0.528 0.503 0.470 0.430 0.392 0.361 0.336 0.313 0.288 5 0.475 0.455 0.435 0.418 0.395 0.363 0.339 0.315 0.295 0.276 6 
. 

0.414 0.392 0.370 0.363 0.354 0.338 0.315 0.296 0.281 0.270 
• . . 

. 
• . 

19 0.141 0.139 0.153 0.167 0.175 0.179 0.173 0.151 0.135 0.132 
GAG U 	10  II 12 13 14 15 16 17 18 19 	I 
-19 	II 0.151 0.145 0.141 0.127 0.117 0.096 0.072 0.047 0.027 0.007 1 

-6 
-5 
-4 
-3 
-2 
-1 

0.250 
0.266 
0.281 
0.297 
0.307 
0.304 

0.222 
0.239 
0.252 
0.265 
0.274 
0.270 

0.193 
0.211 
0.225 
0.238 
0.244 
0.239 

0.178 
0.192 
0.206 
0.218 
0.219 
0.212 

0.167 
0.183 
0.192 
0.200 
0.203 
0.197 

0.158 
0.169 
0.174 
0.178 
0.182 
0.177 

0.150 
0.156 
0.152 
0.153 
0.159 
0.161 

0.134 
0.135 
0.135 
0.137 
0.138 
0.142 

0.118 
0.119 
0.118 
0.121 
0.126 
0.129 

0.106 
0.108 
0.109 
0.114 
0.118 
0.120 0 0.294 0.261 0.231 0.205 0.188 0.168 0.157 0.149 0.137 0.127 1 0.284 0.253 0.226 0.203 0.182 0.168 0.156 0.154 0.148 0.142 2 0.276 0.246 0.220 0.203 0.184 0.170 0.158 0.156 0.154 0.150 3 0.273 0.245 0.221 0.200 0.186 0.171 0.162 0.157 0.158 0.155 4 0.266 0.245 0.227 0.207 0.192 0.175 0.168 0.160 0.160 0.154 5 0.263 0.247 0.234 0.219 0.203 0.185 0.173 0.164 0.157 0.149 6 0.259 0.246 0.237 0.229 0.216 0.199 0.181 0.172 0.163 0.152 

• 
. . 

. 
19 0.142 0.152 0.158 0.152 0.154 0.158 0.171 0.171 0.169 0.167 
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Table A.2: Sample autocorrelations r9,h for g = O, ,19, and h = -6, 	, 6 and 
±19: D1 (14). 

I LAG 11 	O 1 2 3 4 5 6 7 8 9 	I 
-19 

• . 

-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 

. . 
• 

19 

0.197 

0.545 
0.599 
0.657 
0.727 
0.810 
0.919 
1.000 
0.919 
0.810 
0.727 
0.657 
0.599 
0.545 

0.197 

0.201 

0.536 
0.584 
0.638 
0.698 
0.764 
0.837 
0.894 
0.884 
0.825 
0.748 
0.672 
0.606 
0.548 

. 

0.197 

0.204 

0.526 
0.564 
0.608 
0.657 
0.712 
0.761 
0.788 
0.792 
0.774 
0.735 
0.679 
0.614 
0.554 

0.201 

0.209 
. . . 

0.511 
0.544 
0.577 
0.615 
0.660 
0.695 
0.708 
0.710 
0.698 
0.676 
0.649 
0.609 
0.558 

• . . 
0.206 

0.212 

0.488 
0.517 
0.548 
0.578 
0.610 
0.634 
0.643 
0.646 
0.633 
0.612 
0.591 
0.573 
0.550 

0.211 

0.214 

0.458 
0.485 
0.516 
0.547 
0.570 
0.583 
0.586 
0.586 
0.574 
0.558 
0.538 
0.523 
0.511 

0.218 

0.207 
. . . 

0.425 
0.450 
0.481 
0.511 
0.531 
0.538 
0.537 
0.534 
0.521 
0.506 
0.489 
0.475 
0.464 

• . . 
0.227 

0.197 

0.392 
0.417 
0.444 
0.470 
0.488 
0.494 
0.491 
0.489 
0.477 
0.461 
0.445 
0.432 
0.422 

0.232 

0.190 

0.359 
0.384 
0.406 
0.426 
0.441 
0.449 
0.447 
0.446 
0.437 
0.423 
0.408 
0.394 
0.385 

0.236 

0.179 - 

0.327 
0.346 
0.365 
0.384 
0.396 
0.404 
0.407 
0.408 
0.400 
0.385 
0.372 
0.360 
0.349 

0.240 
1 LAG lj 	10 11 12 13 14 15 16 17 18 19 	i 

-19 
. . 

-6 
-5 
-4 
-3 
-2 
-1 

O 
1 
2 
3 
4 
5 
6 
• . 
. 

19 

0.168 

0.300 
0.314 
0.327 
0.343 
0.355 
0.364 
0.367 
0.373 
0.368 
0.353 
0.337 
0.326 
0.317 

0.251 

0.156 

0.278 
0.290 
0.299 
0.309 
0.319 
0.328 
0.333 
0.339 
0.335 
0.323 
0.309 
0.296 
0.285 

0.263 

0.141 

0.259 
0.269 
0.275 
0.281 
0.287 
0.291 
0.294 
0.301 
0.299 
0.288 
0.277 
0.266 
0.254 

0.255 

0.118 
• . . 

0.235 
0.246 
0.250 
0.253 
0.257 
0.260 
0.261 
0.264 
0.262 
0.251 
0.241 
0.234 
0.225 

. . . 
0.230 

0.095 

0.202 
0.215 
0.223 
0.226 
0.229 
0.230 
0.230 
0.229 
0.223 
0.214 
0.205 
0.197 
0.192 

0.212 

0.073 

0.173 
0.183 
0.191 
0.198 
0.202 
0.202 
0.199 
0.196 
0.188 
0.178 
0.167 
0.159 
0.157 

0.199 

0.054 
• . . 

0.147 
0.154 
0.158 
0.163 
0.171 
0.174 
0.169 
0.163 
0.155 
0.147 
0.138 
0.131 
0.129 

. . . 
0.182 

0.040 

0.123 
0.129 
0.134 
0.137 
0.140 
0.144 
0.143 
0.139 
0.131 
0.121 
0.116 
0.115 
0.115 

0.163 

0.027 

0.104 
0.108 
0.113 
0.117 
0.119 
0.121 
0.120 
0.118 
0.114 
0.104 
0.098 
0.100 
0.104 

0.141 

0.017 

0.085 
0.094 
0.100 
0.104 
0.106 
0.107 
0.104 
0.101 
0.096 
0.088 
0.086 
0.088 
0.092 

0.117 
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Table A.3: Sample autocorrelations r91h  for g = 0, ... ,19, and h = -6, ... , 6 and 
±19: D 1 (15). 

I LAG 11 	O  1 2 3 4 5 6 7 8 9 
-19 

. 
0.116 0.119 0.124 0.130 

. 
0.135 0.141 0.139 

. 
0.134 0.127 0.115 

• . ' 
-6 
-5 

0.584 0.587 0.587 0.577 0.556 0.535 0.509 0.483 0.455 0.421 

-4 
0.640 0.633 0.622 0.611 0.590 0.565 0.536 0.508 0.479 0.445 0.697 0.683 0.659 0.640 0.616 0.591 0.558 0.527 0.497 0.461 -3 

-2 
0.758 0.738 0.700 0.668 0.638 0.610 0.577 0.540 0.508 0.473 0.828 0.797 0.749 0.702 0.661 0.626 0.594 0.556 0.522 0.487 -1 

0 
0.923 0.868 0.802 0.738 0.682 0.638 0.604 0.568 0.534 0.496 

1 
1.000 0.915 0.825 0.751 0.688 0.638 0.599 0.564 0.531 0.495 

2 
0.923 0.889 0.811 0.740 0.679 0.627 0.586 0.553 0.524 0.492 

3 
0.828 0.824 0.780 0.720 0.663 0.613 0.572 0.540 0.512 0.482 

4 
0.758 0.758 0.737 0.693 0.642 0.594 0.552 0.520 0.494 0.467 

5 
0.697 0.697 0.685 0.655 0.611 0.566 0.525 0.496 0.471 0.445 

6 
0.640 0.636 0.621 0.605 0.573 0.537 0.502 0.472 0.448 0.424 0.584 0.576 0.562 0.550 0.533 0.506 0.477 0.449 0.425 0.402 

. . 
• ' 19 0.116 0.121 0.130 0.144 0.146 0.144 0.138 0.131 0.124 0.119 

LAG li 	10 11 12 13 14 15 16 17 18 19 	I 
-19 

: 
0.104 0.097 0.085 0.073 

. 
0.054 0.035 0.017 

. 
-0.003 -0.023 -0.042 

• . . 
-6 
-5 

0.390 0.358 0.325 0.300 0.276 0.255 0.240 0.224 0.212 0.197 

-4 
0.411 0.379 0.344 0.318 0.294 0.271 0.254 0.235 0.219 0.203 

-3 
0.426 0.393 0.359 0.331 0.307 0.282 0.260 0.239 0.221 0.205 0.438 0.405 0.373 0.344 0.316 0.288 0.264 0.243 0.226 0.211 -2 0.454 0.419 0.386 0.355 0.324 0.296 0.272 0.252 0.235 0.219 -1 

O 
0.463 0.427 0.390 0.359 0.328 0.297 0.274 0.256 0.240 0.224 0.461 0.427 0.391 0.357 0.326 0.295 0.273 0.257 0.242 0.227 1 

2 
0.458 0.424 0.391 0.358 0.327 0.297 0.273 0.257 0.244 0.227 

3 
0.453 0.420 0.385 0.353 0.321 0.293 0.269 0.252 0.241 0.227 0.439 0.407 0.372 0.340 0.308 0.280 0.258 0.242 0.233 0.222 4 

5 
0.419 0.390 0.358 0.328 0.298 0.270 0.251 0.238 0.229 0.218 0.402 0.376 0.347 0.318 0.292 0.267 0.249 0.238 0.228 0.219 6 0.383 0.358 0.333 0.309 0.285 0.264 0.247 0.237 0.230 0.223 

: . 
. . 

19 0.121 0.126 0.130 0.137 0.147 0.157 0.169 0.178 0.186 0.196 
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Table A.4: Sample autocorrelations r 9 ,11  for g = O, ,19, and h = -6, , 6 and 
±19: D2(14). 

I LAG il 	O  1 2 3 4 5 6 7 8 9 	I 
-19 

. . 

-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 

19 

- 0.132 

0.546 
0.610 
0.678 
0.750 
0.831 
0.926 
1.000 
0.926 
0.831 
0.750 
0.678 
0.610 
0.546 

0.132 

0.132 

0.530 
0.589 
0.652 
0.719 
0.791 
0.868 
0.928 
0.891 
0.821 
0.751 
0.683 
0.616 
0.552 

0.129 

0.132 

0.501 
0.554 
0.607 
0.665 
0.726 
0.788 
0.838 
0,827 
0.785 
0.732 
0.674 
0.613 
0.551 

0.123 

0.131 
. . . 

0.462 
0.509 
0.555 
0.603 
0.656 
0.709 
0.754 
0.756 
0.735 
0.698 
0.650 
0.596 
0.541 

• . . 
0.116 

0.130 

0.418 
0.460 
0.501 
0.546 
0.593 
0.640 
0.680 
0.688 
0.679 
0.655 
0.617 
0.572 
0.525 

0.107 

0.127 

0.375 
0.412 
0.450 
0.490 
0.533 
0.575 
0.611 
0.619 
0.619 
0.605 
0.579 
0.545 
0.504 

0.098 

0.121 
. . . 

0.333 
0.367 
0.401 
0.438 
0.476 
0.514 
0.546 
0.555 
0.560 
0.555 
0.536 
0.511 
0.477 

• . . 
0.093 

0.116 

0.293 
0.325 
0.357 
0.391 
0.425 
0.460 
0.489 
0.499 
0.507 
0.507 
0.495 
0.476 
0.448 

0.089 

0.110 

0.260 
0.289 
0.317 
0.346 
0.378 
0.412 
0.439 
0.450 
0.459 
0.464 
0.456 
0.442 
0.419 

0.088 

0.104 

0.233 
0.259 
0.283 
0.307 
0.337 
0.370 
0.396 
0.406 
0.417 
0.425 
0.421 
0.412 
0.395 

0.090 

1 LAG 	ii 	io 	 11 12 13 14 15 16 17 18 19 	I 
-19 

. 
• 

-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
• . 
- 

19 

0.098 

0.210 
0.232 
0.255 
0.276 
0.303 
0.333 
0.356 
0.365 
0.377 
0.387 
0.388 
0.384 
0.372 

0.099 

0.090 

0.188 
0.207 
0.228 
0.246 
0.271 
0.298 
0.320 
0.327 
0.337 
0.350 
0.354 
0.354 
0.346 

0.109 

0.080 

0.166 
0.181 
0.200 
0.217 
0.239 
0.263 
0.282 
0.288 
0.298 
0.313 
0.321 
0.325 
0.318 

0.117 

0.069 
. . . 

0.144 
0.154 
0.169 
0.185 
0.206 
0.226 
0.240 
0.247 
0.259 
0.275 
0.286 
0.293 
0.289 

• . . 
0.120 

0.057 

0.123 
0.131 
0.141 
0.152 
0.170 
0.190 
0.204 
0.211 
0.224 
0.239 
0.250 
0.259 
0.259 

0.119 

0.044 

0.102 
0.109 
0.116 
0.123 
0.138 
0.157 
0.169 
0.176 
0.187 
0.200 
0.211 
0.221 
0.225 

0.115 

0.031 
• . . 

0.079 
0.084 
0.091 
0.096 
0.108 
0.124 
0.136 
0.141 
0.148 
0.160 
0.170 
0.181 
0.186 

• . . 
0.106 

0.020 

0.055 
0.059 
0.064 
0.069 
0.079 
0.091 
0.101 
0.105 
0.111 
0.120 
0.130 
0.141 
0.147 

0.091 

0.011 

0.028 
0.031 
0.037 
0.042 
0.052 
0.060 
0.066 
0.069 
0.076 
0.084 
0.092 
0.103 
0.109 

0.074 

0.009 

0.005 
0.007 
0.013 
0.019 
0.026 
0.032 
0.035 
0.037 
0.044 
0.051 
0.057 
0.065 
0.069 

0.054 
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Table A.5: Sample autocorrelations rg ,h for g = O, 	, 19, and h -6, ... , 6 and 
±19: D2(15). 

I  LAG fi 	O  1 2 3 4 5 6 7 8 9 	j 
-19 0.262 0.275 0.283 0.279 0.273 0.267 0.258 0.232 0.188 0.144 

-6 
-5 

0.675 0.670 0.645 0.597 0.538 0.478 0.421 0.368 0.320 0.274 

-4 
0.729 0.721 0.687 0.631 0.568 0.507 0.448 0.393 0.343 0.298 

-3 
0.785 0.773 0.727 0.664 0.599 0.536 0.475 0.420 0.369 0.321 

-2 
0.842 0.823 0.766 0.698 0.630 0.565 0.503 0.447 0.395 0.346 0.900 0.869 0.804 0.732 0.662 0.596 0.533 0.475 0.421 0.371 -1 

O 
0.960 0.915 0.842 0.768 0.697 0.629 0.565 0.505 0.450 0.397 

1 
1.000 0.948 0.874 0.800 0.729 0.661 0.596 0.534 0.477 0.422 

2 
0.960 0.932 0.878 0.816 0.751 0.687 0.622 0.560 0.502 0.447 

3 
0.900 0.883 0.850 0.806 0.754 0.699 0.640 0.581 0.525 0.471 

4 
0.842 0.828 0.803 0.772 0.735 0.691 0.642 0.590 0.539 0.488 

5 
0.785 0.772 0.751 0.726 0.699 0.666 0.626 0.583 0.539 0.494 0.729 0.715 0.697 0.676 0.654 0.629 0.598 0.563 0.525 0.488 6 0.675 0.660 0.643 0.625 0.606 0.584 0.558 0.530 0.501 0.470 

19   0.262 0.242 0.221 0.198 0.175 0.153 0.131 0.112 0.099 0.090 I LAG 	Il 	10 11 12 13 14 15 16 17 18 19 	1 
-19 ' 0.102 0.061 0.023 -0.015 -0.050 -0.080 -0.104 -0.123 -0.138 -0.147 

-6 
-5 

0.228 0.184 0.145 0.110 0.080 0.053 0.027 0.006 -0.009 -0.022 0.250 0.206 0.166 0.131 0.100 0.073 0.048 0.028 0.013 0.000 -4 
-3 

0.273 0.229 0.189 0.153 0.121 0.093 0.069 0.049 0.034 0.021 0.297 0.253 0.213 0.176 0.143 0.115 0.093 0.073 0.058 0.044 -2 0.322 0.278 0.237 0.200 0.167 0.139 0.117 0.098 0.083 0.067 -1 0.347 0.302 0.261 0.223 0.190 0.164 0.141 0.121 0.106 0.090 O 0.371 0.326 0.284 0.246 0.213 0.187 0.165 0.145 0.129 0.114 1 0.396 0.349 0.307 0.269 0.238 0.213 0.191 0.173 0.156 0.140 2 0.420 0.373 0.330 0.293 0.263 0.240 0.219 0.200 0.183 0.167 3 0.440 0.394 0.352 0.317 0.289 0.267 0.246 0.227 0.210 0.193 4 0.450 0.407 0.368 0.337 0.311 0.290 0.272 0.253 0.235 0.217 5 
6 

0.449 0.411 0.377 0.349 0.328 0.309 0.293 0.276 0.260 0.242 

7 
0.438 0.406 0.378 0.355 0.337 0.322 0.309 0.295 0.281 0.263 0.417 0.391 0.369 0.352 0.339 0.327 0.318 0.308 0.296 0.279 

19 0.083 0.079 0.079 0.082 0.087 0.095 0.103 0.107 0.108 0.107 
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Table B.1: Values for SRMS (x100): D 1 . 

OT  
TEMPLATE BAND  

LR 	LI 1 CSP 1 TB-1 1 TB-2 1 TB-3 	TB-4 1 TB-5 1 TB-6 I TB -7 1 TB-8 1 TB-9 1 TB-10 
D1(13)(14)  54 40 41 133 49 100 98 90 43 49 60 70 58 D1(23)(24)  56 -  42 43 140 52 104 100 -- 	90 46 51 66 70 -- 	64 Dl (33)(34)  53 38 41 148 44 118 100 89 44 49 63 65 59 D1(13)(15)  54 40 41 73 41 58 69 - 	64 39 41 50 70 58 D1(23)(25)  56 42 43 76 44 ' 60 70 64 42 43-  54 70 . 	64 D1(33)(35)  53 38 41 69 40 55 65 59 40 41 51 65 59 D1(14)(13)  46 32 -- 33 133 49 99 98 84 36 43 55 99 76-  D i  (24)(23)  48 34 33 140 52 102 -- 100 86 38 46 59 99 78 D1(34)(33)  51 36 37 148 53 ' 113 ' 	100 83 41 48 61 99 77 Dl (14)(15)  46 32 -- 33 130 44 97 99 83 40 49 55 99 . 	76 Dl (24)(25)  48 34 33 141 45 106 100 81 42 56 56 99 78 Dl (34)(35)  51 36 37 149 46 113 99 77 48 56 61 99 77 D l  (15)(13)  41 29 29 74 41 56 69 63 34 35 35 69 58 D1(25)(23)  41 29 30 - 76 45 57 71 65 36 46 38 71 59 D1(35)(33)  40 28 29 69 42 53 65 59 34 35 35 65 53 D1(15)(14)  41 - 29 29 130 44 97 99 87 32 39 46 69 58 D1(25)(24) 41 29 30 141 45 106 100 85 35 41 46 71 59 D1(35)(34)  40 28 29 149 47 113 99 82 35 42 46 65 53 

OT  
TEMPLATE DATE 

LR 	LI 1 CSP 1 TD-1 1 TD-2 	TD-3 1 TD-4 1 TD-5 1 TD-6 1 TD-7 1 TD-8 1 TD-9 1 TD-10 
D1(13)(23)  54 40 41 50 45 41 49 47 41 40 43 49 47 . D1(23)(13)  56 42 43 50 46 42 49 46 - 	42 41 44 44 42 Dl  (33)(23)  53 38 41 61 48 46 57 53 45 43 46 57 51 D1(14)(24)  46 32 33 57 33 46 54 49 30 30 33 55 46 Dl (24)(14)  48 34 33 57 32 45 54 	' 47 31 33 35 41 37 D1(34)(24)  51 36 37 54 38 43 52 48 37 37 41 52 46 D1(15)(25)  41 29 ' 29 35 32 28 35 32 32 31 31 32 31 D1(25)(15)  41 29 30 35 32 28 35 32 32 31 32 31 - 	31 D1(35)(25) 40 28 29 40 33 32 39 37 33 33 ' 33 36 35 
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Table B.2: Values for CCOR (x100): D1. 

--. 

OT 
TEMPLATE BAND  

LR I LI I CSP I TB-1 1.  TB-2 1 TB-3 I TB-4 I TB-5 1 TB-6 1 TB-7 [ TB-8 I TB-9 I TB-10 
D1(13)(14)  1 	151 85 90 918 122 624 918 575 98 125 194 280 198 - D1(23)(24)  157 92 98 988 141 686 988 582 112 136 215 294 223 D1(33)(34)  136 79 86 874 106 822 874 --- 	559 102 125-  195 239 192 D1(13)(15)  

- 
151 85 90 280 90 183 280 230 84 88 131 280 198 D1(23)(25)  157 - 92 98 295 102 193 295 238 94 98 144 294 223 D1(33)(35)  136 79 86 240 87 ' 152 240 201 84 85 126 239 192 D1(14)(13)  107 56 56 918 117 595 918 478 70 98 154 850 358 D1(24)(23)  118 62 ' 59 988 135 653 988 497 80 112 177 964 378 D1(34)(33)  133 71 70 874 141 804 -- 874 453 90 123 188 868 357 D1(14)(15)  107 56 56 854 99 555 854 439 - 84 121 157 850 358 D1 (24)(25)  "- 118 62 59 984 105 698 984 421 92 138 165 964 . 	378 Dl (34)(35)  133 71 "- 70 878 112 802 878 377 114 - 	159 189 868 357 D1(15)(13)  87 44 43 280 83 169 280 231 59 61 62 276 181 Dl (25)(23)  87 44 45 295 94 .- 176 295 244 64 105 71 294 193 D1(35)(33)  83 42 43 240 82 147 240 190 59 61 62 240 154 D1(15)(14)  _ 	87 44 43 854 97 561 854 514 54 78 108 276 181 D1(25)(24)  87 44 45 984 101 705 984 475 61 88 112 294 193 D1  (35) (34)  83 42 43 878 106 807 878 431 61 90 108 240 154 

OT  
TEMPLATE DATE 

LR 1__ LI 1 CSP 	TD - 1 1 TD- 2 1 TD-3 _ TD-4 I TD- 5 1 TD - 6 	TD- 7 1 TD-8 1 TD-9 	TD-10 
D1(13)(23)  151 85 90 136 99 94 136 116 90 85 96 130 117 D1(23)(13)  157 92 98 136 100 91 136 107 91 86 98 102 89 D1(33)(23)  136 79 86 183 117 113 183 147 102 97 112 175 138 D1(14)(24)  107 56 56 166 52 113 166 131 47 48 52 166 114 D1(24)(14)  118 62 59 166 53 110 166 119 51 56 61 88 70 D1(34)(24)  133 71 70 147 74 97 147 124 80 74 86 147 112 D1(15)(25)  87 44 43 63 51 43 63 55 51 48 48 54 48 D1(25)(15)  87 44 45 63 51 41 63 54 53 49 52 50 47 D1(35)(25) 83 42 43 80 55 53 80 74 55 55 58 69 60 
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Table B.3: Values for SRAN: 

OT 
TEMPLATE BAND  

LR I LI I CSP I TB-1 I T13-2 I TB-3 I TB-4 I TB-5 I TB-6 1 TB-7 I TB-8 I TB-9 I TB-10 
Dl (13)(14)  6.9 5.6 5.2 9.8 7.3 7.1 6.7 6.6 5.6 6.6 7.3 5.8 6.6 
Dl (23)(24)  8.0 6.4 5.2 11.4 8.0 9.2 - 	6.4 7.6 5.6 7.4 9.8 6.8 6.8 
Dl (33)(34)  6.9 5.1 5.1 8.7 6.1 6.9 7.5 7.3 '- 	7.5 6.5 7.5 5.3 5.5 
D1(13)(15)  '- 6.9 5.6 5.2 6.0 4.9 5.0 5.8 6.2 - 	6.2 6.0 9.2 5.8 6.6 
Dl (23)(25)  8.0 6.4 5.2 7.2 5.6 6.2 6.6 6.8 6.4 7.2 10.4 6.8 6.8 Dl  (33)(35)  ..., 6.9 5.1 5.1 5.5 5.1 4.6 5.5 5.3 6.7 - 	6.5 8.5 5.3 5.5 
Dl (14)(13)  5.1 3.9 4.1 9.7 7.4 8.3 6.6 6.2 - 6.9 6.9 8.8 6.4 6.6 
Dl (24)(23)  5.5 4.4 4.6 11.2 7.9 6.3 6.8 7.0 6.2 6.3 8.2 7.0 7.3 
Dl (34)(33)  5.4 4.4 4.5 8.7 7.0 ' 5.4 6.7 6.8 6.5 6.6 6.1 6.8 7.0 
Dl (14)(15)  5.1 3.9 4.1 7.2 6.3 5.5 6.5 6.9 8.6 8.4 6.6 6.4 6.6 
D1 (24)(25)  5.5 4.4 4.6 7.2 5.6 5.0 6.8 7.5 8.9 8.9 7.8 7.0 7.3 
Dl (34)(35)  5.4 4.4 4.2 6.9 5.3 7.7 6.9 6.8 10.0 10.0 7.4 6.8 7.0 
Dl (15)(13)  5.7 4.1 4.4 5.9 4.7 5.0 4.7 4.6 3.8 4.4 4.4 4.6 5.3 - Dl (25)(23)  5.5 3.8 4.0 7.3 5.5 4.3 6.1 4.8 4.4 4.9 5.0 6.1 5.0 

_Dl  (35)(33)  4.7 3.6 3.8 5.5 5.2 5.9 4.7 4.6 3.8 4.7 4.6 4.7 3.9 
D l  (15)(14)  5.7 4.1 4.4 7.2 6.3 5.0 5.1 5.8 5.1 6.5 5.7 4.6 5.3 
Dl (25)(24)  5.5 3.8 4.0 7.2 5.6 5.3 5.8 6.5 7.0 7.0 5.3 6.1 5.0 ' Dl (35)(34) 4.7 3.6 3.8 7.0 5.3 5.4 6.2 6.7 6.6 7.2 4.9 4.7 3.9 

OT 
TEMPLATE DATE 

LR 1 LI 1 CSP 1 TD-1 .1 TD-2 I TD-3 I TD-4 TD-5 	TD-6 I TD-7 	TD-8 I TD-9 	TD-10 
Dl  (13)(23)  6.9 5.6 5.2 7.5 5.6 3.9 7.1 6.0 6.2 6.2 5.8 6.7 6.4 
Dl (23)(13)  8.0 6.4 5.2 7.6 5.6 4.6 6.8 5.6 5.8 5.8 6.0 5.4 5.2 
Dl (33)(23)  6.9 5.1 5.1 7.3 7.3 5.5 6.7 6.3 - 	6.7 6.7 7.9 6.3 6.5 
Dl (14)(24)  5.1 3.9 4.7 6.6 4.8 4.8 6.1 5.9 4.8 5.0 - 	5.2 6.1 6.0 
Dl (24)(14)  5.5 4.4 4.6 6.6 4.7 5.0 6.1 5.7 4.7 4.7 5.0 5.1 4.8 
Dl (34)(24)  5.4 4.4 4.5 7.1 5.4 4.8 6.6 5.9 5.6 5.4 6.5 6.6 6.7 
DI (15)(25)  5.7 4.1 4.4 4.8 - 4.8 3.6 4.8 4.8 4.9 4.8 4.9 4.1 4.3 
Dl (25)(15)  5.5 3.8 4.0 4.8 4.8 3.9 4.6 4.6 7.3 5.4 5.5 4.2 4.3 Dl  (35)(25) 4.7 3.6 3.8 5.4 5.0 4.4 5.4 5.3 4.9 5.5 5.7 5.3 5.7 
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Table B.4: Values for ACC (x100): D 1 . 

I 	OT  11 	
TEMPLATE BAND  

LR 1 LI I CSP 1 TB-1 1 TB-2 1 TB-3 -1 TB-4] TB-5 1 TB-6 1 TB-7 [ TB-8 f TB-9 1 TB-10 1 
D1(13)(14)  21 12 18 74 a  17 65 54 51 14 17 25 38 30 D1(23)(24)  33 12 18 71 34 72 47 43 14 13 30 37 29 D1(33)(34)  17-  10 16 78 13 61 42 38 12 16 23 29 24 D1(13)(15)  21 12 18 44 15 35 38 34 -  13 - 	33-  13 38 - 	30 D1(23)(25)  33 12 18 43 15 34 37 31 13 24 14 37 29 D1(33)(35)  - 17 - 10 16 35 12 22 29 25 23 ' 	10 10 29 24 D1(14)(13)  12 9 7 b  75 13 56 48 40 7 10 16 43 31 D1(24)(23)  13 10 10 b  73 15 

. 	
54 50 41 8 10 18 38-  33 D1(34)(33)  -- 13 11 ' 8 b  62 13 55 ' 	49 37 9 12 18 48 31 D1(14)(15)  ' 12 9 7 b  70 ' 11 - 60 50 37 7 16 12 43 31 D1(24)(25)  13 10 10 b  68 12 64 50 36 9 17 11 38 33 Dl (34)(35)  - 13 11-  8b 72 11 64 48 33 17 18 22 48 31 D1(15)(13)  31 12 16 89 38 77 70 72 14 26 39 59 44 

- D1(35)(33)  18 10 15 91 22 78 63 67 21 13 23 53 41 Di(25)(23)  17 10 14 88 23 77 72 - 63 - 21 	. 26 - 23 47 35 . D1(15)(14)  31 12 16 72 25 47 55 50 18 18 17 59 44 D1(25)(24)  18 10 15 69 23 44 53 48 16 17 29 53 41 D1(35)(34)  17 10 14 47 21 38 47 - 	40 _ 15 15 15 47 35 1 	OT 	11 	 
 TEMPLATE DATE 

LR 1 LI 1 CSP 1 TD-1 1 TD-2 1 TD-3 1 TD-4 1 TD-5 1 TD-6 1 TD-7 1 TD-8 1 TD-9 1 TD-10 I 
D1(13)(23)  21 12 18 33 18 19 21 19 15 13 15 20 18 D1(23)(13)  33 12 18 24 14 18 18 16 13 12 14 14 ' 12 D1(33)(23)  17 10 16 10 16 19 21 - 	18 14 13 15 20 17 D1(14)(24)  12 9 7 16 5 13 11 10 4 5 5 11 10 Di(24)(14)  13 10 10 17 5 13 13 11 5 6 6 10 7 D1(34)(24)  13 11 8 a  18 7 13 13 12 7 7 8 13 10 D1(15)(25)  31 12 16 18 13 13 17 16 13 13 13 15 14 Di(25)(15)  18 10 15 17 11 10 15 13 22 11 11 11 10 D1(35)(25) 17 10 14 15 12 12 17 15 12 11 12 15 13 

anumber of pixels within the range ±5 grey leveis 
bnurriber of pixels within the range ±8 grey leveis 
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Table B.6: Values for SRMS (x100): D2. 
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Table B.7: Values for CCOR (x100): D2. 

I 	OT 1.1 	
TEMPLATE BAND  

LR 1 LI 1 CSP I TB-1 1 TB-2 I TB-3 I TB-4 1 TB-5 1 TB-6 1 TB-7 1 TB-8 
D2(14)(15)  72 33 32 421 51 250 421 305 42 62 179 D2(24)(25)  104 53 54 559 68 347-  559 385 - 	61 87 217 D2(34)(35)  113 59 66 678 74 411 678 ' 	386 66 86 211 D2(44)(45)  108 53 - 54-  828 70 510 - 	828 449 59 83 217 D2(54)(55)  93 50 53 

-. 	
702 71 422 702 448 59 76 - 	196 D2(64)(65)  92 48 51 862 75 571 862 501 54 ' 	72 200 D2(15)(14)   49 19 ' 19 421 50 251 421 349 29 44 45 

D2(25)(24)  41 15 15 559 64 337 559 365 24 38 47 
- D2(35)(34)  39 13 12 678 69 401 678 474 17 29 47 D2(45)(44)  42 15 13 828 

. 	
66 535 828 555 16 28 55 - D2(55)(54)  48 19 18 702 68 420 702 443 23 35 53 D2(65)(64)  53 - 22 - 21 862 72 537 862 521 23 35 - 61 

I  OT 11  
TEMPLATE DATE 

LR 1 LI 	CSP 1 TD-1 I TD-2 1 TD-3 	TD-4 	TD-5 	TD-6 1 TD-7 	TD-8 
D2(14)(24)  72 33 32 190 49 110 190 153 40 45 61 	- D2(24)(14)  104 53 54 190 51 120 190 163 47 -- 	54 56 
D2(34)(44)  113 59 . 66 97 67 67 97 86 62 - 	63 69 D2(44)(34)  108 53 54 97 67 68 97 86 61 63 66 - D2(54)(64)  93 50 53 113 75 76 113 105 68 70 80 D2(64)(54)  92 48 51 113 75 73 113 97 68 70 74 D2(15)(25)  49 19 19 44 14 30 44 26 15 15 -- 	17 D2(25)(15)  ' 41 15 15 44 14 26 44 26 13 13 12 D2(35)(45)  39 13 12 32 15 20 32 28 15 17 17 D2(45)(35)  42 15 13 32 15 22 32 27 16 18 18 D2(55)(65)  48 19 18 49 27 31 49 44 26 28 29 

. D2(65)(55) 53 22 21 49 27 29 49 44 27 29 30 
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Table B.8: Values for SRAN: D2. 

OT 
TEMPLATE BAND  

LR 1 Li j CSP I TB-1 1 n3-2 I TB-3 1 TB-4 I TB-5 I TB-6 1 TB-7 1 TI3-8 
/72(14)(15)  5.5 3.6 3.8 6.5 4.4 5.2 6.9 7.1 4.2 4.4 10.0 
/72(24)(25)  8.3 5.3 4.4 8.8 5.7 8.1 8.8 7.9 5.7 7.9 13.7 
/12(34)(35)  8.5 5.9 6.1 7.5 5.1 6.1 7.5 7.9 7.5 7.9 9.8 
/32(44)(45)  ' 7.8 4.6 5.5 7.6 5.1 -  6.9 7.5 8.6 6.5 6.3 15.3 
/72(54)(55)  8.0 4.6 4.6 7.2 4.6 6.4 6.7 6.6 5.6 5.3 12.2 
/72 (64)(65)  7.0 5.7 4.9 7.5 5.9 6.0 7.3 7.5 6.2 7.7 8.6 
/72(15)(14)  4.2 3.3 3.4 6.4 4.3 4.8 5.6 6.1 3.6 3.7 3.8 
/72(25)(24)  ' 3.7 2.5 2.5 8.9 5.6 6.4 4.7 6.0 3.9 4.3 5.2 

_ /72(35)(34) - 4.0 2.5 2.7 7.6 5.1 5.7 4.4 5.1 2.7 3.2 5.4 
D2(45)(44)  4.7 2.8 2.8 7.7 5.2 5.8 4.8 5.3 2.9 3.4 5.4 
/72(55)(54)  4.8 3.1 3.2 7.2 4.6 5.8 4.5 5.0 3.3 3.5 4.3 
/72(65)(64) 4.8 2.9 2.6 7.5 5.9 5.7 4.9 5.3 2.9 3.5 4.5 

OT 
TEMPLATE DATE 

LR I LI I CSP I TD-1 1 TI)-2 I 11D-3 I 113-4 1 TD-5 1 113-6 	113-7 I TD-8 
/72(14)(24)  5.5 3.6 3.8 I 	6.8 3.8 4.9 5.8 5.7 4.2 4.6 6.1 
/72(24)(14)  8.3 5.3 4.4 6.8 3.7 6.1 7.0 6.6 3.8 5.3 4.8 
/72(34)(44)  8.5 5.9 6.1 8.3 5.1 6.6 7.7 6.4 5.0 5.5 	' 5.7 
/72(44)(34)  7.8 4.6 5.5 8.2 5.0 6.7 8.2 7.6 4.8 4.8 5.0 
/72(54)(64)  8.0 4.6 4.6 5.9 5.3 - 	4.8 5.4 5.4 5.0 5.0 5.1 
/72(64)(54)  7.0 5.7 4.9 5.9 5.0 4.5 5.7 - 	5.9 5.0 5.2 5.4 
F12(15)(25)  4.2 3.3 3.4 3.2 2.6 2.5 3.1 3.3 2.8 2.5 2.6 
/12(25)(15)  3.7 2.5 2.5 3.2 2.6 2.6 3.1 2.8 2.5 2.2 2.1 
/72(35)(45)  4.0 2.5 2.7 4.0 2.8 3.2 4.0 4.0 3.5 3.7 - 	3.4 
/12(45)(35)  4.7 2.8 2.8 4.0 2.7 3.6 3.9 3.6 3.0 4.1 3.7 
/72(55)(65)  4.8 3.1 3.2 4.3 4.2 3.3 4.3 4.3 4.3 3.7 3.9 
/12(65)(55) 4.8 2.9 2.6 4.4 4.2 3.7 4.4 4.1 5.3 - 	3.7 3.8 
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Table B.9: Values for ACC (x100): D2. 

OT 
TEMPLATE BAND  

LR 1 LI 1 CSP 1 TB-1 1 TB-2 1 TB-3 1 TB-4 1 TB-5 1 TB-6 1 TB-71 TB-8 
D2(14)(15)  16 6 10 72 11 51 68 64 9 13 34 °  
D2(24)(25)  34 8 12 72 11 65 63 56 9 27 32°  
D2(34)(35)  32 9 14 72 12 47 67 61 21 25 28°  
D2(44)(45)  27 7 ' 11 75 10 52 56 61 8 10 26 °  
D2(54)(55)  26' 10 14 74 15 65 70 64 11 	' 15 35°  
D2(64)(65)  31 9 14 78 15 61 74 67 10 26 33' 
D2(15)(14) 31 11 15 84 41 80 83 78 17 37 39 
D2(25) (24)  14  8 11 70 6  48 80 87 81 12 30 37 
D2(35)(34)  22 8 11 85 45 76 92 84 9 14 33 
D2(45)(44)  12 5 8 85 35 80 81 80 6 11 28 
D2(55)(54)  23 7 10 82 43 73 81 77 9 14 20 
D2(65)(64) 15 8 - 11 83 37 75 88 78 9 13 20 

_ 	OT 
TEMPLATE DATE  

LR 1 L1 I_ CSP 1 TD-1 1 TD-2 1 TD-3 1 TD-4 1 TD-5 	TD-6 1 TD-7 I TD -8 
D2(14)(24)  16 6 10 50 11 25 34 31 8 10 15 
D2(24)(14)  34 8 12 26 8 22 25 22 7 8 9 
D2(34)(44)  32 9 14 33 12 11 33 14 10 10 11 
D2(44)(34)  27 7 11 30 10 13 30 27 9 9 9 
D2(54) (64)  26 °  10 14 27 18 18 26 24 15 16 18 
D2(64)(54)  31 9 14 26 14 20 25 22 14 15 16 
D2(15)(25)  31 11 15 31 21 26 29 19 10 6 11 . 
D2(25)(15)  14 8 11 27 8 17 28 16 7 7 6 
D2(35)(45)  22 8 11 30 7 10 29 24 7 8 8 
D2(45) (35)  12 5 8 11 5 11 11 9 5 6 6 
D2(55)(65)  23 7 10 19 10 13 18 17 10 11 11 
D2(65)(55) 15 8 11 17 9 11 17 16 17 10 10 

anumber of pixels within the range ±5 grey leveis 
bnurnber of piseis within the range ±20 grey leveis 
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Table B.11: Values for SRMS (x100) and CCOR (x100) for methods TB/D-1.1 
to TB/D-15: D 1 . 
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Table B.12: Values for SRAN methods TB/D-11 to TB/D-15: D1. 

OT 
TEMPLATE BAND 

SRAN 
TB-11 1 TB-12 1 TB43 1 TB-14 1 TB-15 

D1(13)(14) 5.6 5.6 5.6 5.6 5.6 
D1(23)(24)  6.4 6.4 6.4 6.4 6.6 
D1 (33)(34) 5.1 5.1 5.1 4.8 5.3 
D1(13)(15) 5.6 5.6 4.7 4.7 6.0 
D1(23)(25)  7.0 6.4 5.6 5.6 7.0 
D1(33)(35) 5.1 5.1 5.3 5.3 6.7 
D1(14)(13) 4.4 3.9 4.2 3.8 4.5 
D1(24)(23) 4.9 4.8 4.7 3.8 5.0 
Dl  (34)(33) 6.3 5.4 5.1 4.5 6.3 	' 
D1(14)(15) 3.9 3.9 4.0 3.9 7.6 
D1 (24)(25) 5.9 4.4 4.7 4.4 6.2 
D1(34)(35)  5.1 4.4 5.0 4.5 9.2 
Di(15)(13) 3.9 4.1 4.0 3.8 3.9 
D1(25)(23) 4.2 3.8 4.6 4.5 4.4 	

_ 

D1(35)(33) - 3.9 3.9 4.2 4.4 3.9 
D1(15)(14) 4.1 4.1 4.0 	

_ 
4.2 4.7 

D1(25)(24) 5.1 5.1 4.1 3.8 6.7 
_D1(35)(34) 4.0 3.6 5.3 3.9 6.1 

OT 
TEMPLATE DATE 

SRAN 
TD-11 1 TD-12 1 TD-13 - TD-14 	TD-15 

Di(13)(23)  6.2 6.2 5.6 5.2 5.2 
D1(23)(13)  6.2 6.2 6.2 5.4 5.6 
D1(33)(23) - 5.3 5.3 5.3 6.3 6.1 
D1(14)(24)  5.0 4.8 3.9 4.3 4.3 
D1(24)(14) 4.4 4.4 4.4 4.4 - 	4.7 
D1(34)(24) 5.4 5.4 4.4 5.0 5.0 

. D1(15)(25) 4.9 4.9 4.9 4.6 4.5 
D1(25)(15) 6.1 4.8 3.8 4.8 - 	4.7 
D 1 (35)(25) 4.6 4.2 4.2 4.8 4.9 
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Table B.13: Values for SRMS (x100) and CCOR (x100) for methods TB/D-11 
to TB/D-15: D2- 

OT 
TEMPLATE BAND  

SRMS  CCOR 
 	TB-111 TB-12 1 TB-13 1 TB-14 1 TB-15 TB-11 1 TB-12 	TB-13 I TB-14 1 TB-15 

D2(14)(15)  25 25 25 27 28 34 33 33 39 41 
D2(24)(25)  32 32 32 33 33 54 53 53 56 59 D2(34)(35)  34 34 - 34 34 34 60 59 59 61 61 D2(44)(45) 32 32 	_ 32 32 32 54 53 53 54 54 
D2(54)(55)  30 30 30 32 32 53 50 50 52 54 D2(64)(65)  32 31 31 30 31 49 48 48 49 51 
D2(15)(14)  20 19 19 24 24 21 20 20 30 30 
D2(25)(24)  18 17 17 22 24 - 	17 16 16 25 29 	

_ 
D2 (35)(34)  16 16 16 19 22 ' 	14 13 13 19 25 
D2(45)(44)  17 17 17 18 - 	19 15 15 15 17 19 
D2(55) (54)  19 19 19 21 - 	24 19 19 19 24 30 
D2(65)(64)  20 20 20 21 23 22 22 22 23 27 

OT 
TEMPLATE DATE 

SRMS CCOR 
TD-11 1 TD-12 1 TD-13 I TD-14 1 TD-15 TD-11 1 TD-12 1 TD-13 1 TD-14 1 TD-15 

D2(14)(24)  25 25 25 27 29 34 34 34 39 43 D2(24)(14)  32 32 32 30 34 52 53 53 47 43 D2(34) (44)  33 33 33 35 34 58 57 58 62 60 
D2(44)(34)  31 31 31 35 34 52 51 52 61 59 
D2(54)(64)  30 30 29 37 36 53 51 50 54 67 
D2(64)(54)  32 32 31 36 35 51 48 48 67 65 D2(15)(25)  19 19 19 16 17 19 19 19 14 15 

- 
D2(25)(15)  17 17 17 16 16 15 16 16 14 14 
D2(35)(45)  16 16 16 17 17 13 13 13 15 14 
D2(45)(35)  17 17 17 17 17 15 15 15 15 15 
D2(55)(65)  20 19 19 22 21 20 19 19 25 25 D2(65) (55) 21 20 20 	- 22 24 23 22 22 26 26 
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Table B.14: Values for SRAN methods TB/D-11 to TB/D-15: 1)2. 

OT 
TEMPLATE BAND 

SRAN 
TB-I1 I TB-12 I TB-13 I TB-14 I TB-I5 

D2(14)(15)  3.8 3.6 3.6 3.9 5.0 	
_ 

D2(24)(25)  5.3 5.3 5.3 5.1 5.5 
D2(34)(35)  5.9 5.9 5.9 5.5 5.5 
D2(44)(45)  5.9 4.6 4.6 4.6 4.8 
D2(54)(55)  5.6 4.6 4.6 4.5 4.3 
D2(64)(65)  5.7 5.7 5.7 5.7 5.7 
D2(15)(14)  3.9 3.8 3.8 3.6 3.6 
D2(25)(24)  3.1 2.5 2.5 3.1 3.8 
D2(35)(34)  2.6 2.5 2.5 2.7 3.5 	

_ 

D2(45) (44)  2.9 2.9 2.9 2.6 2.5 
D2(55)(54)  3.0 3.0 3.1 3.3 3.5 
D2(65)(64) 2.9 2.9 2.9 2.9 3.3 

OT 
TEM P LAT E DATE 

SRAN 
TD-11 I TD-I2 I TD-13 I TD-14 	TD-15 

D2(14)(24) 4.6 4.6 4.6 3.3 3.6 
D2(24)(14)  4.6 5.3 5.3 3.7 4.2 
D2(34)(44)  4.2 4.4 5.3 4.8 4.6 
D2(44)(34)  4.8 4.8 4.8 4.6 4.2 
D2(54)(64)  4.8 4.6 4.6 3.8 4.8 
D2(64)(54)  5.0 4.4 5.7 4.9 

_ 	
4.7 

D2(15)(25)  - 3.2 3.3 3.3 2.6 2.7 
D2(25)(15)  2.8 2.8 2.8 2.5 2.9 
D2(35)(45)  2.7 2.5 2.5 2.7 2.7 
D2(45)(35)  2.9 2.8 2.8 2.7 2.8 
D2(55)(65)  3.8 3.1 3.1 4.2 4.2 
D2(65)(55) 4.4 3.5 2.9 4.1 4.0 
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Tables for Chapter 5 

317 



Table C.1: Values for SRMS (x100) for the single band, template band, and 

template date methods for the simulated missing lines in sub-image D 1 (15). 

TEMPLATE BAND  
Line 11 LR 	LI 1 CSP 1 TB-1 [TB-2 	TB-3 1 TB-4 1 TB-5 1 TB-6] TB-7 1 TB-8 1 TB-9 1 TB-10 
11/H 26 16 21 54 29 39 45 40 23 22 22 50 32 11/L  144 38 107 115 114 21 22 33 
27/H 56 41 42 58 48 49 63 58 41 43 44 66 52 27/L  157 47 118 112 83 39 42 47 
43/H 21 22 23 66 27 53 65 65 23 22 24 67 64 43/L  132 26 99 92 82 20 19 31 
59/H 48 37 38 95 43 72 82 78 39 37 — 	37 83 79 59/L  140 56 106 108 106 42 44 55 
75/H 32 23 25 108 47 81 97 86 34 36 38 ' 	89 65 75/L  120 32 88 108 98 25 29 34 
91/H 63 43 -- 82 56—  -- 67 64 49 49 50 64 62 91/L -- 171 65 -- 93 85 45 45 62 

TEMPLATE DATE 
Line 11 LR 	LI 1 CSP 1 TD-1 1 TD-2 1 TD-3 1 TD-4 1 TD-5 1 TD-6 1 TD-7 1 TD-8 1 TD-9 1 TD-10 
11/H 26 16 21 —  22 19 19 19 18 18 17 17 18 15 11/L  42 30 31 38 32 27 29 30 
27/H 56 41 42 33 30 33 32 31 -- 	31 33 32 34 35 27/L  64 50 54 60 57 50 54 53 
43/H 21 22 23 25 23 25 24 24 22 19 19 22 21 43/L  37 27 28 35 35 24 24 24 
59/H 48 37 - 38 40 33 36 39 39 34 32 31 39 38 59/L  78 43 61 75 70 44 48 47 
75/H 32 - 23 25 41 24 38 42 56 23 26 25 40 36 75/L  51 34 43 53 48 34 34 34 
91/H 63 43 -- 45 51 -- 44 45 53 53 50 47 50 91/L -- 71 51 -- 1  71 14 51 51 51 
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Table C.2: Values for CCOR (x100) for the single band, template band, and 

template date methods for the simulated missing lines in sub-image D 1 (15). 
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Table C.3: Values for SRAN for the single band, template band, and template 

date methods for the simulated missing lines in sub-image D 1 (15). 

TEMPLATE BAND 
Line II LR I LI I CSP I TB-1 I TB-2 I TB-3 I TB-4 I TB-5 I TB-6 I TB-7 I TB-8 I TB-9 I TB-10 
11/H 1.5 0.8 0.9 2.3 2.2 1.7 1.8 1.8 1.5 1.6 1.5 1.9 1.3 
11/L 4.4 2.1 3.3 3.5 3.6 1.1 1.0 2.0 
27/H 5.4 3.2 3.4 2.7 2.9 3.7 2.7 2.6 2.8 3.1 3.3 2.7 3.0 
27/L 4.9 4.5 3.6 3.6 4.8 3.3 2.9 3.8 
43/H 1.1 1.1 1.2 3.2 1.6 2.5 2.9 2.9 1.2 1.2 1.5 2.7 3.3 
43/L 4.2 1.9 3.2 2.9 3.8 1.1 1.2 2.2 
59/H 2.8 2.3 2.2 3.3 2.4 2.7 2.8 2.7 2.2 1.9 1.9 2.7 2.8 
59/L 3.8 2.9 3.0 3.1 3.1 2.6 2.5 3.0 
75/H 1.8 1.6 1.4 3.5 2.4 2.5 2.8 3.1 1.8 2.2 2.2 2.9 2.6 
75/L 5.1 1.7 3.8 3.8 3.9 1.7 2.0 1.7 
911H 3.6 2.8 -- 3.4 2.9 -- 2.8 2.7 2.2 2.8 2.9 -  2.8 2.8 
91/L 6.2 3.7 -- 3.1 3.6 2.7 2.7 3.0 

TEMPLATE DATE 
Line L LR I LI 	CSp I TB-1 I TD-2 I TD-3 I TD-4 1 TD-5 I TD-6 I TD-7 I TD-8 I TD-9 I TD-10 
11/H 1.5 0.8 0.9 - 1.4 1.1 1.1 1.2 1.1 1.0 0.9 0.9 0.9 0.9 
11/L 1.8 1.6 1.2 1.7 1.7 1.8 1.6 1.7 
27/H 5.4 3.2 3.4 2.3 2.0 2.5 2.3 2.3 2.2 2.0 1.9 2.6 2.8 
27/L 5.7 4.5 4.6 5.4 5.0 4.5 4.8 4.7 
43/H 1.1 1.1 1.2 1.5 1.2 1.6 1.4 1.4 1.1 1.0 .9 1.4 1.4 
43/L 2.8 1.4 5.0 2.5 2.4 1.4 1.5 1.5 
59/H 2.8 2.3 2.2 2.0 1.7 1.8 1.9 1.9 1.8 1.6 1.7 2.2 1.9 
59/L 3.1 2.2 2.8 2.9 2.7 2.3 2.5 2.4 
75/H 1.8 1.6 1.4 2.2 1.3 1.8 2.2 2.2 1.2 2.0 1.8 1.8 1.8 
75/L 2.4 1.9 2.0 2.4 2.4 2.3 2.2 2.2 
91/H 3.6 2.8 - 2.4 3.3 -- 2.3 2.2 3.5 3.5 3.1 2.2 2.2 
91/L 2.8 3.4 -- 2.7 2.7 3.3 3.3 3.3 
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Table C.4: Values for SRMS (x100) for the single band, template band, and 

template date methods for the simulated missing lines in sub-image D 2 (15). 

TEMPLATE BAND  
Line 11 LR 1 LI 1 CSP 1 TB-1 1 TB-2 1 TB-3 j TB-4 1 TB-5 1 TB-6 1 TB-7 1 TB-8 

07 11 8 9 96 13 73 92 92 10 12 12 
23  23 15 13 84 23 62 81 79 18 25 25 
39  43 28 26 82 37 66 71 72 30 38 39 
45 29 19 19 67 31 50 87 67 24 31 30 
61  22 13 12 116 23 86 113 93 18 21 23 
77  24 16 15 86 34 71 71 66 24 28 29 
93 23 24 24 76 35 - 	56 57 57 27 34 30 

TEMPLATE DATE 
Line 11 LR. 1 LI 1 CSP [TD-1 1 TD-2 1 TD-3 1 TD-4 1 TD-5 1 TD-6 1 TD-7 1 TD-8 
07 11 8 9 25 7 19 27 15 8 8 8 
23 23 15 13 35 19 23 36 29 30 20 24 
39  43 28 - 26 25 17 25 25 23 19 17 16 
45  - 29 19 19 20 16 17 20 19 19 15 17 
61  22 13 12 34 20 - 	26 32 25 24 18 21 
77  24 16 15 30 18 31 26 22 21 16 18 
93 23 ' 24 24 31 19 24 30 28 29 19 22 
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Table C.5: Values for CCOR (x100) for the single band, template band, and 

template date methods for the simulated missing lines in sub-image D 2 (15). 

u t / 4 4 618 9 
23 27 12 8 418 29 
39 115 41 38 363 74 
45 30 12 13 138 34 
61 21 7 7 498 23 
77 31 14 12 275 58 
93 30 34 28 205 65 

1'B-3 I TB-4 1 TB-5 TB-6 1 TB-7 j TB. 
310 618 618 6 7 7 
228 418 418 17 33 33 
268 363 363 51 86 90 
76 138 138 20 33 32 

217 498 - 498 14 20 20 
208 275 275 32 43 46 
124 205 205 42 68 56 

TEMPLATE DATE  1  Line 11 LR 1 LI 1 CSP 1 TD-1 1 TD-2 1 TD-3 1 TD-4 1 TD-5 LTD-6 1 TD-7 1 TD-8 
07  7 4412 2 7 12 12 4 3 14 23  27 . 12 - 8 47 20 17 47 47 46 21 40 

. 	39  115 41 38 32 17 32 32 32 21 16 16 45  30 12 13 14 9 11 14 14 12 9 10 61  - 21 7 7 27 18 18 27 27 27 14 20 77  31 14 12 28 14 34 28 28 19 13 16 
93 30 34 28 48 21 28 48 48 47 21 29 
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Table C.6: Values for SRAN for the single band, template band, and template 

date methods for the simulated missing lines in sub-image D 2 (15). 

TEMPLATE BAND  
Line  I LR 1 LI I CS 1 TB-1 I TB-2 I TB-3 1 TB-4 TB-5 1 TB-6 1 TB-7 [TB-8 
07 0.6 0.4 0.4 3.6 0.7 2.7 3.2 3.2 0.5 0.5 0.6 
23 1.9 0.8 0.6 3.8 1.2 3.1 3.5 3.6 0.9 1.6 1.6 
39 2.6 1.6 1.4 3.8 2.0 3.1 3.4 3.4 	- 1.5 2.0 2.2 
45 2.0 1.5 1.5 2.7 - 2.0 2.1 2.5 2.5 1.7 1.8 1.7 
61  1.9 0.9 0.6 5.2 1.8 3.9 4.8 4.8 1.4 1.7 1.9 
77 1.5 0.7 0.8 5.0 1.7 4.1 3.1 3.0 1.3 1.5 1.5 
93 1.9 1.9 1.6 5.2 2.2 4.2 3.7 3.7 1.9 2.4 2.0 

TEMPLATE DATE 
Line II LR I LI I CS I TD-1 1 TD-2 I TD-3 1 TD-4 1 TD-5 I TD-6 I TD-7 I TD-8 

07 0.6 0.4 0.4 0.8 0.3 0.7 0.9 0.8 0.4 0.4 0.4 
23 1.9 0.8 0.6 2.5 1.6 1.5 2.5 2.6 2.5 1.7 2.1 
39 2.6 1.6 ' 1.4 1.2 0.8 1.2 1.2 1.2 0.8 0.8 0.7 
45 2.0 1.5 1.5 1.1 0.9 0.9 1.1 1.1 1.2 0.8 0.8 
61 - 1.9 0.9 0.6 1.4 1.3 0.7 1.4 1.4 1.7 1.1 1.6 	- 
77 ' 1.5 0.7 0.8 1.3 1.1 1.5 1.3 1.2 1.3 	- 0.7 1.1 
93 1.9 - 1.9 1.6 1.4 1.1 1.1 1.3 1.3 1.9 1.1 1.4 
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Table C.7: Values for SRMS (x100), CCOR (x100), and SRAN, for methods 
TB-14 and TD-14. 

1 Line 1 Template 1 SRMS 1 CdOR 1 SRAN 1 	(m,M) 
11 Di  (13) 

D1(14) 
D1(23) 
D1(24) 

25 
17 
18 

__ 	28 

24 	1.8 
11 	0.7 
13 	0.9 
24 	1.4 

(-15, 19) 
(-8, 6) 
(-7, 10) 
(-18,8) 

27 D1(13) 
D1(14) 
D1 (23) 
D1(24) 

47 
44 
30 
47 

103 
109 
47 
112 

3.1 
3.7 
2.1 
4.3 

(-32,20) 
(-34,28) 
(-15,20) 
(-30,43) 

43 D1(13) 
D1 (14) 
D1 (23) 
D1(24) 

25 
21 
23 
26 

43 
30 
35 
39 

1.6 
1.2 
1.4 
1.6 

(-12,14) 
(-10,9) 

(-11,11) 
(-15, 10) 

59 Di (13) 
D 1 (14) 
D1(23) 
D1(24) 

30 
30 
26 
32 

58 
59 
47 
64 

2.7 
2.7 
2.1 
2.7 

(-20, 19) 
(-25, 15) 
(-16,15) 
(-21, 18) 

75 D 1 (13) 
D1(14) 
D1(23) 
Dl (24) 

33 
24 
24 
34 

45 
25 
25 
45 
131 
126 
151 
170 

1.5 
1.3 
1.3 
1.8 
2.8 
2.8 
3.4 
3.5 

(-11,16) 
(-12,12) 
(-12,12) 
(-20, 14) 
(-24,23) 
(-17,31) 
(-27,30) 
(-28, 32) 

91 D1 (13) 
D1(14) 
Di(23) 
D1(24) 

44 
43 
49 
50 

D2(15) 
Line Template 1 SRMS 1 CCOR SRAN 	(m,M) 
07 	r D2(14) 	14 	1 	6 

1 	D2(25) 	10 	1 	3 

	

0.5 	1 	(-9, 10) 

	

0.4 	1 	(-8, 6) 
23 

	

D2 (14) 	22 	-1 	21 

	

D2(25) 	25 	26 

	

1.0 	(-14,17) 

	

1.9 	(-24,32) 
39 	D2(14) 	31 	1 	50 	1.5 

	

D2 (25) 	18 	1 	17 	0.8 
(-20,22) 
(-10, 13) 

45 	D2(14) 	27 	28 	1.9 	1 (-26,22) 

	

D2(25) 	15 	9 	0.9 	1 (-12, 12) 
61 D2(14) 

D2 (25) 
13 
15 

13 
17 

1.3 
1.3 

(-10, 16) 1 
(-16,11) _1 

77 D2 (14) 
 	D2(25, 

21 
15 

29 
12 

1.2 
0.9 

(-12, 17) 1 
(-9, 14) 

93 

	

D2(14) 	21 	43 	2.0 

	

D2 (25) 	14 	18 	0.9 
(-22, 19) 1 
(-10,9) 	1 
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Appendix D 

Fit of different models to 

Haining's data 

The 11 by 11 data set used by Haining et al. (1989) has been kindly provided 
by Bob Haining, from the Geography Department. The data are a subset of 

reflectance values from an aerial survey monitor ing marine pollution leveis off the 
south coast of England, and are given in Table D.1 below. 

Table D.1: Original data used by Haining et ai (1989). 

24 4 O O 23 46 65 43 34 38 2 
32 34 6 35 39 40 30 58 52 49 40 
32 35 36 37 38 47 34 35 31 51 38 
38 39 43 41 55 42 38 34 37 41 36 
50 62 46 39 55 37 40 32 28 20 36 
45 50 43 33 24 38 44 42 39 23 36 
40 36 16 18 31 37 52 30 24 15 18 
37 14 10 21 26 30 35 41 19 23 12 
10 12 5 12 17 18 20 24 23 7 7 
50 62 19 6 14 17 17 5 6 4 6 
46 35 04556000 3 

Table D.2 gives the mean, median, and variance of the data in each line and 
each column of the original data, where NL denotes the line number (NL=1 for 
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the first une at the top), and NC denotes the column number (NC=1 for the first 
column at the left), in Table D.1. 

Table D.2: Line and column means, medians, and variances, for the data in Table 
E.1. 

Line 	 Column 
NL Mean Median Variance 	NC Mean Median Variance 

1 25.3 24.0 484.00 1 36.7 38.0 144.00 
2 37.7 39.0 187.42 2 34.8 35.0 363.28 
3 37.6 36.0 37.21 3 20.4 16.0 332.70 
4 40.4 38.0 30.80 4 22.4 21.0 234.40 
5 40.4 39.0 147.62 5 29.7 26.0 254.72 
6 37.9 39.0 72.08 6 32.5 37.0 182.25 
7 28.8 30.0 139.95 7 34.6 35.0 271.92 
8 24.4 23.0 109.20 8 31.3 34.0 280.56 
9 14.1 12.0 44.49 9 26.6 28.0 219.34 

10 18.7 14.0 377.14 10 24.6 23.0 319.69 
11 9.5 4.0 246.80 11 21.3 18.0 252.17 

From observation of the une, and column means in Table D.2, a trend in 

both directions (along the lines and along the columns) can be deduced. Some 

attempts to remove the non-stationarity of the data was to apply the exploratory 
data analysis technique known as median polishing, proposed by Tukey (1977). 

The algorithm successively sweeps medians out of rows (and/or columns), leaving 

behind the table of residuais (Cressie, 1983). 

Another approach was to apply between column differencing to the original 
data, which consisted of subtracting data in adjacent columns, so that c/(i, j), 

the value at site (i, j), obtained from differencing, is simply u(i, j 1) - u(i, j), 
i = 1,..., 11, j = 1, 	, 10, where u(i, j) is the original value at site (i, j), 

j = 1, 	, 11. A similar approach, consisting of between une differencing, was 
also applied to the original data. 

Different spatial models have been fitted to the following sets of data: 

1. original; 
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2. residuais obtained from line rnedian polishing; 

3. residuais obtained from column median polishing; 

4. residuais obtained from fine differencing; 

5. residuais obtained from column differencing. 

The following models have been fitted: 

1. a 1p-CAR(1) as defined in §5.5.1; 

2. a 2p-CAR(1) as defined in §5.5.2; 

3. a 3p-CAR(2) as defined in §5.5.3, but using a for the horizontal neighbours, 
13 for the vertical neighbours, and -y for the diagonal neighbours; 

4. a lp-SAR(1) as defined in §5.5.4; 

5. a 2p-SAR(1) as defined in §5.5.4; 

6. a 3p-SAR(2) as defined in §5.5.5, but using a, 0, and -1 for the adjacent 

horizontal, vertical and diagonal neighbours, respectively. 

Table D.3 (a) to () gives the sample autocorrelations to lags (g, h), g = 
—4,... , 4, h = O, 	, 4, for the data in each of the data sets. 
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Table D.3: Sample autocorrelations, 	g 	-4, 	, 4, h = 0, 	, 4, for the 
data in the different data sets. 

Original Data 

h 

g 0 1 	2 	3 4 
-4 -0.144 -0.123 	-0.114 	-0.057 0.083 
-a Tolo 0.024 	0.009 	0.168 0.265 
-2 0.247 0.240 	0.242 	0.301 0.302 
-1 0.519 0.502 	0.380 	0.278 0.289 

O 1.000 0.719 	0.467 	0.299 0.247 
1 0.519 0.444 	0.317 	0.229 0.213 
2 0.247 0.256 	0.167 	0.158 0.207 
3 0.018 -0.018 	-0.140 	-0.106 -0.106 
4 -0.144 -0.207 	-0.331 	-0.347 -0.346 

Column Median Polishing 

h 

9 o 1 	2 	3 4 
-4 -0.200 -0.164 	-0.054 	-0.017 0.044 
-3 -0.050 -0.078 	0.064 	0.164 0.227 
-2 0.223 0.234 	0.279 	0.308 0.288 
-1 0.499 0.516 	0.443 	0.311 0.263 

O 1.000 0.719 	0.545 	0.373 0.276 
1 0.499 0.445 	0.369 	0.269 0.264 
2 0.223 0.237 	0.231 	0.236 0.286 
3 -0.050 -0.040 	-0.065 	-0.029 -0.015 
4 -0.200 -0.235 	-0.246 	-0.253 -0.234 

Column Differencing 

h 

g O 1 	2 	3 4 
-4 0.044 0.136 	-0.252 	-0.042 0.028 
-3 0.136 -0.107 	0.045 	0.036 0.053 
-2 -0.023 0.082 	0.044 	0.041 -0.091 
-1 -0.007 0.219 	0.201 	-0.011 -0.154 

O 1.000 -0.092 	-0.096 	-0.067 0.089 
1 -0.007 0.097 	-0.077 	0.096 -0.012 
2 -0.023 0.094 	0.048 	0.084 0.154 
3 0.136 -0.031 	0.211 	-0.014 -0.056 
4 0.044 0.039 	-0.026 	0.182 -0.145 

Line Median Polishing 

II 

g O 1 2 3 4 
-4 -0.007 -0.055 -0.192 -0.199 -0.014 
-3 -0.021 -0.176 -0.201 -0.023 0.127 
-2 0.012 -0.043 -0.089 -0.004 0.019 
-1 0.380 0.296 0.015 -0.187 -0.184 

Cé 1.000 0.478 0.030 -0.227 -0.295 
1 0.380 0.225 0.017 -0.090 -0.089 
2 0.012 0.027 -0.068 -0.082 -0.036 
3 -0.021 -0.025 -0.109 -0.029 -0.040 
4 -0.007 -0.041 -0.063 -0.045 0.013 

Line Differencing 

h 

9 o 1 2 3 4 
-4 -0.077 0.124 0.188 0.051 0.197 
-3 0.081 0.139 -0.044 0.089 0.239 
-2 0.110 0.177 0.071 0.186 -0.054 
-1 0.135 0.243 -0.007 -0.011 0.053 

O 1.000 0.364 0.057 0.120 0.100 
1 0.135 -0.086 0.121 0.193 0.068 
2 0.110 0.083 -0.025 0.062 0.021 
3 0.081 -0.141 -0.201 -0.046 -0.082 
4 _....._ -0.077 -0.186 0.051 -0.204 -0.388 
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From Table D.3 it can be seen that the original data are highly spatially cor-

related, and shows some form of anisotropy, characterized by larger values of the 

sample autocorrelation in the east-west direction, than in the north-south direc-

tion. For instance, roa  = 0.719 and r1 ,0  = 0.519; r0,2 = 0.467 and r2,0 = 0.247; 
= 0.444 and r , i  = 0.502. The sampie autocorrelations for the residuais 

obtained from column median polishing, given in Table D.3, also shows high spa-

tial correlation, and the same forrn of anisotropy as the data in the original data 

set. For example, roa = 0.719 and r 1 ,0  = 0.499; r0,2 = 0.545 and r2,0 = 0.2237; 
ria  = 0.445 and r_ 1 ,1  = 0.499. The sample autocorrelations for the residuais 

obtained from line median polishing, from line differencing, and from column 

differencing, in Table D.3, indicate that the data are not as highly spatially cor-

related, and the negative sample autocorrelations for the residuais from column 

differencing suggest over differencing. 

The results obtained from the severa! spatial models are given in Table D.4, 

D.5, D.6, D.7 and D.8, for the original data, and for the residuais obtained from 

line median polishing, column median polishing, line differencing, and column 

differencing, respectively. The results include the maximum likelihood estimates 

of the model parameters, and the value of the function, L. 

Table D.4: Estimates of the parameters of the spatial models applied to the 

original data, and the function value. 

Model ôt ii '5' L 

1p— CAR(1) 0.2572 -- -- 1172.76 
2p- CAR(1) 0.3853 0.1275 -- 1167.57 

3p - CAR(2) 0.3930 0.1219 -0.0014 1167.56 
lp - SAR(1) 0.2230 -- -- 1166.79 
2p- SAR(1) 0.2878 0.1493 -- 1162.46 

3p - SAR(2) 0.2636 0.1048 0.0448 1160.62 

From Tables D.4 and D.5 it can be noted that maximum likelihood estimates 

of the model parameters, for the original data, and the residuais obtained from 

column median polishing are dose to the boundary (upper limit) (suggesting a 

possible trend in the data). That is not the case, however, for the residuais 
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Table D.5: Estimates of the paxameters of the spatial models applied to the 

residuais obtained from line median polishing, and the function value. 

Model 	II 	â A '51  L 

1p - C AR(1) 0.2451 -- -- 1154.93 

2p- CAR(1) 0.3017 0.1881 -- 1153.95 

3p- CAR(2) 0.3091 0.1935 -0.0078 1153.80 
lp - SAR(1) 0.1868 -- 1149.45 
2p- SAR(1) 0.2197 0.1534 -- 1148.52 
3p - SAR(2) 0.1987 0.1219 0.0443 1147.01 

Table D.6: Estimates of the parameters of the spatial models applied to the 

residuais obtained from column median polishing, and the function value. 

Model â '5' L 

lp - CAR( 1) 0.2572 -- -- 1163.40 
2p - CAR(1) 0.3928 0.1200 - 1157.35 
3p- CAR(2) 0.3937 0.1215 -0.0013 1157.34 
lp - S AR(1) 0.2148 -- -- 1163.22 
2p - SAR(1) 0.2770 0.1419 -- 1159.13 
3p - SAR(2) 0.2435 0.0858 0.0612 1155.53 

obtained from line median polishing, and from line, and column, differencing. 

The similar values of the maximum likelihood function, obtained for ali methods 

indicate only a slight gain in the application of higher-order models. 

Results for the simultaneous autoregressive models have also been obtained 

when assuming that the data is a realization of a process occurring on a torus 

lattice (a lattice formed conceptually from a rectangular lattice by joining up its 

opposite edges so that rows become row circles and the columns, column circles). 

These results are presented in Tables D.9. 

The larger values of the maximum likelihood function, in Table D.9, compared 

to the values in Tables D.4, D.5, D.6 and D.7, for the SAR processes, indicate 

a poorer fit from the models assumed to occur on a torus lattice, than on a 
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Table D.7: Estimates of the parameters of the spatial models applied to the 

residuais obtained from une differencing, and the function value. 

Model à 
-S 'i L 

lp - CAR(1) 0.1270 -- -- 1198.13 

2p - C AR(1) 0.3459 -0.0795 -- 1180.71 

3p- CAR(2) 0.3307 -0.1063 0.0424 1078.22 

lp - SAR(1) 0.0638 -- -- 1103.97 

2p - SAR(1) 0.2149 -0.0891 -- 1077.98 

3p - SAR(2) 0.2279 -0.1445 0.0761 1070.60 

Table D.8: Estimates of the parameters of the spatial models applied to the 

residuais obtained from column differencing, and the function value. 

Model _ 	â 
.-i' L 

lp - CA1(1) 0.0327 -- -- 1070.22 

2p - C AR(1) -0.1085 0.1736 -- 1065.38 

3p - CAR(2) -0.1497 0.1918 0.0923 1062.29 

lp - SAR(1) 0.0158 -- -- 1070.22 

2p - SAR(1) -0.0729 0.1050 -- 1064.45 

3p - SAR(2) -0.1084 0.1301 0.0794 1060.37 

rectangular lattice. 

The models applied to the original data, and to residuais obtained from tine, 

and column median polishing, and from une, and column differencing, were as-

sumed to have constant mean. In arder to account for non-stationarity in the 

mean, a model using a second-order trend surface with CAR errors, and SAR 

errors, was also fitted to the original data. This model has also been fitted to the 

data obtained from the replacement of the values in une 5, by the values obtained 

from linear interpolation (average of the corresponding values in the lines 4 and 

6); and to the data obtained by replacing the 3 by 3 cluster in the centre of the 

lattice, by the average of the observed neighbouring values. The data is shown 
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Table D.9: Estimates of the parameters of the simultaneous autoregressive models 

applied to the original data, and to the residuais obtained from line median 

polishing, column median polishing, and from line differencing: torus assumption. 

Model â (4  i' L 
Original Data 

1/3 - SAR(1) 0.2084 -- -- 1173.26 
2p - SAR(1) 0.2741 0.1416 -- 1167.94 
3p - SAR(2) 0.2717 0.1368 I 0.0046 1167.91 

Residuais from line median polishing 

lp - SAR(1) 0.1692 -- -- 1158.15 
2p - SAR(1) 0.2034 0.1363 -- 1157.00 
3p - SAR(2) _0.2037 0.1364 0.0000 1157.00 

_ 	Residuais from column median polishing 

1p - SAR(1) 0.2654 -- -- 1174.72 
2p - SAR(1) 0.3216 0.0774 -- 1168.95 
3p - SAR(2) 0.2556 0.1024 0.0207 1168.44 

Residuais from line differencing 

ip - SAR(1) 0.0837 -- -- 1095.12 
2p - SAR(1) 0.1460 0.0258 -- 1091.84 
3p - SAR(2) 0.1451 0.0191 0.0109 1091.74 

below, where the values in bold are those that have been replaced. 

24 4 O O 23 46 65 43 34 38 2 
32 34 6 35 39 40 30 58 52 49 40 
32 35 36 37 38 47 34 35 31 51 38 
38 39 43 41 55 42 38 34 37 41 36 
50 62 46 39 47 42 35 32 28 20 36 
45 50 43 33 33 36.7 42 42 39 23 36 
40 36 16 18 22 30 32.5 30 24 15 18 
37 14 10 21 26 30 35 41 19 23 12 
10 12 5 12 17 18 20 24 23 7 7 
50 62 19 6 14 17 17 5 6 4 6 
46 35 O 4 5 5 6 O O O 3 
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Table D.10: Results from the fit of a second-order trend surface models with 

CAR, and SAR errors of different orders: original data set. 

Model à A •-i' 	I 	L 

1p - CAR(1) 0.2453 -- -- 1150.61 

2p - CAR(l) 0.3594 0.1373 -- 1146.60 

3p - CAR(2) 0.3560 0.1265 0.0077 1146.58 

1p - SAR(1) 0.1727 - -- 1148.47 

2p - SAR(1) 0.2373 0.1108 -- 1145.02 
3p - SAR(2) 0.2266 0.1265 0.0440 1143.63 

Table D.11: Results from the fit of a second-order trend surface models with 

CAR, and SAR errors of different orders: original data set with line 5 altered. 

Model éi 
.A.  'i L 

1p - CAR(1) 0.2488 - -- 1146.13 
2p - CAR(1) 0.3367 0.1644 -- 1143.84 
3p - CAR(2) 0.3379 0.1709 -0.0046 1143.76 
lp - SAR(1) 0.1852 -- -- 1142.72 
2p - SAR(1) 0.2298 0.1424 -- 1141.03 

3p - S AR(2) 0.2209 0.1265 0.0223 1140.66 

The estimates of the model parameters, in Tables D.10, D.11, and D.12, seems 

to suggest that the trend in the data could not be completely accounted for. 

Moreover, the similar values of the maximum likelihood function, obtained for 

the methods, indicate that only a slight gain is achieved by using higher-order 

models. 
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Table D.12: Results from the fit of a second-order trend surface models with 

CAR, and SAR errors of different orders: original data set with the centre values 

altered. 

Model â A 5,  L 

ip— CAR(i) 0.2470 -- 	-- 1144.17 
2p — CAR(1) 0.3800 0.1206 -- 1138.33 
3p — CAR(2) 0.3811 0.1275 —0.0046 1138.31 
lp — SAR(1) 0.1792 -- -- 1141.24 
2p — SAR(1) 0.2552 0.1069 -- 1136.23 
3p — S AR(2) 0.2485 0.0818 0.0303 1135.58 
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Figure E.1: Plot of the data in areas: (a) A 1 (13) and Ai (23); (b) A1 (13) and 
241(33). 
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Figure E.2: Piot of the data in areas (a) A 1 (14) and A 1 (24); (b) A 1 (14) and 
A1 (34). 
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Figure E.3: Piot of the data in areas (a) A 1 (15) and Ai(25); (b) A 1 (15) and 
A1(35). 
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Figure E.4: Piot of the data in arcas (a) A 1 (25) and Ai(15); (h) A 1 (25) and 
A1(35). 
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Figure E.5: Plot of the data in areas (a) A 2 (14) and A 2 (24); (b) A 2 (14) and 
A 2 (34). 
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Figure E.6: Piot of the data in arcas (a) A 2 (15) and A 2 (25); (b) A 2 (15) and 
A2(35). 
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