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Abstract

This paper presents some general representations for set mappings based
on Mathematical Morphology. A generalization of the concept of kernel ,
proposed originaly by Matheron for translation invariant. mappings, will
be presented here in order to prove that any set mapping (not necessarily
translation invariant.) can be decomposed by a set of (non-translation
invariant.) sup-generating mappings . A generalization of the concept of
basis is introduced to simplify the proposed representation. A topological
condition for the existence of basis is also stated.

1. Introduction

Four well-known elementary set mappings are: erosion, dilation, anti-erosion (the
composition of an erosion with the complementation) and anti-dilation (the com-
position of a dilation with the complementation). These mappings are called here
the elementary mappings of Mathematical Morphology.

Since the sixties, special machines have been developed to efficiently perform
the elementary mappings of mathematical morphology. Two well-known examples
can be found in Serra [17] and Sternberg [21]. Nowadays, new architectures have
been designed and implemented within chips [12]. These machines have shown
their adequacy to extract binary image information by solving hundreds of im-
age analysis problems such as edge extraction, separation of overlapping objects,
clustering of near objects, closing of holes, etc.[7].

A natural question arises: What class of mappings can be realized by these
machines? The answer involves study of the fundamental structure problem of
algebra. As Birkhoff [5] (p. 55) has said:

The fundamental structure problem of algebra is that of analyzing a given al-
gebraic system into simpler components, from which the given system can be re-
constructed by synthesis... . Such decomposition theorems reveal the structure of
a given algebraic system.

In fact, some vector decompositions in vector spaces are well-known, as the
function decomposition by a set of sines and cosines or the polynomial decompo-
sition by a set of monomes. In the same way, the decomposition of set mappings
in terms of the elementary mappings of mathematical morphology arises.

The first mapping decomposition by a set of erosions is due to [15], who intro-
duced, for the translation invariant (t.i.) mappings, the concept of mapping kernel
(a subcollection of subsets that characterizes the mapping) and proved that any



increasing set mapping can be decomposed as the supremum of erosions defined
from the mapping kernel.

Matheron´s results was simplified by Maragos [13][14] and Dougherty and
Giardina [8], who introduced the concept of mapping basis (a subcollection of
the mapping kernel). Maragos also proved that any upper semicontinuous (u.s.c.)
increasing t.i. mapping can be decomposed as the supremum of erosions defined
from the mapping basis.

The hypothesis of growth was removed by Banon and Barrera [3], who proved
that any t.i. set mapping can be decomposed as the supremum of sup-generating
mappings (the infimum of an erosion and an anti-dilation) defined from the map-
ping kernel. They also simplified this result by extending the concept of basis
and proving that an u.s.c. t.i. mapping can be decomposed as the supremum of
sup-generating mappings defined from the mapping basis.

The extension of the decomposition to mappings between complete lattices
was done by Banon and Barrera[4].

A generalization of the concepts of kernel and basis will be presented here in
order to prove that any set mapping (not necessarily t.i.) can be decomposed by
a set of (non-t.i.) sup-generating mappings.

In Section 2, we recall the general definitions of set erosions and dilations, as
well as some of their properties. The representation theorem for set erosions and
dilations is proved by using almost directly some results of fuzzy set theory.

In Section 3, the concept of kernel is generalized and the proofs of two decom-
position theorems are given, the second one being derived from the first one by a
duality principle.

In Section 4, the concept of basis is generalized in order to give the minimal
decompositions. Some algebraic and topological aspects are discussed.

In Section 5, we show that Banon and Barrera ’s decomposition for t.i. map-
pings is a particular case of the new general setting presented here.

Finally, in Section 6, the decomposition of two simple mappings are given: a
morphological opening defined through a graph and an adaptive shape recognizer.

2. Review of Erosions and Dilations

Let E be a nonempty set and let P(E), or simply P , be the collection of all
subsets of E. Let ⊆ be the usual inclusion relation between sets. Let Xc be the
complementary set of a subset X of E. We know that (P ,⊆) is a complete
(Boolean) lattice [5]. Let X ⊆ P . Then ∩X , the intersection of the subsets of E
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in X , is the infimum of X in (P ,⊆) and ∪X , the union of the subsets of E in X ,
is the supremum of X in (P ,⊆).

Let Ψ be the collection of set mappings from P to P . The mappings in Ψ will
be denoted by lower case Greek letters α, β, γ,... . Finally, for any ψ ∈ Ψ, let
ψ (X ) be the collection given by

ψ (X ) = {Y ∈ P : Y = ψ (X) , X ∈ X}

Definition 1 A mapping ψ ∈ Ψ is an erosion in (P ,⊆) if and only if

ψ (∩X ) = ∩ψ (X ) , for any X ⊆ P

Definition 2 A mapping ψ ∈ Ψ is a dilation in (P ,⊆) if and only if

ψ (∪X ) = ∪ψ (X ) , for any X ⊆ P

These two definitions correspond to the particular case of erosion and dilation
definitions for set mappings. The general definitions introduced by [20] apply to
any mapping between complete lattices and say that erosion and dilation com-
mute, respectively, with infimum and supremum.

Let E and D be, respectively, the set of erosions and dilations. The mappings
in E and D will be denoted, respectively, by ε and δ.

The set Ψ inherits the complete lattice structure of (P ,⊆) by setting

ψ1 ≤ ψ2 ⇐⇒ ψ1 (X) ⊆ ψ2 (X) , for any X ∈ P

We know that (E ,≤) and (D,≤) are complete lattices [11]. The supremum for

dilations is the supremum in (Ψ,≤), but the infimum is not. Similarly, the infimum
for erosions is the infimum in (Ψ,≤), but the supremum is not.

A mapping ψ is increasing (isotone) in (P ,⊆) if and only if one of the following
three equivalent statements is satisfied [11](Lemma 2.1):

X ⊆ Y ⇒ ψ (X) ⊆ ψ (Y ) , for any X, Y ∈ P

ψ (∩X ) ⊆ ∩ψ (X ) , for any X ⊆ P
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ψ (∪X ) ⊇ ∪ψ (X ) , for any X ⊆ P

In particular, erosions and dilations are increasing mappings.
Definition 3 An adjunction in P is a couple (ε, δ) of Ψ2 such that ε and δ are
increasing and

δ (ε (X)) ⊆ X ⊆ ε (δ (X)) , for any X ∈ P

or, equivalently, a couple (ε, δ) of Ψ2 such that

δ (Y ) ⊆ X ⇔ Y ⊆ ε (X) , for any X, Y ∈ P

Proposition 2.1. The set of adjunctions in P constitutes a dual isomorphism F
between (E ,≤) and (D,≤) which is given by

F (ε) (Y ) = ∩{X ∈ P : Y ⊆ ε (X)}, for any Y ∈ P , ε ∈ E

and has the inverse

G (δ) (X) = ∪{Y ∈ P : δ (Y ) ⊆ X}, for any X ∈ P , δ ∈ D

For a proof of this property see [11] (Theorem 2.7).
Actually, an adjunction in P is exactly a Galois connection between (P ,⊇)

and (P ,⊆) [5](p. 124).
A mapping ψ is idempotent if and only if

ψ (X) = ψ (ψ (X)) , for any X ∈ P

Following [20] (p. 105), an idempotent and increasing mapping is an opening
if and only if, for any X ⊆ E, ψ (X) ⊆ X (i.e., ψ is anti-extensive); and a closing
(or, equivalently, a closure operation [5] or a closure operator [9]) if and only if,
for any X ⊆ E, X ⊆ ψ (X) (i.e., ψ is extensive).

If (ε, δ) is an adjunction then δε is an opening and εδ is a closing. These two
mappings are called morphological opening and closing by [20].

The invariant subsets X of a morphological closing εδ, that is, such that X =
εδ (X), are said to be closed with respect to (ε, δ). In the same way, the invariant
subsets of a morphological opening δε are said to be opened with respect to (ε, δ).

The subsets closed with respect to any adjunction form a complete lattice in
which infimum means intersection [5] (p. 112). Similarly, by the duality principle,
the subsets that are opened with respect to any adjunction form a complete lattice
in which supremum means union.
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Proposition 2.2. An adjunction (ε, δ) in P gives an (order) isomorphism be-
tween the complete lattices of the corresponding opened and closed sets of P .

For the Proof of Proposition 2 see [5] (p. 124, Theorem 20).
Finally, we recall [15] (p. 18), that X is open (respectively, Y is closed) with

respect to (ε, δ) if and only if there exists a Y ∈ P (respectively, X ∈ P) such
that X = δ (Y ) (respectively, Y = ε (X)). In order words, the collection of open
(respectively, closed) subsets is the image of P by δ (respectively, ε).

The set of adjunctions in P is a complete lattice of couples (ε, δ) partially
ordered by the rule that (ε1, δ1) ≤ (ε2, δ2) if and only if δ1 ≤ δ2 (or, equivalently,
ε1 ≤ ε2 from Proposition 1).

Let PE be the set of mappings from E to P . The mappings in PE will be
called structuring functions and will be denoted by lower case letters a,b,c,... .

Proposition 2.3. Representation Theorem for Erosions and Dilations. The com-
plete lattice PE of structuring functions is isomorphic to the complete lattice of
adjunctions in P , by a → (ε, δ), with ε (X) = εa (X) = {y ∈ E : X ⊇ a (y)}
for any X ∈ P and δ (Y ) = δa (Y ) = ∪{a (y) : y ∈ Y } for any Y ∈ P , and by
(ε, δ)→ a with a (y) = a(ε,δ) (y) = δ ({y}), for any y ∈ E.

For the Proof of Proposition 3 see [1] (Corollary 4). In Achache the result
is relative to Galois connections between (P,⊆) and (P,⊇). Related results are
given in [20] (Section 2.2).

In fuzzy set theory, the structuring functions from E to P are called fuzzy
subsets of E (or L-fuzzy subsets of E, since the valuation set P is a lattice) and
up to a converse order relation the above representation theorem is equivalent to
the Negoita and Ralescu representation theorem for fuzzy sets [16].

By applying Proposition 1, the structuring function a(ε,δ) of the representation
theorem can be defined equivalently from ε by

a(ε,δ) (y) = F (ε) ({y}) = ∩{X ∈ P : y ∈ ε (X)}, for any y ∈ E

Let at, the transpose of a structuring function a, be the structuring function
defined by

at (x) = {y ∈ E : x ∈ a (y)}, for any x ∈ E

For any structuring function a, let ac be the structuring function defined by
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ac (x) = (a (x))c , for any x ∈ E

For any a in PE, we have (at)
t

= a, (ac)c = a, and (at)
c

= (ac)t.
The erosion εa and the dilation δa of the above representation theorem are

called, respectively, the erosion and the dilation by the structuring function a,
and can be defined equivalently by, for any X ∈ P ,

εa (X) = {y ∈ E : ∀x ∈ Xc, x ∈ ac (y)}
= {y ∈ E : ∀x ∈ Xc, y ∈ (ac)t (x)}
= ∩{

(
at

)c
(x) : x /∈ X}

and, for any Y ∈ P ,

δa (Y ) = {y ∈ E : ∃y ∈ Y, x ∈ a (y)}
= {x ∈ E : ∃y ∈ Y, y ∈ at (x)}
= {x ∈ E : at (x) ∩ Y 6= ∅}

For any ψ ∈ Ψ, let ψc be the mapping defined by

ψc (X) = (ψ (X))c , for any X ∈ P

Let ψ∗ be the dual mapping of ψ defined by

ψ∗ (X) = ψc (Xc) = (ψ (Xc))c , for any X ∈ P

From the above, we observe that, for any a ∈ PE,

(εa)
∗ (Y ) = ∪{at (y) : y ∈ Y } = δat (Y ) , for any Y ∈ P

and

(δa)
∗ (X) = {y ∈ E : at (y) ∩ Y c = ∅} = εat (X) , for any X ∈ P

In other words, for any a ∈ PE, (εa)
∗ = δat and (δa)

∗ = εat .
Following [19], if ε and δ are, respectively, erosion and dilation, the mapping

εc and δc are called, respectively, anti-erosion and anti-dilation and we have, for
any a ∈ PE, ((εa)

c)
∗

= (δat)c and ((δa)
c)
∗

= (εat)c.
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3. Decomposition Theorems

3.1. Decomposition by a Set of Sup-Generating Mappings

We will now be slightly more specific and consider, instead of the set Ψ of mappings
ψ from P (E) to P (E), the set of restrictions ψ/A of ψ to a subcollection A of
P (E) (i.e., A ⊂ P (E)), with at least two elements. In other words, we are
considering the set P (E)A of the set mappings from A to P (E). Furthermore,
by changing the role of A and E we consider also the set P (A)E of the mappings
from E to P (A). As Ψ, P (E)A and P (A)E inherit the complete lattice structure
of a power set; the order relation will be denoted in both cases by ≤. We will
write ∨ and ∧ for the supremum and infimum in P (E)A and P (A)E. A generic
mappings in P (A)E will be denoted by a lower case Greek letter ρ.

Let K and L be two mappings, respectively, from P (E)A to P (A)E and from
P (A)E to P (E)A defined by

K (ψ) (y) = {X ∈ A : y ∈ ψ (X)}, for any y ∈ E,ψ ∈ P (E)A

L (ρ) (X) = {y ∈ E : X ∈ ρ (y)}, for any X ∈ A, ρ ∈ P (A)E

The mapping K (ψ) is called the kernel of ψ. This generalizes the notion of a
kernel given by Matheron [15] for translation invariant set mappings (see Section
5). In the case that A = P (E), we observe that the structuring function a(ε,δ) of
the representation theorem of Section 2 can be obtained from the kernel of the
erosion ε by a(ε,δ) = ∧K (ε).

Proposition 3.1. The mapping K is a lattice-isomorphism between
(
P (E)A ,≤

)
and

(
P (A)E ,≤

)
; its inverse is L.

Proof. We show that K is a bijection. For any X ∈ A and ψ ∈ P (E)A,

L (K (ψ)) (X) = {y ∈ E : X ∈ K (ψ) (y)}
= {y ∈ E : y ∈ ψ (X)}
= ψ (X)

that is,
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L (K (ψ)) = ψ, for any ψ ∈ P (E)A

Under the same arguments, changing the role of E and A,

K (L (ρ)) = ρ, for any ρ ∈ P (A)E

Therefore, K is a bijection and L = K−1.
Now we show that K is increasing two-sided. For any ψ1 and ψ2 ∈ P (E)A we

have

K (ψ1) ≤ K (ψ2) ⇐⇒ K (ψ1) (y) ⊆ K (ψ2) (y) , for any y ∈ E
⇐⇒ y ∈ ψ1 (X) =⇒ y ∈ ψ2 (X) , for any X ∈ A, y ∈ E
⇐⇒ ψ1 (X) ⊆ ψ2 (X) , for any X ∈ A
⇐⇒ ψ1 ≤ ψ2

that is, K is increasing two-sided. �
Given A ⊆ B in A, the subcollection {X ∈ A : A ⊆ X ⊆ B} is called a closed

interval of (A,⊆) and is denoted by [A,B] [5] (p. 7).
Given two structuring functions a and b from E to A ⊂ P (E) the mapping

[a, b]A or, simply, [a, b] from E to P (A), determined by

[a, b] (y) =

{
[a (y) , b (y)] if a(y) ⊆ b(y)
∅ otherwise.

is called a point to interval function or, simply, an interval function, because the
image of a point y is a closed interval of (A,⊆).

Lemma 3.2. Let ρ be a mapping from E to P (A). Then

ρ = ∨{[a, b] : [a, b] ≤ ρ}

Proof. By supremum definition.

ρ ≥ ∨{[a, b] : [a, b] ≤ ρ}
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since ρ is an upper bound for {[a, b] : [a, b] < ρ}.
For any y ∈ E, let X ⊆ ρ (y) (assuming that ρ (y) 6= ∅) then there always

exists an a and a b in AE such that [a, b] ≤ ρ and a (y) = b (y) = X, therefore

X ∈ ∪{[a, b] (y) : [a, b] ≤ ρ}

that is, for any y ∈ E,

ρ (y) ⊆ ∪{[a, b] (y) : [a, b] ≤ ρ}
= (∨{[a, b] : [a, b] ≤ ρ}) (y)

The above inclusion still holds even for ρ (y) = ∅. In other words,

ρ ≤ ∨{[a, b] : [a, b] ≤ ρ}

�
Let a and b be two structuring functions from E to P (E). We now introduce

the set mapping α(a,b) in Ψ defined by

α(a,b) (X) = {y ∈ E : a (y) ⊆ X ⊆ b (y)}, for any X ∈ P

The mappings of the type α(a,b) are called sup-generating mappings because, as
shown in the next theorem, any mapping in Ψ can be represented as a supremum
of a family of these mappings.

We observe that if a and b are elements of AE, the kernel of the restriction of
α(a,b) to A is the mapping [a, b]A:

K
(
α(a,b)/A

)
(y) = {X ∈ A : a (y) ⊂ X ⊂ b (y)} = [a, b]A (y) , for any y ∈ E

Theorem 3.3. Decomposition by a set of sup-generating mappings. Let ψ be any
set mapping fromA to P (E) and letK (ψ) be its kernel. Then ψ can be decomposed
by a set of sup-generating mappings α(a,b) restricted to A and the decomposition
expression can be written

ψ = ∨{α(a,b)/A : [a, b]A ≤ K (ψ)}

Proof. By using Lemma 3.2, the mapping K (ψ) can be written
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K (ψ) = ∨{[a, b]A : [a, b]A ≤ K (ψ)}

or again, from the above observation,

K (ψ) = ∨{K(α(a,b)/A) : [a, b]A ≤ K (ψ)}

Since, by Proposition 4, K is a lattice-isomorphism, by applying the inverse
mapping K to both sides we get the above mentioned result. �

The case of the mappings for which ∅ ∈ K (ψ) (E) can be considered patho-
logical, since it means that there exists at least one y ∈ E which never belongs to
the transformation of any set X in A.

It is interesting to note that the sup-generating mapping α(a,b) is actually the
infimum of an erosion and an anti-dilation [19]:

α(a,b) (X) = {y ∈ E : a (y) ⊂ X} ∩ {y ∈ E : bc (y) ∩X 6= ∅}

= εa (X) ∩
(
δ(bc)t (X)

)c
, for any X ∈ P

that is,

α(a,b) = εa ∧
(
δ(bc)t

)c
3.2. Decomposition by a Set of Inf-Generating Mappings

Let a and b be two structuring functions from E to P (E). We now introduce the
set of mapping β(a,b) in Ψ which is defined by

β(a,b) = (αat,bt)
∗

Mappings of this type are called inf-generating mappings.
Let A∗ be the image of A through complementation. In other words,

A∗ = {X ∈ P : Xc ∈ A}

For any A ⊂ P (E), we have (A∗)∗ = A. If ψ is from P (E) to P (E) and
A ⊂ P (E), we have (ψ/A)∗ = ψ∗/A∗.
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Theorem 3.4. Decomposition by a set of inf-generating mappings. Let ψ be any
set mapping from A to P (E) and K (ψ∗) be the kernel of its dual. Then ψ can
be decomposed by a set of inf-generating mappings β(a,b) restricted to A and the
decomposition expression can be written

ψ = ∧{β(at,bt)/A : [a, b]A∗ ≤ K (ψ∗)}

Proof. By Theorem 1,

ψ∗ = ∨{α(a,b)/A∗ : [a, b]A∗ ≤ K (ψ∗)}

By applying the inverse of the dual lattice isomorphism ψ −→ ψ∗ between the
complete lattices PA and PA∗ to both sides, it results that

ψ∗ = ∧{
(
α(a,b)/A∗

)∗
: [a, b]A∗ ≤ K (ψ∗)}

We finally get the mentioned result from the above observations. �
It is interesting to note that the inf-generating mapping β(a,b) is actually the

supremum of a dilation and an anti-erosion [19]:

β(a,b) = (εat ∧ (δbc)
c)
∗

= δa ∨
(
ε(bc)t

)c
4. Minimal Decomposition Theorems

4.1. Algebraic Aspects

The decomposition theorems of the previous section may lead to redundant de-
composition for most set mappings in the sense that the decomposition may be
carried out by a smaller set of generating mappings.

In the case of the decomposition by a set of sup-generating mappings, for
example, if [a, b] < [a′, b′]), then α(a,b) < α(a′,b′). Hence, if [a, b] and [a′, b′] are both
less than or equal to K (ψ), in the decomposition of ψ by a set of sup-generating
mappings, α(a,b) appears to be redundant.

In order to derive minimal decompositions for set mappings, following Banon
and Barrera [3], we introduce some new definitions.
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The set B (ψ) of all the maximal interval functions less than or equal to K (ψ)
is called the basis of ψ. An interval function less than or equal to K (ψ) is maximal
if no other interval function less than or equal to K (ψ) is greater than it.

A set B of interval functions less than or equal to K (ψ) is said to satisfy the
decomposition condition for ψ if and only if for any interval function less than or
equal to K (ψ) there exists an interval function in B which is greater than it.

Theorem 4.1. Decomposition by a least set of sup-generating mappings. Let
ψ be any set mapping from A to P (E), let K (ψ) be its kernel, and let B be a
set of interval functions less than or equal to K (ψ) satisfying the decomposition
condition for ψ. Then

ψ = ∨{α(a,b)/A : [a, b]A ∈ B}

Furthermore, if B (ψ) is its basis and satisfies the decomposition condition for ψ,
then

B (ψ) ⊂ B

ψ = ∨{α(a,b)/A : [a, b]A ∈ B (ψ)}

and ψ is said to have a minimal decomposition by a set of sup-generating mappings
restricted to A.

For the proof of a similar result see [3]. The dual form of the minimal decom-
position is now presented.

Theorem 4.2. Decomposition by a least set of inf-generating mappings. Let ψ
be any mapping from A to P (E), let K (ψ∗) be the kernel of its dual, and let B be
a set of interval functions less than or equal to K (ψ∗) satisfying the decomposition
condition for ψ∗. Then

ψ = ∧{β(at,bt)/A : [a, b]A∗ ∈ B}

Furthermore, if B (ψ∗) is the basis of its dual, satisfies the decomposition condition
for ψ∗, then
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B (ψ∗) ⊂ B

ψ = ∧{β(at,bt)/A : [a, b]A∗ ∈ B (ψ∗)}

and ψ is said to have a minimal decomposition by a set of inf-generating mappings
restricted to A.

For the proof of a similar result see [3].
Before ending this subsection, we would like to make the following observa-

tion. The condition [a, b] ∈ B (ψ) is equivalent to [a (y) , b (y)] being maximal in
K (ψ) (y) for any y ∈ E. Therefore, the computation of ψ (X) through the minimal
decomposition (if any) can be simplified in the sense that, for any X ∈ A,

ψ (X) = ∪{α(a,b) (X) : [a, b] ∈ B (ψ)}
= {y ∈ E : ∃ [A,B] maximal in K (ψ) (y) : A ⊆ X ⊆ B}

In the case of finite set E, the number of maximal elements (closed intervals)
involved in the latter expression may be much smaller than the number of maximal
elements (interval functions) involved in the former one. Similar observation holds
for the minimal decomposition by a set of inf-generating mappings.

4.2. Topological Aspects

We now show that under a condition of upper semicontinuity on a mapping from
F (E), or simply F (the collection of closed subsets of E) to P (E), its basis
satisfies the decomposition condition. Actually, this condition appears to be the
same as for the translation invariant case analyzed in [3].

In order to describe such sufficient condition we use the Hit-Miss topology on
the collection F of closed subsets of E. Throughout this subsection E will be a
locally compact (i.e., each point in E admits a compact neighborhood), Hausdorff
and separable (i.e., the topology of E admits a countable base) topological space.

The Hit-Miss topology on F is generated by the set of collections of the type

FK = {X ∈ F : X ∩K = ∅}

where K is a compact subset of E, and

FG = {X ∈ F : X ∩G 6= ∅}
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where G is an open subset of E [15][18].
A mapping ψ from F to F is upper semicontinuous (u.s.c.) if and only if for

any compact subset K of E, the set ψ−1
(
FK

)
is open in F [15] (p. 8).

The set of closed intervals of F (provided with ⊆) and the set of interval
functions (provided with ≤) are complete joint semilattices.

Theorem 4.3. Property of the basis of an u.s.c. mapping. Let ψ be an u.s.c.
mapping from F to F , then its basis B (ψ) satisfies the decomposition condition
for ψ.

Proof. Let [a, b] be an interval function less than or equal to K (ψ). It is
always possible to construct a linearly ordered set L of interval functions less
than or equal to K (ψ) such that [a, b] ∈ L. By Lemma 2.1 in Maragos [13], there
exists a maximal linearly ordered set M of interval functions less than or equal
to K (ψ) such that L ⊂ M. Therefore, there exists an interval function [a′, b′],
namely [a′, b′] = sup M, which is greater than or equal to [a, b]:

[a, b] ≤ sup L ≤ sup M = [a′, b′]

If ψ is u.s.c. from F to F , then for any compact subset K of E,

(
ψ−1

(
FK

))c
= {X ∈ F : ψ (X) ∈ FK}c

= {X ∈ F : ψ (X) ∩K = ∅}c

= {X ∈ F : ψ (X) ∩K 6= ∅}

is closed in F . In particular, for any y ∈ E,

{X ∈ F : ψ (X) ∩ {y} 6= ∅} = {X ∈ F : y ∈ ψ (X)}
= K (ψ) (y)

is closed in F , that is, K (ψ) (y) = K (ψ) (y) in F .
On the other hand, for any y ∈ E, [a′, b′] (y) = (sup M) (y) = sup{ρ (y) :

ρ ∈ M}. By construction of M, the set {ρ (y) : ρ ∈ M} is a lineraly ordered
set of closed intervals of F contained in K (ψ) (y)(assuming that K (ψ) (y) 6= ∅).
Therefore, by Lemma 4.3 in [2][3], its supremum is contained in K (ψ) (y) in F ;
that is, in F ,

14



[a′, b′] (y) ⊆ K (ψ) (y), for any y ∈ E

or again, under the u.s.c. assumption on ψ.

[a′, b′] (y) ⊆ K (ψ) (y) , for any y ∈ E

The above inclusion still holds even for K (ψ) (y) = ∅. In other words, [a′, b′] ≤
K (ψ).

Furthermore, M being a maximal set of interval functions less than or equal
to K (ψ), we have [a′, b′] ∈ B (ψ), because otherwise there would exist another
interval function less than or equal to K (ψ) which is greater than [a′, b′]. In other
words, there would exist a linearly ordered set of interval functions less than or
equal to K (ψ) that properly contains M and M would not be maximal. �

In terms of minimal decomposition, the above theorem leads to the following
result. Let G be the collection of open subsets of E.

Corollary 4.4. If ψ is an u.s.c. mapping from F to F , then ψ has a minimal
decomposition by a set of sup-generating mappings restricted to F .

Corollary 4.5. If ψ is a mapping from G to G which has an u.s.c. dual to ψ∗,
then ψ has a minimal decomposition by a set of inf-generating mappings restricted
to G.

5. Translation Invariant Mappings

To introduce the case of translation invariant mappings we now assume that E is
an Abelian group, with respect to a binary operation denoted +. The null element
of (E,+) is denoted by o and the inverse of any y in (E,+) is denoted by −y.

For any h ∈ E and X ⊆ E, the set

Xh = {y ∈ E : y = x+ h, x ∈ X}

is called the translate of X by h. In particular, Xo = X.
For any h ∈ E and A ⊆ P , we denote by Ah the set of translates of Xh with

X running over A, i.e.,

Ah = {X ∈ P : X−h ∈ A}
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We now consider the mappings whose domain is a collection A closed under
translation, that is Ah = A, for any h ∈ E, which are translation invariant in the
sense that

ψ (Xh) = (ψ (X))h , for any X ∈ A, h ∈ E

The translation invariant mappings from A to P form a complete sublattice
of (Ψ,≤).

The kernel of a translation invariant mapping ψ satisfies, for any y ∈ E,

K (ψ) (y) = {X ∈ A : o ∈ (ψ (X))−y}
= {X ∈ A : o ∈ ψ (X−y)}
= {X ∈ A : o ∈ ψ (X)}y
= (K (ψ) (o))y

The collection K (ψ) (o) is called by Matheron [15] the kernel of the translation
invariant mapping ψ.

For each translation invariant dilation δ, the corresponding structuring func-
tion a satisfies, from the representation theorem for erosions and dilations of
Section 2,

a (y) = δ ({y})
= δ ({o}y)
= (δ ({o}))y
= a (o)y

Consequently, the complete sublattice of translation invariant adjunctions (ε, δ)
is isomorphic to the complete lattice P of subsets A of E, by (ε, δ) −→ A = δ ({o})
and by A −→ (ε, δ) with

ε (X) = εA (X) = {y ∈ E : Ay ⊂ X}, for any X ∈ P

and

δ (X) = δA (X) = ∪{Ay : y ∈ Y }, for any Y ∈ P

The set A is called a structuring element for the erosion εA.
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For any X in P , δA (X), the dilation of X by A (following Sternberg´s defini-
tion [21]1), can be expressed as a Minkowski addition [10]:

δA (X) = X ⊕ A
and εA (X), the erosion of X by A, can be expressed as a Minkowski subtraction
(following Hadwiger´s definition [10]2):

εA (X) = X 	 A
The minimal decompositions for translation invariant mapping introduced in

[2][3] can be derived from our general setting. If ψ is translation invariant and its
basis satisfies the decomposition condition for ψ of the previous section, then for
any X in A,

ψ (X) = {y ∈ E : ∃ [A,B] maximal in K (ψ) (0) : Ay ⊆ X ⊆ By}
= ∪{(X 	 A) ∩ (Xc 	Bc) : [A,B] maximal in K (ψ) (0)}

Actually, the subset (X 	 A) ∩ (Xc 	Bc) in the above expression is the im-
age of X by a translation invariant sup-generating mapping, since (X 	 A) ∩
(Xc 	Bc) = {y ∈ E : Ay ⊆ X ⊆ By} for any X ∈ A. By using Banon and
Barrera’s notation [2][3] for the translation invariant sup-generating mappings,

X © (A,B) = (X 	 A) ∩ (Xc 	Bc) , for X ∈ P
The above minimal decomposition expression becomes, for any X ∈ A,

ψ (X) = ∪{X © (A,B) /A : [A,B] maximal in K (ψ) (0)}
In other words, ψ has a minimal decomposition by a set of translation invariant
sup-generating mappings.

In the same way, if the basis of ψ∗ satisfies the decomposition condition for ψ∗

then ψ has a minimal decomposition by a set of translation invariant inf-generating
mappings. By using Banon and Barrera´s notation [2][3] for translation invariant
inf-generating mappings

X © (A,B) = (X ⊕ A) ∪ (Xc ⊕Bc) , for any X ∈ P
the corresponding minimal decomposition expression is, for any X ∈ A,

ψ (X) = ∩{X ©
(
At, Bt

)
/A : [A,B] maximal in K (ψ∗) (0)}

1Matheron and Serra´s definition for dilation is slightly different.
2Matheron and Serra´s definition for Minkowski subtraction is slightly different.
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6. Examples

6.1. Morphological Openings

Let a be a structuring function from E to P (= P (E)) and γa the opening δaεa
(see Section 2). For any y ∈ E, the kernel of γa is given by

K (γa) (y) = {X ∈ P : y ∈ γa (X)}
= {X ∈ P : y ∈ {x ∈ E : at (x) ∩ εa (X) 6= ∅}}
= {X ∈ P : at (y) ∩ εa (X) 6= ∅}
= {X ∈ P : ∃x ∈ at (y) : x ∈ εa (X)}
= ∪{K (εa) (x) : x ∈ at (y)}

Observing that the kernel of εa is given by

K (εa) (x) = {X ∈ P : a (x) ⊆ X}, for any x ∈ E

we obtain that the following set B of interval functions less than or equal to K (γa)
satisfies the decomposition condition for γa:

B = {[u, v] : ∀y ∈ E, y ∈ u (y) ∈ a (E) and v (y) = E}

If, for any y ∈ E, all the subsets in a (E) which contain y are not comparable
(under inclusion), then B is the basis of γa. This is the case for translation invari-
ant openings. On the contrary, the basis of γa may not satisfy the decomposition
condition for γa, but if it satisfies this condition, then it is properly included in
B. For example, for an u.s.c. opening we have

B (γa) = {[u, v] : ∀y ∈ E, u (y) is a minimal element of A(y) and v (y) = E}
⊆ B

where A(y) = {a (x) : x ∈ at (y)} for any y ∈ E.
If E is the set of vertices of a graph defined by a set Γ of pairs of vertices

satisfying

1. ∀x ∈ E, (x, x) ∈ Γ (there is a loop attached to each vertex)

18



2. ∀ (x, y) ∈ Γ, (y, x) ∈ Γ (the graph is nonoriented)

then the order-l neighborhood in Γ of any vertex x ∈ E, a (x) = {y ∈ E : (x, y) ∈
Γ}, is an interesting example of an extensive (∀x ∈ E, x ∈ a (x)) and symmetric
(a = at) structuring function [22].

For example, the values at Vertex 4 of all possible interval functions [u, v] in
B (γa) for the graph of Figure 1 are (noting that at (4) = a (4))

[{1, 2, 3, 4}, E]

[{4, 5}, E]

[{4, 9}, E]

[{4, 6, 7, 8}, E]

�

�

�

�

�

�

�

�

	

Figure 6.1: Example of a graph with 9 vertices. For the sake of simplicity the
loop attached to each vertex is not represented. The set {2, 4, 5, 6, 9} (the black
vertices) is the value a (4) of the structuring function a associated with the graph
at Vertex 4.

It can be observed, in the case of the graph of Figure 6.1, that B (γa) is properly
included in B since, for example, there is no interval function in B (γa) with
value [{2, 4, 5, 6, 9}, E] at Vertex 4, for [{2, 4, 5, 6, 9}, E] is included in [{4, 5}, E]
or [{4, 9}, E].
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6.2. Shape Recognition

Crimmins and Brown [6] have introduced the so-called window transformation to
solve automatic shape recognition. Let (Z2,+) be the Abelian group of pairs of
integers. A mapping ψ from A ⊆ P (Z2) to P (Z2) is called a window transfor-
mation with respect to the window W if and only if there exists a subcollection
D ⊆ P (W ) such that

ψ (X) = {y ∈ Z2 : W ∩X−y ∈ D}, for any X ∈ A

The mapping Ψ recognizes in particular all the shapes in A which are in D (up
to a translation) by producing a point marker. If A is closed under translation,
then ψ is translation invariant.

From now on, for practical reasons, we assume that o ∈ W , E is a finite field of
view defined in Z2 (E ⊆ Z2), and A is a subcollection of P = P (E). In this case
A is no longer closed under translation and it does not make sense to consider the
usual translation invariant property for ψ. So we must consider ψ in the general
framework of this study. Its kernel K (ψ) is given by

K (ψ) (y) = {X ⊆ E : W ∩X−y ∈ D}, for any y ∈ E

Usually, the meaningful relationship between E and W is that there exists
y ∈ E such that Wy ⊆ E. For such y, K (ψ) (y) is never empty.

To be coherent with our shape recognition objective we should add in D all
the nonempty subsets of the type X ∩ Ey for which X belongs to the original D
when y runs over E. If o ∈ X for any X ∈ D, then the previous subsets X ∩E−y
are never empty and they correspond to the so-called partially observed shapes
(see Figure 6.2).

Let D′ be the new subcollection of interest:

D′ = {Y ∈ P (W ) : Y = U ∩ E−y, U ∈ D, y ∈ E}

With such D′, Ψ is able to recognize (and mark) even partially observed shapes.
The price to pay is that we are now unduly recognizing all the subsets of the form
(U ∩ E−y)x for which U belongs to D and x 6= y, when x and y run over E. To
fix this problem we introduce the mapping M from E to P (P) given by

M (y) = {Y ∈ P : Y = Uy ∩ E,U ∈ D}, for any Y ∈ E
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and we define the following new window transformation ψM that we will call the
adaptive window transformation:

ψM (X) = {y ∈ E : Wy ∩X ∈M (y)}, for any X ⊂ E

Its kernel is given by

K (ψM) (y) = {X ⊂ E : Wy ∩X ∈M (y)}, for any y ∈ E

�

�

	�

	

�	
�

�

�

� ��	�

Figure 6.2: Example of the shape recognition of a triangle X. For the sake of
simplicity the set Z2 is not represented. The rectangular shape E is the field of
view, W is the window, and U is a triangular shape in D. The triangle X is
recognized because W ∩X−y = U . If y′ is the upper left corner of E, the subset
U ∩ E−y′ (in black) corresponds to a partially observed triangular shape.

The following set B of interval functions less than or equal to K (ψ) satisfies
the decomposition condition for ψ:

B = {[a, b] : ∀y ∈ E, a (y) ∈M (y) and b (y) = E − (Wy − a (y))}
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or, in another way,

B = {[a, b] : ∀y ∈ E, a (y) ∈M (y) and b (y) = a (y) +
(
W c
y ∩ E

)
}

where + stands for the union of disjoint sets. If, for any y ∈ E, all the ele-
ments inM (y) are not comparable (under inclusion), then B is the basis of ψM.
On the contrary, the basis of ψ is properly included in B and still satisfies the
decomposition condition since E is finite.

B (ψM) = {[a, b] : ∀y ∈ E, a (y) is a maximal element of M (y) and

b (y) = a (y) +
(
W c
y ∩ E

)
}

Before ending this subsection we point out that the adaptative window trans-
formation may recognize shapes not in D. For example, a subset X in Z2 (with
no translates in D) is seen through the field of view E as the subset X ∩ E and
its intersection with Wy may belong toM (y), for a given y in E. This drawback
is the price to pay to work with a finite field of view. If the recognition problem
can be described as a random experiment with its probability law, then its pos-
sible to associate to each y in E a probability of misclassification. In this case,
for a uniform distribution law, we can observe that the probability of misclassi-
fication increases as y becomes closer to the edges of E. For high probability of
misclassification, the current classification could then be disregarded.

Finally, we observe that within E 	 W , ψM and the translation invariant
mapping ψ assume the same values. This follows, since, from the definition ofM,
we have

M (y) = Dy, for any Y ∈ E 	W

In this sense, ψM may be said to be conditionally translation invariant. This sort
of mapping actually plays a very important role in image processing.

7. Conclusion

The main contribution of this paper was to prove that the elementary map-
pings of mathematical morphology (i.e., erosions, dilations, anti-erosions, and
anti-dilations) are the prototypes to decompose any set mapping. Therefore, any
set mapping can be performed, at least theoretically, by the existing specialized
machines.
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A generalization of the concepts of kernel and basis was given in order to
prove that any set mapping (not necessarily translation invariant) can be decom-
posed by a set of (non-translation invariant) sup-generating mappings. A sup-
generating mapping is actually the infimum of an erosion and an anti-dilation,
hence is uniquely characterized by a couple of structuring functions. The sup-
generating mappings involved in the decomposition of a set mapping are those
characterized by couples of structuring functions that form interval functions less
than or equal to the kernel.

A dual decomposition result, which involves the so called inf-generating map-
pings, was also given.

The decompositions presented here require an enormous degree of parallelism
that makes them almost unfeasible in practice. However, there should exist other
equivalent decompositions in terms of the elementary mappings that may lead to
more feasible implementations.
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