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RESUMO

As quatro classes de operadores elementares da Morfologia

Matemática: dilatações, erosões, anti–dilatações e anti–erosões mostraram–se de fun-

damental importância para a decomposição/representação de qualquer mapeamento

entre reticulados completos. Neste artigo, vamos considerar a caracterização dos

operadores elementares de janela invariantes por translação (com janela W) que

transformam uma imagem em níveis de cinza com contra–domínio K1 finito numa

imagem en níveis de cinza com contra–domínio K2 finito. Baseada nas propriedades

de conexões de Galois entre reticulados completos, uma primeira caracterização, cha-

mada de “caracterização por confrontação”, é estabelecida. Nesta caracterização,

cada operador elementar depende de uma família de mapeamentos de W em K1, cha-

mada de elemento estruturante. Baseada na decomposição de uma imagem  em níveis

de cinza em termos de imagens impulsivas, uma segunda caracterização, chamada de

“caracterização por seleção”, é estabelecida. Nesta caracterização cada operador ele-

mentar depende de uma família de mapeamentos de W em K2, chamada de resposta

impulsiva. Finalmente, a partir desta segunda caracterização, uma terceira, cha-

mada de “caracterização por decomposição” é estabelecida. Nesta caracterização

cada operador elementar depende de uma família de mapeamentos de K1 em K2 cha-

mados de tabelas de transformação elementares (“Elementary Look Up Tables”). A

caracterização por confrontação é a mais natural dentro da teoria da decomposição

dos operadores. A caracterização por seleção e a por decomposição correspondem,

respectivamente, a implementações computacionais seriais e paralelas eficientes.



ABSTRACT

The four classes of Mathematical Morphology elementary opera-

tors: dilations, erosions, anti–dilations and anti–erosions have proved to be of funda-

mental importance to the decomposition/representation of any mapping between

complete lattices. In this paper, we are concerned with the characterization of transla-

tion–invariant window elementary operators (with window W) that transform a

gray–level image with finite range K1 into a gray–level image with possibly different

finite range K2. Based on the properties of Galois connections between complete lat-

tices, a first characterization, called “characterization by confrontation” is derived.

In this characterization each elementary operator depends on a family of mappings

from W to K1, called structuring element. Based on the decomposition of a gray–level

image in terms of pulse images, a second characterization, called “characterization by

selection”, is presented. In this characterization each elementary operator depends

on a family of mappings from W to K2, called impulse response. Finally, from this

second characterization, a third one, called “characterization by decomposition”, is

derived. In this characterization each elementary operator depends on a family of

mappings from K1 to K2, called Elementary Look Up Tables. The characterization by

confrontation is the natural one within the theory of operator decomposition. The

characterization by selection and the one by decomposition correspond, respectively,

to efficient serial and parallel computational implementations.
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CHAPTER 1

INTRODUCTION

1.1 – OVERVIEW ON SOME CLASSES OF DILATIONS AND EROSIONS

The four classes of Mathematical Morphology elementary operators: dilations, erosions,
anti–dilations and anti–erosions have been shown by Banon & Barrera (1), (2), to be of fundamental impor-
tance to the decomposition/representation of any operator between complete lattices. For practical reasons,
here we are specially interested with the very important class of translation–invariant elementary operators.
Besides this point, we focus our interest to the window operators, that is, the operators for which the output
pixel values depend only on the values of the pixels inside given windows that can be derived from a unique
window.

In the early age of Mathematical Morphology, dilations and erosions have been introduced
(3) for black and white images (binary images). Let E (equipped with an addition �) be a set representing
the white image and let B be a subset of E. Let X and Y be subsets of E representing any black and white
images. The dilation of Y with respect to B and the erosion of X with respect to B are the subsets, respec-
tively, given by means of the addition (4) and subtraction (5) of Minkowski:

�B(Y) �

� Y � B   and (1a)

�B(X) �

� X � B, (2a)

where, for any subsets A and B of E,

A � B
�

� {x � E : �a � A e �b � B, x � a � b}   and (1b)

A � B
�

� {y � E : �b � B, (�a � A, y � a � b)}. (2b)

 The underlying operator �B is an example of translation–invariant window operator (with

window B t or greater). The underlying operator �B is another example of translation–invariant window
operator (with window B or greater). Heijmans & Ronse (6, Theorem 3.6), Banon & Barrera (7, Proposition

4.15) and (8, Section 2), have shown that �B (resp., �B) commutes with the union (resp., intersection) of any
family of subsets of E and that any translation–invariant operator which commutes with union (resp., inter-
section) has this form. In other words, the collection of subsets of E (like the B’s) characterized these classes

of operators. Since the subset  B is the impulsive response or the point spread subset of the dilation �B we are
used to calling B the blur of the dilation.

There exist many equivalent ways to define �B(Y) and �B(X). Let Xc be the complementary
set of X in E, X t and X � u be, respectively, the transpose of X and the translate, with respect to �, of X by
a point u of E. We may rewrite Expressions (1) and (2) as

�B(Y) � {x � E : (Y � x) 	 B tc}c   and (3)

�B(X) � {y � E : B 	 (X � y)}. (4)

Expressions (3) and (4) correspond to what we call, in Section 3.2, the dilation and erosion characterization
by confrontation because to know if x belongs or not to the dilation of Y with respect to B, we have to con-
front Y � x with B tc, and to know if y belongs or not to the erosion of X with respect to B, we have to con-

front X � y with B. Since the subset  B plays the role of a probe in the computation of �B(X), it is used to

calling B the structuring element of the erosion �B.
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 In another way, we may rewrite Expression (1) and (2) as

�B(Y) � {x � E : �v � Bt, v � (Y � x)}   and (5)

�B(X) � {y � E : �u � B, u � (X � y)}, (6)

these expressions correspond to what we call, in Section 3.3, the dilation and erosion characterization by
selection.

For a visual construction of the dilation of Y with respect to B and the erosion of X with
respect to B, it is interesting to use the equivalent expressions

�B(Y) � 

y � Y

(B � y)    and (7)

�B(X) � �
x � Xc

(B tc � x). (8)

From Expressions (5) and (6), we get another equivalent expressions

�B(Y) � 

u � B

(Y � u)   and (9)

�B(X) � �
v � Bt

(X � v). (10)

Expression (9) corresponds to the decomposition of a dilation in terms of union of dilations reduced to
translations. Expression (10) corresponds to the decomposition of an erosion in terms of intersection of ero-
sions reduced to translations. In Section 3.4 of this work, we refer to them as the dilation and erosion charac-
terization by decomposition.

The translation–invariant black and white elementary operators have been extended to gray–
level images by introducing the notion of flat operators (9). Let f and g be functions from E to K represent-
ing gray–level images (with gray–scale K). The flat dilation of g with respect to B and the flat erosion of f
with respect to B, are the functions from E to K, respectively, given by, for any x and y in E,

�B(g)(x) �

� max g(Bt � x)   and (11)

�B(f)(y) �

� min f (B � y), (12)

where f (A) is the image of A through f. Expressions (11) and (12) reduce to Expression (1) and (2) when the
gray–scale K reduces to two gray–levels.

Expressions (11) and (12) can be rewritten as, for any x and y in E,

�B(g)(x) � �
u � B

g(x � u)    and (13)

�B(f)(y) � 
u � B

f (y � u). (14)

More general classes of dilations and erosions for gray–level images with finite gray–scale
are the ones proposed by Heijmans (9, Section 11.8) and (10).
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Let K � [0, k] 	 Z (the set of intergers) and let 
.

� be the operation from K � Z to K defined
by, for any t � K and z � Z,

t
.

� z
�

��
��
�

�

0 if t � 0,
0 if t � 0 and t � z � 0,
t � z if t � 0 and 0 � t � z � k,
k if t � 0 and t � z � k.

Similarly, let .� be the operation from K � Z to K defined by, for any s � K and z � Z,

s
.� z

�

��
��
�

�

0 if s � k and s � z � 0,
s � z if s � k and 0 � s � z � k,
k if s � k and s � z � k,
k if s � k.

Let b be a function defined from B 	 E to Z. The Heijmans’ dilation of g with respect to
b is the function from E to K, given by, for any x in E,

�b(g)(x) �

� �
u � B

g(x � u)
.

� b(u) (15)

and the Heijmans’ erosion of f with respect to b is the function from E to K, given by, for any y in E,

�b(f)(y) �

� 
u � B

f (y � u) .� b(u). (16)

The underlying operators �b and �b are called here Heijmans’ elementary operators.

Actually, based on other binary operations we can define other classes of dilations and ero-
sions with respect to a function b from B 	 E to K � [0, k] 	 Z.

Let �� and �� be the classes of binary operations from K2 to K defined by, respectively,

�� �
� �

� �(t1 � t2 � t1 � z � t2 � z (t1, t2, z � K))  and
(0 � z � 0 (z � K))

and

�� �
� �

� �(s1 � s2 � s1 � z � s2 � z (s1, s2, z � K))  and
(k � z � k (z � K)).

Some examples of binary operations belonging to �� are:

�1: (t, z) � t �1 z
�

��
�
�

0 if t � 0,
t � z if t � 0 and t � z � k,

k if t � z � k,
(Heijmans’ addition for z positive)

�2: (t, z) � t �2 z
�

� 0 � (t � z) � � 0 if t � z � 0,
t � z if 0 � t � z,

(Heijmans’ addition for z negtive)

�3: (t, z) � t �3 z
�

� t  z, (Bloch and Maître; Baets et al.)

�4: (t, z) � t �4 z
�

�� 0 if t � z � 0,
t if 0 � t � z,
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we will denote by �� the set of the above four binary operations.

Some examples of binary operations belonging to �� are:

�1: (s, z) � s �1 z
�

����
0 if s � k and s � z � 0,
s � z if s � k and 0 � s � z � k,
k if s � k,

(Heijmans’ subtraction for z posi-

tive)

�2: (s, z) � s �2 z
�

� k  (s � z) � � s � z if s � z � k,
k if s � z � k,

(Sinha and Dougherty, or Heijmans’ subtraction for z negative)

�3: (s, z) � s �3 z
�

�� s if s � z � 0,
k if 0 � s � z,

�4: (s, z) � s �4 z
�

� s � z, (Bloch and Maître; Baets et al.)

we will denote by �� the set of the above four binary operations. The operations �3 and �4 have been
introduced independently by Bloch and Maître (11) and  Baets et al. (12). The operation �2 has been
introduced by Sinha and Dougherty (13).

We say that �� �
� and �� �

� are companions iff for any s, t, z � K,

t � z � s � t � s � z.

For example, the above operations � i and � i are companions for any i � 1, 2, 3, 4.

For a given z � K, we say that t � t � z  and s � s � z are companions iff �� �
� and

�� �
� are companions.

For example, for a given i � {1, 2, 3, 4} and z � K, the mappings t � t � i z  and s � s � i z
are companions.

Figure 1 shows some companion mappings t � t � i z  and s � s � i z for a given i and z.

Let b be a function defined from B 	 E to K � [0, k] 	 Z, and let (�u)u�B and (�u)u�B

be, respectively, families of operations in �� and ��, such that �u and �u are companions for any u � B.
We define the dilation of g with respect to b and (�u), as being the function from E to K, given by, for any
x in E,

�b,�(g)(x) �

� �
u � B

g(x � u) �u b(u) , (17)

and the erosion of f with respect to b and (�u), as being the function from E to K, given by, for any y in
E,

�b,�(f)(y) �

� 
u � B

f (y � u) �u b(u) . (18)
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Fig. 1 – Some companion mappings .

t � t �1 1 s � s �1 1

Heijmans
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t � t �2 1 s � s �2 1
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0
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t � t �3 3 s � s �3 3

Bloch & Maitre
Baets et al.

t � t �4 3 s � s �4 3

Following the neuronal approach (14), (15) even more general classes of dilations and ero-
sions for gray–level images with finite gray–scale can be derived just by composing the above elementary
operators with an activation function. Let a be an increasing function from K to K such that a(0) � 0 and
a(k) � k,  then we define the dilation of g with respect to a, b (in this order)  and (�u),  as the function from
E to K, given by, for any x in E,

�a,b,�(g)(x) �

� a(�
u � B

g(x � u) �u b(u)), (19)
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and the erosion of f with respect to a, b (in this order) and (�u), as the function from E to K, given by, for
any y in E,

�a,b,�(f)(y) �

� 
u � B

a(f (y � u)) �u b(u) , (20)

where, a from K to K is the companion function of a defined by a(s) �

� max {t � K : a(t) � s} (s � K).

We can also define the dilation of g with respect to b and a (in this order) as the function from
E to K, given by, for any x in E,

�b,a,�(g)(x) �

� �
u � B

a(g(x � u)) �u b(u) , (21)

the erosion of f with respect to a and b (in this order) is the function from E to K, given by, for any y in
E,

�b,a,�(f)(y) �

� a(
u � B

f (y � u) �u b(u)) , (22)

where, a from K to K is the companion function of a defined by a(t) �

� min {s � K : t � a(s)} (t � K).

The underlying operators �a,b,� and �b,a,� are typically elementary parametric neural net-

works with activation function a and synaptic function b. The underlying operators �b,a,� and �a,b,� could
be called elementary anti–neural networks because they were not derived from a physiological observation
but are simply mathematical constructions.

Figure 2 shows a neural network with five neurones forming a dilation �a,b,�.

a

a

a

a

f (u1)

f (u5)

f (u2)

f (u3)

f (u4)

�a,b,�(f)(u5)

�a,b,�(f)(u2)

�a,b,�(f)(u3)

�a,b,�(f)(u4)

�

�

�

�

�

a

a

1a

a
a

b

b

b

b
c

c

c

c

c

b

a �

� b(u4)

b �

� b(u3)

c �

� b(u2)

u1

u5

u2

o � u3

u4

E B

a �a,b,�(f)(u1)

Fig. 2 – A neural network forming a dilation.

Despite the fact that Expressions (19) to (22) are more general than the previous ones, we
cannot say, as in the black and white case, that all translation–invariant dilations and erosions on gray level–
images (with finite gray–scale) have this form.

 In this paper, we are precisely concerned with the problem of finding out mechanisms to
construct all such translation–invariant dilations and erosions on gray level–images (with finite gray–
scale). More precisely, we are concerned with the characterization of translation–invariant window elemen-
tary operators (with window W) that transform a gray–level image with finite range K1 into a gray–level
image with possibly different finite range K2. This assumption corresponds to the framework of Computa-
tional Mathematical Morphology introduced by E.R. Dougherty and D. Sinha (16) in which the operators
may not preserve the image range.
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In Section 1.2, we recall the axiomatic definition of the four classes of elementary operators.

In Section 1.3, we present the characterization of the elementary operators defined on a
bounded chain. We pay a special attention to the case of elementary operators between bounded chains since
they have a great importance in image processing as transformation tables or Look Up Tables (LUTs).

In Chapter 2, we give three equivalent ways to characterize the so–called elementary mea-
sures, that is, operators between a gray–level image and a gray–scale. Based on the properties of Galois
connections between complete lattices, a first characterization, called “characterization by confrontation”
is derived. Based on the decomposition of a gray–level image in terms of pulse images, a second character-
ization, called “characterization by selection”, is presented. Finally, from this second characterization, a
third one, called “characterization by decomposition”, is derived.

The measures are very important because they can be used to characterize the translation–in-
variant window operators as it is shown in Section 3.1.

From the characterizations given in Chapter 2 and Section 3.1, the so–called characterization
by confrontation for the translation–invariant elementary operators is derived in Section 3.2. In this charac-
terization each elementary operator depends on a family of mappings from W toK1, called structuring ele-
ment.

In the same way, the so–called characterization by selection is presented in Section 3.3. In this
characterization  each elementary operator depends on a family of mappings from W toK2, called impulse
response or point spread function or blur.

Finally, the so–called characterization by decomposition is derived in Section 3.4. In this
characterization  each elementary operator depends on a family of mappings from K1 to K2 called Elemen-
tary Look Up Tables. Actually, this last characterization is similar to the one presented by H.J.A.M. Heij-
mans and C. Ronse in their Algebraic Basis of Mathematical Morphology (6).

The above three types of mappings: the structuring elements, the impulse responses and the
Elementary Look Up Tables are called characteristic functions. In the last chapter, we show how the charac-
teristic functions simplified in the case of the Heijmans’ elementary operators and in the the case of the flat
elementary operators.

1.2 – AXIOMATIC DEFINITION OF ELEMENTARY OPERATORS

Let (L, �
L

), or simply (L, �) or L, be a complete lattice (17). The supremum and the infimum

of a subset X of L are denoted, respectively, by sup
L

X and inf
L

X, or simply, by supX and infX. The union and

intersection of a family (ai)i�I of elements of L, indexed by a set I, are denoted, respectively by�
i � I

ai  and


i � I

ai .

We are used to calling an operator a mapping between two complete lattices. Let L1 and L2 be

two complete lattices. A operator � from L1 to L2 is increasing�(or isotone) iff

a � b � �(a) � �(b) (a, b � L1).

As usual, we denote by �(X) the image of a subset X of L1, that is

�(X) � {y � l2 : �x � X, y � �(x)}.
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Proposition 1.1 (equivalent definitions of the increasing operators) – Let L1 and L2 be two complete lat-

tices. A operator � from L1 to L2 is increasing iff

sup�(X) � �(supX) (X 	 L1) (23)

or equivalently, iff

�(infX) � inf�(X) (X 	 L1). (24)
�

Proof – See Lemma 2.1, p. 260 of Heijmans & Ronse (6) for the case where L1 and L2 are identical or Propo-
sition 3.1, p. 33 of Banon & Barrera (7) for the case where L1 and L2 are two Boolean lattices. �

Following Serra (18), if the equality holds in (23), then � is called a dilation. If it holds in (24),

then � is called an erosion. We denote, respectively, by �(L1, L2) and �(L1, L2) the classes of dilations and
erosions from (L1, �) to (L2, �). We observe that an erosion (resp., dilation) from (L1, �) to (L2, �) is a
dilation (resp., erosion) from (L1, �) to (L2, �).

A operator � from L1 to L2 is decreasing�(or antitone) iff

a � b � �(b) � �(a) (a, b � L1).

Proposition 1.2 (equivalent definitions of the decreasing operators) – Let L1 and L2 be two complete lat-

tices. A operator � from L1 to L2 is decreasing iff

�(supX) � inf�(X) (X 	 L1) (25)

or equivalently, iff

sup�(X) � �(infX) (X 	 L1). (26)
�

Proof – The result follows from Proposition 1.1 by duality. �

Following Serra (19), if the equality holds in (25), then � is called an anti–dilation . If it holds

in (26), then � is called an anti–erosion. We denote, respectively, by �a(L1, L2) and �a(L1, L2) the classes of
anti–dilations and anti–erosions from (L1, �) to (L2, �). We observe that an anti–erosion (resp., anti–dila-
tion) from (L1, �) to (L2, �) is an anti–dilation (resp., anti–erosion) from (L1, �) to (L2, �). Furthermore,
an erosion (resp., dilation) from (L1, �) to (L2, �) is an anti–erosion (resp., anti–dilation) from (L1, �) to
(L2, �).

The dilations, erosions, anti–dilations and anti–erosions are said to be the elementary opera-
tors of Mathematical Morphology since any operator between complete lattices can be decomposed from
them as shown by Banon & Barrera (2). Expressed in an equivalent way,

� from (L1, �) to (L2, �) is a dilation � �(�
i � I

ai ) � �
i � I

�(ai) for any family (ai)i�I in L1

� from (L1, �) to (L2, �) is an erosion � �(
i � I

ai ) � 
i � I

�(ai) for any family (ai)i�I in L1

� from (L1, �) to (L2, �) is an anti–dilation � �(�
i � I

ai ) � 
i � I

�(ai) for any family (ai)i�I in L1

� from (L1, �) to (L2, �) is an anti–erosion � �(
i � I

ai ) � �
i � I

�(ai) for any family (ai)i�I in L1.
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From the duality principle (17), we observe that the classes of elementary operators from
(L1, �) to (L2, �) have the same number of operators.

Let i1 (resp., i2) and o1 (resp., o2) be, respectively the greatest and least elements of L1 (resp.,
L2), that is, i1 � supL1 (resp., i2 � supL2) and o1 � infL1 (resp., o2 � infL2).

Proposition 1.3 (property of the elementary operators) – Let L1 and L2 be two complete lattices. We have
the following statements:

� � �(L1, L2) � � is increasing and �(o1) � o2

� � �(L1, L2) � � is increasing and �(i1) � i2

�
a � �

a(L1, L2) � �a is decreasing and �a(o1) � i2

�
a � �

a(L1, L2) � �a is decreasing and �a(i1) � o2.
�

Proof – The increase and decrease properties derive from the definition of the four classes of elementary
operators and from Propositions 1.1 and 1.2. The remaining properties derive from the definition of the four
classes of elementary operators and recalling that o1 � sup�1 (resp., o2 � sup�2) and i1 � inf�1 (resp.,
i2 � inf�2), where �1 (resp., �2) denotes the empty subset of L1 (resp., L2). �

In the following section, we will study the characterization of elementary operators on a
bounded chain.

1.3 – CHARACTERIZATION OF ELEMENTARY OPERATORS  ON A BOUNDED CHAIN

In this section, we consider the case where the domain L1 of the elementary operators is a
bounded chain (i.e., a bounded totally ordered set). In this case, L1 is a complete lattice, sup and inf with
respect to L1 can be replaced, respectively, with max and min, and we have i1 � max L1 and o1 � min L1.

Proposition 1.4 (characterization of the elementary operators defined on a bounded chain) – Let L1 be a

bounded chain and let L2 be a complete lattice. Let � a operator from L1 to L2, then we have the following
statements:

� is a dilation � � is increasing and �(o1) � o2

� is an erosion � � is increasing and �(i1) � i2

� is an anti–dilation � � is decreasing and �(o1) � i2

� is an anti–erosion � � is decreasing and �(i1) � o2.
�

Proof – Let us prove the first statement. Let us prove �. If � is a dilation then, by Proposition 1.3, � is

increasing and �(o1) � o2. Let us prove �. For any X 	 L1 and X � �,

�(max X) � sup�(X) (max X � X and sup�(X) is an u.b. for �(X))

� �(max X). (� is increasing and Proposition 1.1)

In other words, by transitivity of �, for any X 	 L1 and X � �, �(max X) � sup�(X). For X � �,

�(max �) � �(o1) (definition of the supremum of an empty set)

� o2 (hypothesis)
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� sup� (definition of the supremum of an empty set)

� sup�(�). (definition of the image of a mapping)

In other words, for any X 	 L1, �(max X) � sup�(X), that is � is a dilation.

The three other statements follow from the first one by duality. �

May be the simplest elementary operators are those defined between two finite chains, let’s
say K1 and K2. From Proposition 1.4, a mapping p from K1 to K2 is a dilation (resp., erosion) iff p is increas-
ing and p(min K1) � min K2 (resp., p(max K1) � max K2). It is an anti–dilation (resp., anti–erosion) iff it
is decreasing and p(min K1) � max K2 (resp., p(max K1) � min K2). Figure 3 shows two samples in each
class of elementary operators from K1 � {0, 1, 2, 3, 4, 5, 6, 7} to K2 � {0, 1, 2, 3}. We see that the graph of
the dilation (resp., erosion, anti–dilation, anti–erosion) must contain the point (0, 0) (resp., (7, 3), (0, 3),
(7, 0)).

Fig. 3 – Examples of elementary operators.

0 7
K1

0

3
K2

0 70 7
K1

0 7
K1

7

K1

0 70 70 70
0

3
K2

dilations erosions anti–dilations anti–erosions

As we have observed before, the classes of elementary operators from L1 to L2 have the same
number of operators. The next proposition gives such number in the case where both lattices are bounded
chains K1 and K2. Let’s denote by #X the number of elements of a set X.

Proposition 1.5 (combination number property) – For any i � 0, 1, ��� and any k � 1, 2, ���, we have

�k � i
i  � !i

j�0

�k � j � 1
j  . �

Proof – Let P(i) be the property �k � i
i  � !i

j�0

�k � j � 1
j   for any i � 0, 1, ��� The properrty P(0) is

true since �k
0 � �k � 1

0  � 1. Assuming that P(i) is true, let us prove that P(i � 1) is also true. We have

�k � i � 1
i � 1  � �k � i

i  � �k � i
i � 1 (combination number property)

� !i

j�0

�k � j � 1
j  � �k � i

i � 1 (P(i) is true)
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� !i�1

j�0

�k � j � 1
j  , (definition of the sum)

that is, P(i � 1) is true. Therefore, P(i) is true for any i � 0, 1, ��� �

Proposition 1.6 (number of elementary operators between bounded chains) – Let K1 and K2 be two
bounded chains, and let k1 � (#K1) � 1 and k2 � (#K2) � 1. Let N(k1, k2) be the number of operators in
a given class of elementary operators from K1 to K2, then for any k1 � 1 and k2 � 1,

N(k1, k2) �
(k1 � k2)!

k1!k2!
.

�

Proof – We consider for example the case of the dilations, that is, N(k1, k2)
�

� #�(K1, K2). For any k1 � 1

and k2 � 1, let

Ni(k1)
�

� {� � �(K1, K2) : �(k1) � i} (i � K2).

Let P(k1) be the property Ni(k1) � �k1 � i � 1
i

  for any i � K2. Let us prove that P(k1) is true for any

k1 � 1. First we note that Ni(1) � 1 for any i � K2, that is P(1) is true. Second, for any i � K2, we have

Ni(k1 � 1) � !i

j�0

Nj(k1) (definition of Ni(k1))

� !i

j�0

�k1 � j � 1
j  (assuming that P(k1) is true)

� �k1 � i
i

 , (Proposition 1.5)

that is P(k1 � 1) is true. Therefore, P(k1) is true for any k1 � 1. Furthermore, for any k1 � 1 and k2 � 1,

N(k1, k2) � !
k2

i�0

Ni(k1) (definition of N(k1, k2) and Ni(k1))

� !
k2

i�0

�k1 � i � 1
i

  (P(k1) is true)

� �k1 � k2

k2
 .  (Proposition 1.5)

�

Let W be a nonempty set. We denote by K2
W the set of mappings from W to K2. As another

example of elementary operators defined on a bounded chain, let us consider the mappings from K1 to K2
W

or, equivalently, the families of functions of K2
W, indexed by K1. The relation � on KW

1  given by

g1 � g2 � g1(y) � g2(y) (y � W)

defines a partial ordering on KW
1 . The greatest and least elements of K2

W are, respectively, the constant func-
tions g* and g

*
 given by, for any y � W,

g*(y) �

� max K2   and   g
*
(y) �

� min K2.



12

From Proposition 1.4, a mapping p from K1 to K2
W is a dilation (resp., erosion) iff p is

increasing and p(min K1) � g
*
 (resp., p(max K1) � g*). It is an anti–dilation (resp., anti–erosion) iff it is

decreasing and p(min K1) � g* (resp., p(max K1) � g
*
).

Figure 4  shows a dilation d from K1 to K2
W, where K1 � {0, 1, 2, 3},

d(0) d(1) d(2) d(3)

W W W W

0

7

K2

Fig. 4 – A family of functions forming a dilation.

K2 � {0, 1, 2, 3, 4, 5, 6, 7} and W is a set with 5 elements. This dilation is an increasing family of 4 func-
tions from W to K2 with the first one being g

*
, that is, the constant function assuming value 0.

Figure 5  shows an erosion e from K1 to K2
W, where K1 � {0, 1, 2, 3, 4, 5, 6, 7},

Fig. 5 – A family of functions forming an erosion.

e(0) e(1) e(2) e(3)

W

e(4) e(5) e(6) e(7)

0

3
K2

W W W W W W W

K2 � {0, 1, 2, 3} and W is a set with 5 elements. This erosion is an increasing family of 8 functions from W
to K2 with the last one being g*, that is, the constant function assuming value 3.
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CHAPTER 2

ELEMENTARY MEASURES

2.1 – CHARACTERIZATION BY CONFRONTATION

We call a measure, an operator from a power lattice or function lattice to a chain. A power
lattice or a function lattice is a set of mappings with a complete lattice as range (9, p. 22 and p. 26).

Let W be a nonempty set and let (K1, �) be a bounded chain. The relation � on KW
1  given by

f1 � f2 � f1(x) � f2(x) (x � W) (27)

defines a partial ordering on KW
1 . Furthermore, (KW

1 , �) is a complete lattice, with the supremum supF and
the infimum infF of a subset F of KW

1 , respectively, given by

(supF)(x) � max {s � K1 : �f � F, s � f (x)} (x � W) (28)

and

(infF)(x) � min {s � K1 : �f � F, s � f (x)} (x � W). (29)

Relatively to (KW
1 , �), the union �

i � I
fi  and intersection �

i � I
fi  of a family (fi)i�I of elements of KW

1 , indexed

by a set I, are given by, respectively,

(�
i � I

fi )(x) ��
i � I

fi(x) (x � W) (30)

and

(�
i � I

fi )(x) ��
i � I

fi(x) (x � W), (31)

where the union and intersection on the right handside are given by, for any family (si)i�I of elements of K1,

�
i � I

si � max {s � K1 : �i � I, s � si} (32)

and

�
i � I

si � min {s � K1 : �i � I, s � si}. (33)

The complete lattice (KW
1 , �) is an example of function lattice. It is interesting to note that,

for any x � W the mappings f � f (x) from KW
1  to K1 are, at the same time, dilations and erosions.

We now give three different ways to characterize the elementary measures from K1
W to K2,

where K1 and K2 are two bounded chains.

Let us first introduce the so–called characterization by confrontation. In this characterization,

the elementary measures from K1
W to K2 will depend on elementary operators from K2 to K1

W that we will
call structuring elements. The characterization will be a direct application of the notion of Galois connec-
tion (17).
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We define the following four pairs of useful expressions.

For any dilation � � �(K1
W, K2) and any erosion e � E(K2, K1

W), let

e
�
(t) �

� sup{f � K1
W : �(f) � t} (t � K2) (34)

e�(f) �

�min {t � K2 : f � e(t)} (f � K1
W), (35)

e
�
 is called the structuring element of the dilation �, and e�(f) is called the dilation of f by the structuring

element e.

For any erosion � � �(K1
W, K2) and any dilation d � D(K2, K1

W), let

�d(t) �

� inf{f � K1
W : t � �(f)} (t � K2) (36)

�d(f)
�

�max {t � K2 : d(t) � f} (f � K1
W), (37)

�d is called the structuring element of the erosion �, and �d(f) is called the erosion of f by the structuring
element d.

For any anti–dilation �a � �a(K1
W, K2) and any anti–dilation da � Da(K2, K1

W), let

�ada(t) �

� sup{f � K1
W : t � �a(f)} (t � K2) (38)

da�a(f) �

�max {t � K2 : f � da(t)} (f � K1
W), (39)

�ada is called the structuring element of the anti–dilation �a, and da�a(f) is called the anti–dilation of f by the

structuring element da.

For any anti–erosion �a � �a(K1
W, K2) and any anti–erosion ea � Ea(K2, K1

W), let

ea
�a(t)

�

� inf{f � K1
W : �a(f) � t} (t � K2) (40)

�a
ea(f)

�

�min {t � K2 : ea(t) � f} (f � K1
W), (41)

ea
�a is called the structuring element of the anti–erosion �a, and �a

ea(f) is called the anti–erosion of f by the

structuring element ea.

Proposition 1.7 (characterization by confrontation of the elementary measures) – Let W be a nonempty
set, and let K1 and K2 be two bounded chains. We have the following statements:

� � e
�
 (Exp. (34)) from �(K1

W, K2) to E(K2, K1
W) is a bijection, its inverse is e � e� (Exp. (35));

� � �d (Exp. (36)) from �(K1
W, K2) to D(K2, K1

W) is a bijection, its inverse is d � �d (Exp. (37));

�a �
�ada (Exp. (38)) from �a(K1

W, K2) toDa(K2, K1
W) is a bijection, its inverse isda � da�a (Exp.

(39));

�a � ea
�a (Exp. (40)) from �a(K1

W, K2) to Ea(K2, K1
W) is a bijection, its inverse is ea � �a

ea (Exp.
(41)).

�

Proof – The first statement is a direct application of Propositions 3.15 and 3.14 of Heijmans (9). The three
other statements follow from the first one by duality. The third statement is a direct application of Proposi-
tion 2 of Achache (20). �
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Figure 6 shows an elementary measure �d which is an erosion from K1
W to K2, where

K1 � {0, 1, 2, 3, 4, 5, 6, 7}, K2 � {0, 1, 2, 3} and W is a set with 5 elements. In its characterization by con-

frontation, this erosion depends on the dilation d from K2 to K1
W given in Figure 4. In Figure 6, a particular

function f is shown; the measure of f through �d is 1. This value is obtained through Expression (37). Figure
6 shows that we have to confront f with each function in the family defined by d in order to find the greatest
function smaller or equal to f.

�d

Fig. 6 – Erosion characterization by confrontation.

f
� max {0, 1} � 1

� K1
W � K2 � {0, 1, 2, 3}0

7

K1

W

�d(f) � max {t � K2 : d(t) � f}

d

d(0) d(1) d(2) d(3)

W W W W

0

7

K1

0

7

K1

f, d(0) f, d(1)
d(0)

f, d(2)
d(1)
d(0)

f, d(3)
d(2)
d(1)
d(0)

2.2 – CHARACTERIZATION BY SELECTION

Let us introduce our second way to characterize an elementary measure, the so–called charac-

terization by selection. In this characterization, the elementary measures from K1
W to K2 will depend on

elementary operators from K1 to K2
W that we call distribution functions. The characterization will be based

on the decomposition of the functions in K1
W in terms of pulse functions.
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Let x � W and s � K1. The functions fx,s and f x,s from W to K1, respectively, given by

fx,s(u) �

�	s if u � x
min K1 otherwise (u � W) (42)

and

fx,s(u) �

�	s if u � x
max K1 otherwise (u � W) , (43)

are called pulse functions.

Proposition 1.8 (sup and inf generating families of the pulse functions) – Let W be a nonempty set and let

K1 be a bounded chain. For any f � K1
W,

�
x � W

fx,f (x) � f    and   �
x � W

fx,f (x) � f .

�

Proof – Let us prove the first statement. For any f � K1
W and u � W,

(�
x � W

fx,f (x))(u) � �
x � W

fx,f (x)(u) (Expression (30))

� fu,f (u)(u) � (�
x � W
x 
 u

fx,f (x)(u)) (property of the union)

� f (u) � max { min K1} (Expressions (42) and (32))

� f (u) � min K1 (definition of the max)

� f (u). (property of the union)

That is, �
x � W

fx,f (x) � f . The second statement follows in a similar way. �

Proposition 1.9 (union and intersection of some families of pulse functions) – Let W be a nonempty set
and let K1 be a bounded chain. For any x � W and any family (si)i�I of elements of K1,

�
i � I

fx,si
� f

x,�si
   and   �

i � I
fx,si

� f
x,�si

.

�

Proof – Let us prove the first expression. For any x � W,

(�
i � I

fx,si
)(x) ��

i � I
fx,si

(x) (Expression (30))

��
i � I

si (Expression (42))

� f
x,�si

(x); (Expression (42))
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for any x � W and u � W, with x 
 u,

(�
i � I

fx,si
)(u) ��

i � I
fx,si

(u) (Expression (30))

� min K1 (Expression (42))

� f
x,�si

(u). (Expression (42))

That is, �
i � I

fx,si
� f

x,�si
. The second expression follows in a similar way. �

We define the following four pairs of useful expressions.

For any dilation � � �(K1
W, K2) and any dilation d � D(K1, K2

W), let

d
�
(s)(x) �

� �(fx,s) (s � K1, x � W) (44)

�d(f)
�

��
x � W

d(f (x))(x) (f � K1
W), (45)

d
�
 is called the distribution function of the dilation �, and �d(f) is called the dilation of f by the dilation

which distribution function is d, or, in short, the dilation of f w.r.t. d.

For any erosion � � �(K1
W, K2) and any erosion e � E(K1, K2

W), let

�e(s)(x) �

� �(fx,s) (s � K1, x � W) (46)

e�(f)
�

��
x � W

e(f (x))(x) (f � K1
W), (47)

�e is called the distribution function of the erosion �, and e�(f) is called the erosion of f by the erosion which
distribution function is e, or, in short, the erosion of f w.r.t. e.

For any anti–dilation �a � �a(K1
W, K2) and any anti–dilation da � Da(K1, K2

W), let

da
�a(s)(x) �

� �a(fx,s) (s � K1, x � W) (48)

�a
da(f)

�

� �
x � W

da(f (x))(x) (f � K1
W), (49)

da
�a is called the distribution function of the anti–dilation �a, and �a

da(f) is called the anti–dilation of f by the

anti–dilation which distribution function is da, or, in short, the anti–dilation of f w.r.t. da.

For any anti–erosion �a � �a(K1
W, K2) and any anti–erosion ea � Ea(K1, K2

W), let

�aea(s)(x) �

� �a(fx,s) (s � K1, x � W) (50)

ea�a(f) �

� �
x � W

ea(f (x))(x) (f � K1
W), (51)

�aea is called the distribution function of the anti–erosion �a, and ea�a(f) is called the anti–erosion of f by the
anti–erosion which distribution function is ea, or, in short, the anti–erosion of f w.r.t. ea.
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Proposition 1.10 (characterization by selection of the elementary measures) – Let W be a nonempty set,
and let K1 and K2 be two bounded chains. We have the following statements:

� � d
�
 (Exp. (44)) from �(K1

W, K2) to D(K1, K2
W) is a bijection, its inverse is d � �d (Exp. (45));

� � �e (Exp. (46)) from �(K1
W, K2) to E(K1, K2

W) is a bijection, its inverse is e � e� (Exp. (47));

�a � da
�a (Exp. (48)) from �a(K1

W, K2) to Da(K1, K2
W) is a bijection, its inverse is da � �a

da (Exp.

(49));

�a � �aea (Exp. (50)) from �a(K1
W, K2) to Ea(K1, K2

W) is a bijection, its inverse is ea � ea�a (Exp.
(51)).

�

Proof – Let us prove the first statement.

Let us prove that, for any � � �(K1
W, K2), we have d

�
� D(K1, K2

W). For any x � W,

d
�
(min K1)(x) � �(fx,min K1

) (Expression (44))

� �(inf(K1
W)) (Expression(42))

� min K2. (� is a dilation and Proposition 1.3)

That is, d
�
(min K1) � inf(K2

W). For any x � W and any family (si)i�I of elements of K1,

d
�
(�

i � I
si)(x) � �(f

x,�si
) (Expression (44))

� �(�
i � I

fx,si
) (Proposition 1.9)

��
i � I

�(fx,si
) (� is a dilation)

��
i � I

d
�
(si)(x) (Expression (44))

� (�
i � I

d
�
(si))(x) . (Expression (30))

That is, d
�
(�

i � I
si) ��

i � I
d
�
(si) . In other words, d

�
� D(K1, K2

W).

Let us prove that, for any d � D(K1, K2
W), we have �d � �(K1

W, K2).

�d(inf(K1
W)) � �

x � W
d(min K1)(x) (Expression (45))

� �
x � W

(inf(K2
W) )(x). (d is a dilation and Proposition 1.3)

� max { min K2}. (Expressions (32))

� min K2. (definition of the max)
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For any family (fi)i�I of elements of K1
W,

�d(�
i � I

fi) � �
x � W

d((�
i � I

fi)(x))(x) (Expression (45))

� �
x � W

d(�
i � I

fi(x))(x) (Expression (30))

� �
x � W

�
i � I

d(fi(x))(x) (d is a dilation)

��
i � I

�
x � W

d(fi(x))(x) (property of the union)

��
i � I

�d(fi) . (Expression (45))

In other words, �d � �(K1
W, K2).

Let us prove that � � d
�
 is injective. For any � � �(K1

W, K2) and f � K1
W,

�d
�
(f) � �

x � W
d
�
(f (x))(x) (Expression (45))

� �
x � W

�(fx,f (x)) (Expression (44))

� �(�
x � W

fx,f (x)) (� is a dilation)

� �(f) (Proposition 1.8)

That is, �d
�
� � and � � d

�
 is injective.

Let us prove that � � d
�
 is onto. For any d � D(K1, K2

W), s � K1 and x � W,

d
�d

(s)(x) � �d(fx,s) (Expression (44))

� �
u � W

d(fx,s(u))(u) (Expression (45))

� d(fx,s(x))(x) � (�
u � W
u 
 x

d(fx,s(u))(u)) (property of the union)

� d(fx,s(x))(x) � (�
u � W
u 
 x

d(min K1)(u)) (Expression (42))

� d(fx,s(x))(x) � (�
u � W
u 
 x

(infK1
W)(u)) (d is a dilation and Proposition 1.3)

� d(fx,s(x))(x) � max { min K2} (Expressions (32))

� d(fx,s(x))(x) � min K2 (definition of the max)
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� d(fx,s(x))(x) (property of the union)

� d(s)(x). (Expression (42))

That is, d
�d
� d and � � d

�
 is onto. In other words, � � d

�
 is a bijection and its inverse is d � �d.

 The three other statements follow from the first one by duality. �

Figure 7 shows an elementary measure e� which is an erosion from K1
W to K2, where

K1 � {0, 1, 2, 3, 4, 5, 6, 7}, K2 � {0, 1, 2, 3} and W is a set with 5 elements. In its characterization by selec-

tion, this erosion depends on the erosion e from K1 to K2
W given in Figure 5. In Figure 7, a particular func-

tion f is shown; the measure of f through e� is 1. This value is obtained through Expression (47). Figure 7
shows that when x runs over W, we have to select, according to the value f (x), the appropriate function in
the family defined by e. Actually, the erosion e of Figure 5 has been chosen in such a way that the resulting
measure e� is identical to the measure �d shown in Figure 6.

Fig. 7 – Erosion characterization by selection.
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Let K1 � {0, 1} and K2 � [0, 1] � R (the set of real numbers). A measure � from {0, 1}W

to [0, 1], or equivalently from �(W) (the collection of subsets of W) to [0, 1] such that �(�) � 0 and

�(W) � 1 is called a fuzzy measure in the Theory of Fuzzy Set (21, 22). The dilations (resp., erosions) from

�(W) to [0, 1] are then called possibility measures (resp., necessity measures) (23). If � is a possibility mea-

sure, then d
�
(1) (Expression (44)) is then the so–called possibility distribution of � (24). If � is a necessity

measure, then e
�
(0) (Expression (46)) is then the so–called necessity distribution of � (23).

2.3 – CHARACTERIZATION BY DECOMPOSITION

Let us introduce our last way to characterize a measure, the so–called characterization by

decomposition.  In this characterization, the elementary measures from K1
W to K2 will depend on a family of

elementary operators from K1 to K2 that we call elementary transformation tables. The characterization will
be derived from the characterization by selection.

We define the following two useful expressions.

For any mapping p from K1 to K2
W, let, for any x � W,

px(s) �

� p(s)(x) (s � K1); (52)

For any family (px)x�W of mappings from K1 to K2, let

p(s)(x) �

� px(s) (s � K1, x � W). (53)

Proposition 1.11 (bijection between the elementary distribution functions and the families of elementary
transformation tables) – Let W be a nonempty set, and let K1 and K2 be two bounded chains. We have the
following statements:

p � (px) (Exp. (52)) from D(K1, K2
W) to D(K1, K2)W is a bijection. Its inverse is (px) � p (Exp.

(53));

p � (px) (Exp. (52)) from E(K1, K2
W) to E(K1, K2)W is a bijection. Its inverse is (px) � p (Exp.

(53));

p � (px) (Exp. (52)) from Da(K1, K2
W) to Da(K1, K2)W is a bijection. Its inverse is (px) � p (Exp.

(53));

p � (px) (Exp. (52)) from Ea(K1, K2
W) to Ea(K1, K2)W is a bijection. Its inverse is (px) � p (Exp.

(53)).
�

Proof – Let us prove the first statement. Expressions (52) and (53) are symmetrical, therefore the mapping
p � (px) is a bijection.

Let us prove that, for any p � D(K1, K2
W), we have (px) � D(K1, K2)W. For any x � W,

pu(min K1) � p(min K1)(x) (Expression (52))

� inf(K2
W)(x) ( p is a dilation and Proposition 1.3)

� min K2; (Expression (29))
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for any family (si)i�I of elements of K1 and x � W,

px(�
i � I

si) � p(�
i � I

si)(x) (Expression (52))

� (�
i � I

p(si))(x) ( p is a dilation)

��
i � I

p(si)(x) (Expression (30))

��
i � I

px(si) (Expression (52))

That is, px � D(K1, K2). In other words, (px) � D(K1, K2)W. Let us prove that, for any (px) � D(K1, K2)W,

we have p � D(K1, K2
W). For any x � W,

p(min K1)(x) � px(min K1) (Expression (53))

� max K2; ( px is a dilation and Proposition 1.3)

for any family (si)i�I of elements of K1 and x � W,

p(�
i � I

si)(x) � px(�
i � I

si) (Expression (53))

��
i � I

px(si) ( pu is a dilation)

��
i � I

p(si)(x) (Expression (53))

� (�
i � I

p(si))(x). (Expression (30))

That is, p(�
i � I

si) ��
i � I

p(si) . In other words, p � D(K1, K2
W).

The three other statements follow from the first one by duality. �

We define the following four pairs of useful expressions.

For any dilation � � �(K1
W, K2) and any family of dilations (dx) � D(K1, K2)W, let

(d
�
)x(s) �

� �(fx,s) (s � K1, x � W) (54)

�(d)(f)
�

��
x � W

dx(f (x)) (f � K1
W), (55)

((d
�
)x) is called the family of transformation tables of the dilation �, and �(d)(f) is called the dilation of f w.r.t.

the family of transformation tables (dx).

For any erosion � � �(K1
W, K2) and any family of erosions (ex) � E(K1, K2)W, let

(�e)x(s) �

� �(fx,s) (s � K1, x � W) (56)

(e)�(f)
�

��
x � W

ex(f (x)) (f � K1
W), (57)

((�e)x) is called the family of transformation tables of the erosion �, and (e)�(f) is called the erosion of f w.r.t.
the family of transformation tables (ex).
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For any anti–dilation�a � �a(K1
W, K2) and any family of anti–dilations (da

x) � Da(K1, K2)W,
let

(da
�a )x(s) �

� �a(fx,s) (s � K1, x � W) (58)

�a
(da)(f)

�

� �
x � W

da
x(f (x)) (f � K1

W), (59)

((da
�a )x) is called the family of transformation tables of the anti–dilation �a, and �a

(da)(f) is called the anti–

dilation of f w.r.t. the family of transformation tables (da
x).

For any anti–erosion �a � �a(K1
W, K2) and any family of anti–erosions (ea

x) � Ea(K1, K2)W,
let

(�aea)x(s) �

� �a(fx,s) (s � K1, x � W) (60)

(ea)�
a(f) �

� �
x � W

ea
x(f (x)) (f � K1

W), (61)

((�aea)x) is called the family of transformation tables of the anti–erosion �a, and (ea)�
a(f) is called the anti–

dilation of f w.r.t. the family of transformation tables (ea
x).

Proposition 1.12 (characterization by decomposition of the elementary measures) – Let W be a nonempty
set, and let K1 and K2 be two bounded chains. We have the following statements:

� � ((d
�
)x) (Exp. (54)) from �(K1

W, K2) to D(K1, K2)W is a bijection,

its inverse is (dx) � �(d) (Exp. (55));

� � ((�e)x) (Exp. (56)) from �(K1
W, K2) to E(K1, K2)W is a bijection,

its inverse is (ex) � (e)� (Exp. (57));

�a � ((da
�a )x) (Exp. (58)) from �a(K1

W, K2) to Da(K1, K2)W is a bijection,

its inverse is (da
x) � �a

(da) (Exp. (59));

�a � ((�aea)x) (Exp. (60)) from �a(K1
W, K2) to Ea(K1, K2)W is a bijection,

its inverse is (ea
x) � (ea)�

a (Exp. (61)).
�

Proof – Let us prove the first statement. Let us prove that the mapping � � ((d
�
)x) (Exp. (54)) from

�(K1
W, K2) to D(K1, K2)W is the composition of the mapping � � d

�
 (Exp. (44)) from �(K1

W, K2) to

D(K1, K2
W), with the mapping p � (px) (Exp. (52)) from D(K1, K2

W) to D(K1, K2)W. For any

� � �(K1
W, K2), x � W and s � K1,

(d
�
)x(s) � d

�
(s)(x) (Expression (52))

� �(fx,s) (Expression (44))

� (d
�
)x(s). (Expression (54))

By Propositions 1.10 and 1.11 these two mappings are bijections, therefore their composition � � ((d
�
)x) is

also a bijection. Let us prove that the mapping (dx) � �(d) (Exp. (55)) from D(K1, K2)W to �(K1
W, K2) is the

composition of (px) � p (Exp. (53)) from D(K1, K2)W to D(K1, K2
W) with d � �d (Exp. (45)) from

D(K1, K2
W) to �(K1

W, K2). For any (dx) � D(K1, K2)W and f � K1
W,
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�d(f) � �
x � W

d(f (x))(x) (Expression (45))

� �
x � W

dx(f (x)) (Expression (53))

� �(d)(f). (Expression (55))

Hence, the mapping (dx) � �(d) (Exp. (55)) from D(K1, K2)W to �(K1
W, K2) is the inverse of � � ((d

�
)x)

since it is the composition of (px) � p (Exp. (53)) from D(K1, K2)W to D(K1, K2
W) with d � �d (Exp. (45))

from D(K1, K2
W) to �(K1

W, K2) which are, by Propositions 1.11 and 1.10, the inverses of the above two bijec-
tions. The three other statements follow from the first one by duality. �

From the above characterization we can state the following proposition.

Proposition 1.13 (construction/decomposition of the elementary measures) – Let W be a nonempty set,

and let K1 and K2 be two bounded chains. Let (�x)x�W, (�x)x�W, (�a
x)x�W and (�a

x)x�W be the families of ele-

mentary measures from K1
W to K2 given by, respectively, for any x � W,

�x(f) � dx(f (x)) (f � K1
W)

�x(f) � ex(f (x)) (f � K1
W)

�a
x(f) � da

x(f (x)) (f � K1
W)

�a
x(f) � ea

x(f (x)) (f � K1
W),

where, (dx)x�W, (ex)x�W, (da
x)x�W and (ea

x)x�W are, respectively, families of dilations, erosions, anti–dila-

tions and anti–erosions from K1 to K2. For any x � W, the measures �x, �x, �a
x and �a

x from K1
W to K2 are,

respectively, a dilation, an erosion, an anti–dilation and an anti–erosion. The measures �, �, �a and �a from

K1
W to K2 given by, respectively,

� � �
x � W

�x

� � �
x � W

�x

�a � �
x � W

�a
x

�a � �
x � W

�a
x.

are, respectively, a dilation, an erosion, an anti–dilation and an anti–erosion. Conversely, any measure �, �,

�a and �a from K1
W to K2 which is, respectively, a dilation, an erosion, an anti–dilation and an anti–erosion

has this form. Furthermore, (dx)x�W, (ex)x�W, (da
x)x�W and (ea

x)x�W are given by, respectively, for any
x � W,

dx(s) � �(fx,s) (s � K1)

ex(s) � �(fx,s) (s � K1)

da
x(s) � �a(fx,s) (s � K1)

ea
x(s) � �a(fx,s) (s � K1).

�
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Proof –  Let us prove the result for the class of dilations. By construction, for any x � W, �x is the composi-

tion of f � f (x) with dx; since both are dilations, �x is also a dilation. The rest of the result is Proposition
1.12. The results for the other classes of measures follow by duality. �

Figure 8 shows an elementary measure (e)� which is an erosion from K1
W to K2, where

K1 � {0, 1, 2, 3, 4, 5, 6, 7}, K2 � {0, 1, 2, 3} and W is a set with 5 elements. In its characterization by
decomposition,  this erosion depends on a family (ex) of 5 erosions from K1 to K2 which are derived from the
erosion e given in Figure 5 by applying Expression (52). In this way the measure (e)� is identical to e� shown

in Figure 7. In Figure 8, a particular function f is shown; the measure of f through (e)� is 1. This value is

obtained through Expression (57). Figure 8 shows a decomposition of (e)�. Each branch is a particular mea-
sure which is an erosion as stated in Proposition 1.13.

�x5

Fig. 8 – Erosion characterization by decomposition.

� K1
W � K2

0

7

K1

W � {x1, x2, x3, x4, x5}

�

ex1

0 7

K1

0

3

f

(e)�(f) � 1

K2

W

 (x5)

ex5

0 7

K1

f (x5)

(e)�

3

1

�x1
(f) � ex1

(f (x1))

ex5

 (x1)

f (x1)

5 3

ex1

(ex)

ex2

0 7

K1

ex3

0 7

K1

ex4

7

K1

f (x1)

2

f (x2) f (x3) f (x4) f (x5)

1 1 1

x1 x5

0

�x1

�x5
(f) � ex5

(f (x5))



27

CHAPTER 3

ELEMENTARY TRANSLATION–INVARIANT OPERATORS

3.1 – CHARECTERIZATION IN TERMS OF MEASURES

Let (E,�) be an Abelian group and let K be a bounded chain. The functions from E to K are
the appropriate mathematical representation for the gray–level images with domain E (the set of pixel posi-
tions) and gray–scale K (the set of possible pixel values).

Let x be an element of E, we denote by � x the negative of x. For any two elements x1 and x2

of E we denote by x1 � x2 the element of E given by x1 � x2
�� x1 � (� x2).

Let u be an element of E. Let W be a nonempty subset of E, we denote by W � u the translate
of W by u, that is, the subset of E given by

W � u �� {x � E : x � u � W}.

Let f be an element of KE, we denote by f � u the translate of f by u, that is, the element of
KE given by

(f � u)(x) �� f (x � u) (x � E). (62)

We denote by f � u the element of KE given by f � u �� f � (� u).

We denote by �u the translation by u, that is the operator from KE to KE given by

�u(f)
�� f � u (f � KE).

Let K1 and K2 be two bounded chains sets representing possibly two different gray–scales.

Any operator � from K1
E to K2

E transforms any gray–level image into a gray–level image. In this chapter

we focus our attention on the translation–invariant window operators. An operator � from K1
E to K2

E is said

translation–invariant  (t.i.) iff, for any f � K1
E and u � E,

�(f � u) � �(f) � u.

translation–invariant  operators from KE to KE, in the above sense, are called H–operators by
Heijmans [9, p. 109 and p. 373].

In order to introduce the notion of window operator, we recall the definition of restriction and
extension of a function. Let f � KE and W � E, the restriction of f to W, denoted by f�W is the function
from W to K (i.e., the element of KW) given by

(f�W)(x) �� f (x) (x � W). (63)

From now on, we assume that (K1, �) and (K2, �) are two bounded chains which corre-
spond to two possibly different gray–scales.

Let f be a function from W to K1, we call the functions f and f from E to K1, given by

f(x) ��� f (x) if x � W
max K1 otherwise

(x � E) (64)
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and

f(x) ��� f (x) if x � W
min K1 otherwise

(x � E), (65)

respectively, the upper and lower extensions of f.

Proposition 1.14 (property of the restriction/extension) – Let E be a nonempty set and let K1 be a bounded

chain. For any nonempty subset W of E, and f � K1
W,

f�W � f   and   f�W � f.
�

Proof – Let us prove the first statement. For any f � K1
W and x � W,

(f�W)(x) � f(x) (Expression (63))

� f (x). (Expression (64))

The second statement can be proved in a similar way. �

Proposition 1.15 (property of the restriction/extension) – Let (E,�) be an Abelian group and let K1 be a

bounded chain. For any nonempty subset W of E, f � K1
E and x � E,

(f�(W � x) � x)�W � (f � x)�W   and   (f�(W � x) � x)�W � (f � x)�W.

�

Proof – For any f � K1
E, x � E and u � W,

((f�(W � x) � x)�W)(u) � (f�(W � x) � x)(u) (Expression (63))

� (f�(W � x))(u � x) (Expression (62))

� (f�(W � x))(u � x) (Expression (64))

� f (u � x) (Expression (63))

� (f � x)(u) (Expression (62))

� ((f � x)�W)(u). (Expression (63))

The second statement can be proved in a similar way. �

An operator � from K1
E to K2

E is called a window operator (with window W (W � E)) iff,

for any f � K1
E,

�(f)(y) � �(f�(W � y))(y) (y � E), (66a)

or equivalently,

�(f)(y) � �(f�(W � y))(y) (y � E). (66b)

We can prove, for example, that Expression (66a) implies Expression (66b). For any f � K1
E

and any y � E,

�(f�(W � y))(y) � �(f�(W � y)�(W � y))(y) (Expression (66a))

� �(f�(W � y))(y) (Proposition 1.14, second statement)

� �(f)(y). (Expression (66a))
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Let o be the null element of (E,�), called origin, we define the following two useful expres-

sions, for any � from K1
E to K2

E and � from K1
W to K2:

��(f) ���(f)(o) (f � K1
W) (67a)

or equivalently in the case of window operators,

��(f) ���(f)(o) (f � K1
W), (67b)

and

��(f)(y) ���((f � y)�W) (f � K1
E, y � E). (68)

In the case of window operators, we can prove that �(f)(o) � �(f)(o). For any f � K1
W,

�(f)(o) � �(f�W)(o) (Expression (66a))

� �(f�W)(o) (equivalency between Exp. (66a) and (66b))

� �(f)(o). (Proposition 1.14)

Given all the above definitions we can now state the following proposition that shows how to
characterize  a translation–invariant window operator in terms of a measure.

Proposition 1.16 (characterization of the translation–invariant window operators) – Let (E,�) be an Abe-
lian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. The mapping

� 	 �� (Expression (67)) from the set of translation–invariant window operators from K1
E to K2

E, to the

set of measures from K1
W to K2 is a bijection. Its inverse is � 	 �� (Expression (68)). �

Proof – By construction, for any operator � from K1
E to K2

E, �� is a operator from K1
W to K2. Let us prove

that, for any measure � from K1
W to K2, �� is a t.i. window operator from K1

E to K2
E. For any f � K1

E

and y, v � E,

��(f � v)(y) � �(((f � v) � y)�W) (Expression (68))

� �((f � (v � y))�W) (property of the translate)

� ��(f)(y � v) (Expression (68))

� (��(f) � v)(y). (Expression (62))

In other words, �� is t.i.. For any f � K1
E and y � E,

��(f�(W � y))(y) � �((f�(W � y) � y)�W) (Expression (68))

� �((f � y)�W) (Proposition 1.15)

� ��(f)(y). (Expression (68))

In other words, �� is a window operator (with window W).

Let us prove that � 	 �� is injective. For any t.i. window operator � from K1
E to K2

E, f � K1
E and y � E,

���
(f)(y) � ��((f � y)�W) (Expression (68))

� �((f � y)�W)(o) (Expression (67a))
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� �(f � y)(o) (definition of window operator)

� (�(f) � y)(o) (definition of t.i.)

� �(f)(y). (Expression (62))

That is, ���
� � and � 	 �� is injective.

Let us prove that � 	 �� is onto. For any operator � from K1
W to K2, f � K1

W,

���
(f) � ��(f)(o) (Expression (67a))

� �(f�W) (Expression (68))

� �(f). (Proposition (1.14))

That is, ���
� � and � 	 �� is onto. In other words, � 	 �� is a bijection and its inverse is � 	 ��.

�

Heijmans [9, p. 117 e p. 372] gives a similar expression to (68) for the class of flat function
operators associated with (finite) window operators on �(Ed).

From the previous characterizations we can now derive the three characterizations of the
translation–invariant  elementary operators.

3.2 – CHARACTERIZATION BY CONFRONTATION

From the elementary measure characterizations we derive now the characterization by con-
frontation of the translation–invariant window elementary operators.

Let us first introduce two technical propositions.

Proposition 1.17 (extension of the union and intersection) – Let E be a nonempty set, let W be a nonempty
subset  of E, and let K1 be a bounded chain. For any family (fi)i�I of elements of KW

1 ,



i � I

fi �

i � I

fi   and   �
i � I

fi ��
i � I

fi

and



i � I

fi �

i � I

fi   and   �
i � I

fi ��
i � I

fi.

�

Proof – Let us prove the first statement. For any x � E,

(

i � I

fi )(x) ���
(


i � I
fi)(x) if x � W

max K1 otherwise
(Expression (64))

���


i � I

fi(x) if x � W

max K1 otherwise
(Expression (30))

�

i � I
� fi(x) if x � W

max K1 otherwise
(property of the union)
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�

i � I

fi(x) (Expression (64))

� (

i � I

fi)(x). (Expression (30))

In other words, 

i � I

fi �

i � I

fi. The other statements follow in a similar way. �

Let W � E. Let’s denote by �W(K1
E, K2

E) (resp., �W(K1
E, K2

E), �
a
W(K1

E, K2
E),

�
a
W(K1

E, K2
E)) the set of translation–invariant window dilations (resp., erosions, anti–dilations, anti–ero-

sions) with window W.

Proposition 1.18 (bijection between the t.i. elementary operators and the elementary measures) – Let
(E,�) be an Abelian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains.
We have the following statements:

� 	 �� (Exp. (67)) from �W(K1
E, K2

E) to �(K1
W, K2) is a bijection. Its inverse is � 	 �� (Exp.

(68));

� 	 �� (Exp. (67)) from �W(K1
E, K2

E) to �(K1
W, K2) is a bijection. Its inverse is � 	 �� (Exp.

(68));

� 	 �� (Exp. (67)) from �a
W(K1

E, K2
E) to �a(K1

W, K2) is a bijection. Its inverse is � 	 �� (Exp.
(68));

� 	 �� (Exp. (67)) from �a
W(K1

E, K2
E) to �a(K1

W, K2) is a bijection. Its inverse is � 	 �� (Exp.
(68)).

�

Proof – Let us prove the first statement.

Let us prove that, for any � � �W(K1
E, K2

E), we have �� � �(K1
W, K2).

��(inf(K1
W)) � �(inf(K1

W))(o) (Expression (67b))

� �(inf(K1
E))(o) (Expression (65))

� (inf(K2
E))(o) (� is a dilation and Proposition 1.3)

� min K2. (Expression (28))

That is, ��(inf(K1
W)) � min K2. For any family (fi)i�I of elements of KW

1 ,

��(

i � I

fi) � �(

i � I

fi)(o) (Expression (67a))

� �(

i � I

fi )(o) (Proposition 1.17)

� (

i � I

�(fi))(o) (� is a dilation)

�

i � I

�(fi)(o) (Expression (30))

�

i � I

��(fi). (Expression (67a))
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That is, ��(

i � I

fi) �

i � I

��(fi) . In other words, �� � �(K1
W, K2).

Let us prove that, for any � � �(K1
W, K2), we have �� � �W(K1

E, K2
E). For any y � E,

��(inf(K1
E))(y) � �((inf(K1

E) � y)�W) (Expression (68))

� �((inf(K1
E))�W) ( inf(K2

E) is translation–invariant)

� �(inf(K1
W)) (Expression (63))

� min K2. (� is a dilation and Proposition 1.3)

That is, ��(inf(K1
E)) � inf(K2

E). For any family (fi)i�I of elements of KE
1 and y � E,

��(

i � I

fi)(y) � �(((

i � I

fi) � y)�W) (Expression (68))

� �((

i � I

(fi � y))�W) (property of the translate)

� �(

i � I

(fi � y)�W) (Expression (30) twice)

�

i � I

�((fi � y)�W) (� is a dilation)

�

i � I

��(fi)(y) . (Expression (68))

That is, ��(

i � I

fi) �

i � I

��(fi) . In other words, �� � �W(K1
E, K2

E).

The three other statements follow from the first one by duality. �

We can now introduce the so–called characterization by confrontation. In this characteriza-

tion, the t.i. window elementary operators (with window W) from K1
E to K2

E will depend on elementary

operators from K2 to K1
W that we will call structuring elements.

We define the following four pairs of useful expressions.

For any dilation � � �W(K1
E, K2

E) and any erosion e � E(K2, K1
W), let

e�(t) �� sup{f � K1
W : �(f)(o) � t} (t � K2) (69)

e�(f)(y) ��min {t � K2 : (f � y)�W � e(t)} (f � K1
E, y � E), (70)

e� is called the structuring element of the dilation �, and e�(f) is called the dilation of f by the structuring
element e.

For any erosion � � �W(K1
E, K2

E) and any dilation d � D(K2, K1
W), let

�d(t) �� inf{f � K1
W : t � �(f)(o)} (t � K2) (71)

�d(f)(y) ��max {t � K2 : d(t) � (f � y)�W} (f � K1
E, y � E), (72)

�d is called the structuring element of the erosion �, and �d(f) is called the erosion of f by the structuring
element d.
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For any anti–dilation �a � �
a

W(K1
E, K2

E) and any anti–dilation da � Da(K2, K1
W), let

�ada(t) �� sup{f � K1
W : t � �a(f)(o)} (t � K2) (73)

da�a(f)(y) ��max {t � K2 : (f � y)�W � da(t)} (f � K1
E, y � E), (74)

�ada is called the structuring element of the anti–dilation �a, and da�a(f) is called the anti–dilation of f by
the structuring element da.

For any anti–erosion �a � �
a

W(K1
E, K2

E) and any anti–erosion ea � Ea(K2, K1
W), let

ea
�a(t) �� inf{f � K1

W : �a(f)(o) � t} (t � K2) (75)

�a
ea(f)(y) ��min {t � K2 : ea(t) � (f � y)�W} (f � K1

E, y � E), (76)

ea
�a is called the structuring element of the anti–erosion �a, and �a

ea(f) is called the anti–erosion of f by the

structuring element ea.

In the next proposition, we state a result relative to the class of dilations, similar results could
be stated for the other classes of elementary operators.

Proposition 1.19 (composition properties) – Let (E,�) be an Abelian group, let W be a nonempty subset
of E, and let K1 and K2 be two bounded chains. We have the following statements:

� 	 e� (Exp. (69)) is the composition of � 	 �� (Exp. (67)) with � 	 e� (Exp. (34))

e 	 e� (Exp. (70)) is the composition of e 	 e� (Exp. (35)) with � 	 �� (Exp. (68)). 
�

Proof – Let us prove that the mapping � 	 e� (Exp. (69)) from �W(K1
E, K2

E) to E(K2, K1
W) is the composi-

tion of the mapping � 	 �� (Exp. (67)) from �W(K1
E, K2

E) to �(K1
W, K2), with the mapping � 	 e� (Exp.

(34)) from �(K1
W, K2) to E(K2, K1

W). For any � � �W(K1
E, K2

E) and t � K2,

e�
�
(t) � sup{f � K1

W : ��(f) � t} (Expression (34))

� sup{f � K1
W : �(f)(o) � t} (Expression (67b))

� e�(t). (Expression (69))

Let us prove that the mapping e 	 e� (Exp. (70)) from E(K2, K1
W) to �W(K1

E, K2
E) is the composition of the

mapping e 	 e� (Exp. (35)) from E(K2, K1
W) to �(K1

W, K2), with the mapping � 	 �� (Exp. (68)) from

�(K1
W, K2) to �W(K1

E, K2
E). For any e � E(K2, K1

W), f � K1
E and y � E,

�
e�

(f)(y) � e�((f � y)�W) (Expression (68))

� min {t � K2 : (f � y)�W � e(t)} (Expression (35))

� e�(f)(y). (Expression (70))
�

In Proposition 7.2, Barrera (25) gives the caracterization by confrontation for the erosion in
the case of lattices having sup–generating families. Here we give a similar result for all the elementary oper-
ators between gray–level images.
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Proposition 1.20 (characterization by confrontation of the t.i. elementary operators) – Let (E,�) be an
Abelian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. We have the
following statements:

� 	 e� (Exp. (69)) from �W(K1
E, K2

E) to E(K2, K1
W) is a bijection,

its inverse is e 	 e� (Exp. (70));

� 	 �d (Exp. (71)) from �W(K1
E, K2

E) to D(K2, K1
W) is a bijection,

its inverse is d 	 �d (Exp. (72));

�a 	 �ada (Exp. (73)) from �a
W(K1

E, K2
E) to Da(K2, K1

W) is a bijection,
its inverse is da 	 da�a (Exp. (74));

�a 	 ea
�a (Exp. (75)) from �a

W(K1
E, K2

E) to Ea(K2, K1
W) is a bijection,

its inverse is ea 	 �a
ea (Exp. (76)). �

Proof – Let us prove the first statement. By Proposition 1.19, � 	 e� (Exp. (69)) is the composition of
� 	 �� (Exp. (67)) with � 	 e� (Exp. (34)). By Propositions 1.18 and 1.7, these two mappings are bijec-
tions, therefore their composition � 	 e� is also a bijection. Furthermore, the mapping e 	 e� (Exp. (70))
is its inverse since it is, by Proposition 1.19, the composition of e 	 e� (Exp. (35)) with � 	 �� (Exp. (68))
which are, by Propositions 1.7 and 1.18, the inverses of the above two bijections. The three other statements
follow from the first one by duality. �

Figure 9 shows an elementary operator �d which is a t.i. window erosion (with window W)

from K1
E to K2

E, where E � [� 5, 5] � Z (the set of integers), W � [� 2, 2] � E,
K1 � {0, 1, 2, 3, 4, 5, 6, 7}, K2 � {0, 1, 2, 3} and E is equipped with the addition � modulus 11. In its

characterization  by confrontation, this erosion depends on the dilation d from K2 to K1
W given in Figure 4. In

Figure 9, a particular function f is shown; the erosion of f through �d at point 3 of E is 1. This value is

obtained through Expression (72). Figure 9 shows that we have to confront f� �� (f � 3)�W with each func-

tion in the family defined by d in order to find the greatest function smaller or equal to f�.

3.3 – CHARACTERIZATION BY SELECTION

Let W be a subset of the Abelian group (E,�), we denote by W t the transpose of W, that is,
the subset of E given by

W t �� {y � E : � y � W}. (77)

We now introduce our second way to characterize an elementary operator, the so–called char-
acterization  by selection. In this characterization, the t.i. window elementary operators (with window W)

from K1
E to K2

E will depend on elementary operators from K1 to K2
Wt

 that we will call impulsive responses.

Let p be a mapping from K1 to K2
W, we define the transpose of p as the mapping p t from K1 to

K2
Wt

 given by

p t(s)(y) �� p(s)(� y) (s � K1, y � W t). (78)

In the same way, let p be a mapping from K1 to K2
Wt

, we define the transpose of p as the

mapping p t from K1 to K2
W given by

p t(s)(x) �� p(s)(� x) (s � K1, x � W). (79)
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Fig. 9 – Erosion characterization by confrontation.

f
� max {0, 1} � 1
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0

Proposition 1.21 (property of the transposition) – Let (E,�) be an Abelian group, let W be a nonempty
subset of E, and let K1 and K2 be two bounded chains. The mapping p 	 p t (Expression (78)) from the

set of mappings from K1 to K2
W, to the set of mappings from K1 to K2

Wt
 is a bijection. Its inverse is p 	 p t

(Expression (79)).
�
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Proof – For any W � E, for any mapping p from K1 to K2
W, s � K1 and x � W,

(p t)t(s)(x) � p t(s)(� x) (Expression (79))

� p(s)(� (� x)) (Expression (78), with y � � x)

� p(s)(x). (property of �)

That is, (p t)t � p. For any mapping p from K1 to K2
Wt

, s � K1 and y � W t,

(p t)t(s)(y) � p t(s)(� y) (Expression (78))

� p(s)(� (� y)) (Expression (79) with x � � y)

� p(s)(y). (property of �)

That is, (p t)t � p. In other words p 	 p t is a bijection. �

Proposition 1.22 (bijection between the elementary operators and their transposes) – Let (E,�) be an
Abelian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. We have the
following statements:

p 	 p t (Exp. (78)) from D(K1, K2
W) to D(K1, K2

Wt
) is a bijection. Its inverse is p 	 p t (Exp. (79));

p 	 p t (Exp. (78)) from E(K1, K2
W) to E(K1, K2

Wt
) is a bijection. Its inverse is p 	 p t (Exp. (79));

p 	 p t (Exp. (78)) from Da(K1, K2
W) to Da(K1, K2

Wt
) is a bijection. Its inverse is p 	 p t (Exp.

(79));

p 	 p t (Exp. (78)) from Ea(K1, K2
W) to Ea(K1, K2

Wt
) is a bijection. Its inverse is p 	 p t (Exp. (79)).

�

Proof – Let us prove the first statement.

Let us prove that, for any p � D(K1, K2
W), we have p t � D(K1, K2

Wt
). For any y � W t,

p t(min K1)(y) � p(min K1)(� y) (Expression (78))

� inf(K2
W)(� y) ( p is a dilation and Proposition 1.3)

� inf(K2
Wt

)(y). (Expression (77))

That is, p t(min K1) � inf(K2
Wt

). For any family (si)i�I of elements of K1 and y � W t,

p t(

i � I

si)(y) � p(

i � I

si)(� y) (Expression (78))

� (

i � I

p(si))(� y) ( p is a dilation)

�

i � I

p(si)(� y) (Expression (30))

�

i � I

p t(si)(y) (Expression (78))

� (

i � I

p t(si))(y). (Expression (30))
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That is, p t(

i � I

si) �

i � I

p t(si) . In other words, p t � D(K1, K2
Wt

). In the same way we could prove that for

any p � D(K1, K2
Wt

), we have p t � D(K1, K2
W).

The three other statements follow from the first one by duality. �

We define the following four pairs of useful expressions.

For any dilation � � �W(K1
E, K2

E) and any dilation d � D(K1, K2
Wt

), let

d�(s) ���(fo,s)�W t (s � K1) (80)

�d(f)(y) �� 

u � W

dt((f � y)(u))(u) (f � K1
W, y � E), (81)

d� is called the impulse response of the dilation �, and �d(f) is called the dilation of f by the dilation which
impulse response is d, or, in short, the dilation of f w.r.t. d.

For any erosion � � �W(K1
E, K2

E) and any erosion e � E(K1, K2
Wt

), let

�e(s) ���(fo,s)�W t (s � K1) (82)

e�(f)(y) �� �
u � W

et((f � y)(u))(u) (f � K1
W, y � E), (83)

�e is called the impulse response of the erosion �, and e�(f) is called the erosion of f by the erosion which
impulse response is e, or, in short, the erosion of f w.r.t. e.

For any anti–dilation �a � �
a

W(K1
E, K2

E) and any anti–dilation da � Da(K1, K2
Wt

), let

da
�a(s) ���a(fo,s)�W t (s � K1) (84)

�a
da(f)(y) �� �

u � W
dat((f � y)(u))(u) (f � K1

W, y � E), (85)

da
�a is called the impulse response of the anti–dilation �a, and �a

da(f) is called the anti–dilation of f by the
anti–dilation which impulse response is da, or, in short, the anti–dilation of f w.r.t. da.

For any anti–erosion �a � �
a

W(K1
E, K2

E) and any anti–erosion ea � Ea(K1, K2
Wt

), let

�aea(s) ���a(fo,s)�W t (s � K1) (86)

ea�a(f)(y) �� 

u � W

eat((f � y)(u))(u) (f � K1
W, y � E), (87)

�aea is called the impulse response of the anti–erosion �a, and ea�a(f) is called the anti–erosion of f by the
anti–erosion which impulse response is ea, or, in short, the anti–erosion of f w.r.t. ea.

Instead of the expression “impulse response” we can use point spread function or blur.

In the next proposition, we state a result relative to the class of dilations, similar results could
be stated for the other classes of elementary operators.

Proposition 1.23 (composition properties) – Let (E,�) be an Abelian group, let W be a nonempty subset
of E, and let K1 and K2 be two bounded chains. We have the following statements:

� 	 d� (Exp. (80)) is the composition of � 	 �� (Exp. (67)) with � 	 d� (Exp. (44))
and with p 	 p t (Exp. (78)),

d 	 �d (Exp. (81)) is the composition of p 	 p t (Exp. (79)) with d 	 �d (Exp. (45))
and with � 	 �� (Exp. (68)). �
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Proof – Let us prove that the mapping � 	 d� (Exp. (80)) from �W(K1
E, K2

E) to D(K1, K2
Wt

) is the com-

position of the mapping � 	 �� (Exp. (67)) from �W(K1
E, K2

E) to �(K1
W, K2), with the mapping � 	 d�

(Exp. (44)) from �(K1
W, K2) to D(K1, K2

W), and with the mapping p 	 p t (Exp. (78)) from D(K1, K2
W) to

D(K1, K2
Wt

). For any � � �W(K1
E, K2

E), s � K1 and y � W t,

d�
�

t(s)(y) � d�
�
(s)(� y) (Expression (78))

� ��(f�y,s) (Expression (44))

� �(f�y,s)(o) (Expression (67b))

� �(f�y,s)(o) (Exp. (65) and (42) with f�y,s defined on E)

� �(fo,s � y)(o) (Expressions (43) and (62))

� �(fo,s)(y) ( � is a t.i.)

� (�(fo,s)�W t)(y) (Expression (63))

� d�(s)(y). (Expression (80))

Let us prove that d 	 �d (Exp. (81)) from D(K1, K2
Wt

) to �W(K1
E, K2

E) is the composition of the mapping

p 	 p t (Exp. (79)) from D(K1, K2
Wt

) to D(K1, K2
W), with the mapping d 	 �d (Exp. (45)) from D(K1, K2

W)

to �(K1
W, K2), and with the mapping � 	 �� (Exp. (68)) from �(K1

W, K2) to �W(K1
E, K2

E). For any

d � D(K1, K2
Wt

), f � K1
E and y � E,

��
dt

(f)(y) � �dt((f � y)�W) (Expression (68))

� 

u � W

dt(((f � y)�W)(u))(u) (Expression (45))

� 

u � W

dt((f � y)(u))(u) (Expression (63))

� �d(f)(y). (Expression (81))
�

Proposition 1.24 (characterization by selection of the t.i. elementary operators) – Let (E,�) be an Abe-
lian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. We have the follow-
ing statements:

� 	 d� (Exp. (80)) from �W(K1
E, K2

E) to D(K1, K2
Wt

) is a bijection,
its inverse is d 	 �d (Exp. (81));

� 	 �e (Exp. (82)) from �W(K1
E, K2

E) to E(K1, K2
Wt

) is a bijection,
its inverse is e 	 e� (Exp. (83));

�a 	 da
�a (Exp. (84)) from �a

W(K1
E, K2

E) to Da(K1, K2
Wt

) is a bijection,
its inverse is da 	 �a

da (Exp. (85));

�a 	 �aea (Exp. (86)) from �a
W(K1

E, K2
E) to Ea(K1, K2

Wt
) is a bijection,

its inverse is ea 	 ea�a (Exp. (87)).
�
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Proof – Let us prove the first statement. By Proposition 1.24, � 	 d� (Exp. (80)) is the composition of
� 	 �� (Exp. (67)) with � 	 d� (Exp. (44)) and with p 	 p t (Exp. (78)). By Propositions 1.18, 1.10 and
1.22, these three mappings are bijections, therefore their composition � 	 d� is also a bijection. Further-
more, the mapping d 	 �d (Exp. (81)) is its inverse since it is, by Proposition 1.24, the composition of
p 	 p t (Exp. (79)) with d 	 �d (Exp. (45)) and with � 	 �� (Exp. (68)) which are, by Propositions 1.22,
1.10 and 1.18, the inverses of the above three bijections. The three other statements follow from the first
one by duality. �

We observe that he impulse responses of the elementary t.i. operators are the distributions
functions of the elementary measures that characterize them.

Figure 10 shows an elementary operator e� which is a t.i. window erosion (with window W)

from K1
E to K2

E, where E � [� 5, 5] � Z (the set of integers), W � [� 2, 2] � E,
K1 � {0, 1, 2, 3, 4, 5, 6, 7}, K2 � {0, 1, 2, 3} and E is equipped with the addition � modulus 11. In its

characterization  by selection, this erosion depends on the erosion e from K1 to K2
Wt

 which is the transpose of
the erosion given in Figure 5. In Figure 10, a particular function f is shown; the erosion of f through e� at
point 3 of E is 1. This value is obtained through Expression (83). Figure 10 shows that when u runs over W,

we have to select, according to the value (f � 3)(u), the appropriate function in the family defined by e t.
Actually, the erosion e has been chosen in such a way that the resulting operator e� is identical to the opera-
tor �d shown in Figure 9 (see Proposition 1.26 below).

We now give equivalent expressions for the characterization by selection of the elementary
operators. These expressions are useful for a visual construction of the operator output.

Proposition 1.25 (equivalent expressions for the characterization by selection) – Let (E,�) be an Abelian
group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. We have the following
statements:

for any d � D(K1, K2
Wt

),

�d(f) � 

u � E

(d(f (u)) � u) (f � K1
W);

for any e � E(K1, K2
Wt

),

e�(f) � �
u � E

(e(f (u)) � u) (f � K1
W);

for any da � Da(K1, K2
Wt

),

�a
da(f) � �

u � E
(da(f (u)) � u) (f � K1

W);

for any ea � Ea(K1, K2
Wt

),

ea�a(f) � 

u � E

(ea(f (u)) � u) (f � K1
W). �

Proof – Let us prove the first statement. For any d � D(K1, K2
Wt

), any f � K1
W and any y � E,

�d(f)(y) � 

u � W

d t((f � y)(u))(u) (Expression (81))

� 

u � W

d((f � y)(u))(� u) (Expression (79))
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Fig. 10 – Erosion characterization by selection.
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� 

u � W

d(f (u � y))(� u) (Expression (62))

� 

v � Wt

d(f (y � v))(v) (Exp. (77), v � � u and u � � v)

� 

v � Wt

d(f (y � v))(v) (Proposition 1.14)
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� 

v � E

d(f (y � v))(v) (Exp. (65) and max K2 is the null element for the union)

� 

u � E

d(f (u))(y � u) (u � y � v and v � y � u)

� 

u � E

(d(f (u)) � u)(y). (Expression (62))

That is, for any f � K1
W, �d(f) � 


u � E
(d(f (u)) � u).

The other statements follow from the first one by duality. �

Figure 11 shows all the bijections previously defined with respect to the characterization of
translation–invariant window dilations. This figure helps to establish the next proposition.

Fig. 11 – Bijections involved in dilation characterization.
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In order to define the relationships between the characterization by confrontation and by
selection, we define the following four pairs of useful expressions.

Let W1 and W2 be two subsets of E mutually transposed (i.e., W2 � W1
t or equivalently

W1 � W2
t), and let P(x, y) be the property: x � W1 and y � W2 such that x � y � o (the null element of

�).

For any erosion e � E(K2, K1
W1) and any dilation d � D(K1, K2

W2), let

e(s)(y) ��min {t � K2 : s � e(t)(x)} (s � K1, P(x, y)) (88)

d(t)(x) ��max {s � K1 : d(s)(y) � t} (t � K2, P(x, y)). (89)

For any dilation d � D(K2, K1
W1) and any erosion e � E(K1, K2

W2), let

d(s)(y) ��max {t � K2 : d(t)(x) � s} (s � K1, P(x, y)) (90)

e(t)(x) ��min {s � K1 : t � e(s)(y)} (t � K2, P(x, y)). (91)
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For any anti–dilation da � Da(K2, K1
W1) and any anti–dilation da � Da(K1, K2

W2), let respec-
tively

da(s)(y) ��max {t � K2 : s � da(t)(x)} (s � K1, P(x, y)) (92)

da(t)(x) ��max {s � K1 : t � da(s)(y)} (t � K2, P(x, y)). (93)

For any anti–erosion ea � Ea(K2, K1
W1) and any anti–erosion ea � Ea(K1, K2

W2), let respec-
tively

ea(s)(y) ��min {t � K2 : ea(t)(x) � s} (s � K1, P(x, y)) (94)

ea(t)(x) ��min {s � K1 : ea(s)(y) � t} (t � K2, P(x, y)). (95)

Proposition 1.26 (relationships between the characterization by confrontation and by selection) – Let
(E,�) be an Abelian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains.
We have the following statements:

if e � E(K2, K1
W1) then e� (Exp. (70)) is identical to �e (Exp. (81)), i.e., e� � �e

if d � D(K1, K2
W2) then �d (Exp. (81)) is identical to d� (Exp. (70)), i.e., �d � d�

if d � D(K2, K1
W1) then �d (Exp. (72)) is identical to d� (Exp. (83)), i.e., �d � d�

if e � E(K1, K2
W2) then e� (Exp. (83)) is identical to �e (Exp. (72)), i.e., e� � �e

if da � Da(K2, K1
W1) then da�a (Exp. (74)) is identical to �a

da (Exp. (85)), i.e., da�a � �a
da

if da � Da(K1, K2
W2) then �a

da (Exp. (85)) is identical to da�
a (Exp. (74)), i.e., �a

da � da�
a

if ea � Ea(K2, K1
W1) then �a

ea (Exp. (76)) is identical to ea�a (Exp. (87)), i.e., �a
ea � ea�a

if ea � Ea(K1, K2
W2) then ea�a (Exp. (87)) is identical to �a

ea (Exp. (76)), i.e., ea�a � �a
ea.

�

Proof – Let us prove the first statement. For any erosion e � E(K2, K1
W) and any dilation d � D(K1, K2

Wt
),

e� � �d � �
e�
� ��

dt
(Propositions 1.19 and 1.23)

� e� � �dt (Proposition 1.18)

� dt � d
e�

(Proposition 1.10)

� d � d
e�

t
(Proposition 1.20)

� d(s)(y) � d
e�

t(s)(y) (s � K1, y � W2) (equality between mappings)

� d(s)(y) � d
e�

(s)(x) (s � K1, P(x, y)) (Expression (78))

� d(s)(y) � e�(fx,s) (s � K1, P(x, y)) (Expression (44))

� d(s)(y) � min {t � K2 : fx,s � e(t)} (s � K1, P(x, y)) (Expression (35))



43

� d(s)(y) � min {t � K2 : fx,s(u) � e(t)(u) (u � W)} (s � K1, P(x, y)) (Exp. (27))

� d(s)(y) � min {t � K2 : s � e(t)(x)} (s � K1, P(x, y)) (Expression (42))

� d(s)(y) � e(s)(y) (s � K1, y � W2) (Expression (88))

� d � e. (equality between mappings)

Let us prove the second statement. For any dilation d � D(K1, K2
W2) and any erosion e � E(K2, K1

W1),

�d � e� � ��
dt
� �

e�
(Propositions 1.19 and 1.23)

� �dt � e� (Proposition 1.18)

� e � e�
dt

(Proposition 1.7)

� e(t) � e�
dt

(t) (t � K2) (equality between mappings)

� e(t) � sup{f � K1
W1 : �dt(f) � t} (t � K2) (Expression (34))

� e(t) � sup{f � K1
W1 : 


u � W1

dt(f (u))(u) � t} (t � K2) (Expression (45))

� e(t) � sup{f � K1
W1 : dt(f (u))(u) � t (u � W1)} (t � K2) (property of the

union)

� e(t)(x) � max {s � K1 : �f � K1
W1, d t(f (u))(u) � t (u � W1) and s � f (x)}

(t � K2, x � W1)
(Expression (28))

� e(t)(x) � max {s � K1 : d t(s)(x) � t} (t � K2, x � W1) (one can chose f to be
fx,s)

� e(t)(x) � max {s � K1 : d(s)(y) � t} (t � K2, P(x, y)) (Expression (79))

� e(t)(x) � d(t)(x) (t � K2, x � W1)
(Expression (89))

� e � d.
(equality between mappings)

The other three pairs of statement follow from the first pair by duality. �

We say that:

e � E(K2, K1
W1) and d � D(K1, K2

W2) are companions iff
s � e(t)(u) � t � d(s)(v) ((s, t) � K1 � K2, P(u, v));

d � D(K2, K1
W1) and e � E(K1, K2

W2) are companions iff
s � d(t)(u) � t � e(s)(v) ((s, t) � K1 � K2, P(u, v));

da � Da(K2, K1
W1) and da � Da(K1, K2

W2) are companions iff
s � da(t)(u) � t � da(s)(v) ((s, t) � K1 � K2, P(u, v));
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ea � Ea(K2, K1
W1) and ea � Ea(K1, K2

W2) are companions iff
s � ea(t)(u) � t � ea(s)(v) ((s, t) � K1 � K2, P(u, v)).

Equivalently (see Proposition 5.4 of Banon & Barrera [7] for a similar case), we say that:

e � E(K2, K1
W1) and d � D(K1, K2

W2) are companions iff

e � d (Exp. (88)) (or d � e (Exp. (89)));

d � D(K2, K1
W1) and e � E(K1, K2

W2) are companions iff

d � e (Exp. (90)) (or e � d (Exp. (91)));

da � Da(K2, K1
W1) and da � Da(K1, K2

W2) are companions

iff da � da (Exp. (92)) (or da � da (Exp. (93)));

ea � Ea(K2, K1
W1) and ea � Ea(K1, K2

W2) are companions iff
ea � ea (Exp. (94)) (or ea � ea (Exp. (95))).

The dilation d of Figure 9 (with W � W1) and the erosion e of Figure 10 (with W t � W2) are
examples of companion mappings. For this reason, by Proposition 1.26, the erosions �d in Figure 9 and e� in
Figure 10 are identical.

We now give sufficient conditions on the structuring elements and the impulse responses in
order to a pair of t.i. elementary operators be a Galois connection (G.c.) [17].

Proposition 1.27 (sufficient condition for Galois connections) – Let (E,�) be an Abelian group, let W1

and W2 be two subsets of E, mutually transposed, and let K1 and K2 be two bounded chains. We have the
following statements:

if e � E(K2, K1
W1) and d � D(K1, K2

W2) are companions then

(�d, e�) is a G.c. between (K1
E, �) and (K2

E, �);

if d � D(K2, K1
W1) and e � E(K1, K2

W2) are companions then

(e�,�d) is a G.c. between (K1
E, �) and (K2

E, �);

if da � Da(K2, K1
W1) and da � Da(K1, K2

W2) are companions then

(�da, da�) is a G.c. between (K1
E, �) and (K2

E, �);

if ea � Ea(K2, K1
W1) and ea � Ea(K1, K2

W2) are companions then

(ea�,�ea) is a G.c. between (K1
E, �) and (K2

E, �).
�

Proof – Let us prove the first statement. For any f � K1
E and g � K2

E,

f � e�(g) � f (x) � e�(g)(x) (x � E) (Expression (27))

� f (x) � �
v � W2

e t((g � x)(v))(v) (x � E) (Expression (83))

� f (x) � �
v � W2

e t((g)(v � x))(v) (x � E) (Expression (62))

� (f (x) � e t((g)(v � x))(v) (v � W2)) (x � E)
(property of the intersection)
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� (f (x) � e((g)(v � x))(u) (P(u, v))) (x � E) (Expression (78))

� (g(y) � d((f)(u � y))(v) (P(u, v))) (y � E)
(hypothesis, y � v � x and x � u � y)

� (g(y) � d t((f)(u � y))(u) (u � W1)) (x � E) (Expression (79))

� g(y) � 

u � W1

d t((f)(u � y))(u) (y � E) (property of the union)

� g(y) � 

u � W1

d t((f � y)(u))(u) (y � E) (Expression (62))

� g(y) � �d(f)(y) (y � E) (Expression (81))

� g � �d(f). (Expression (27))

That is, (�d, e�) is a G.c. between (K1
E, �) and (K2

E, �).

The other statements follow from the first one by duality. �

The next proposition shows how to easily get the different types of Galois connections.

Proposition 1.28 (Galois connections construction) – Let (E,�) be an Abelian group, let W1 and W2 be
two subsets of E, mutually transposed, and let K1 and K2 be two bounded chains. We have the following
statements:

for any e � E(K2, K1
W1), (�e, e�), (e�, e�) and (e�,�e) are

G.c. between (K1
E, �) and (K2

E, �);

for any d � D(K1, K2
W2), (�d, d�), (�d,�d) and (d�,�d) are

G.c. between (K1
E, �) and (K2

E, �);

for any d � D(K2, K1
W1), (d�,�d), (�d,�d) and (�d, d�) are

G.c. between (K1
E, �) and (K2

E, �);

for any e � E(K1, K2
W2), (e�,�e), (e�, e�) and (�e, e�) are

G.c. between (K1
E, �) and (K2

E, �);

for any da � Da(K2, K1
W1), (�da,�da), (da�,�da) and (da�, da�) are

G.c. between (K1
E, �) and (K2

E, �);

for any da � Da(K1, K2
W2), (�da,�da), (�da, da�) and (da�, da�) are

G.c. between (K1
E, �) and (K2

E, �);

for any ea � Ea(K2, K1
W1), (ea�, ea�), (�ea, ea�) and (�ea,�ea) are

G.c. between (K1
E, �) and (K2

E, �);

for any ea � Ea(K1, K2
W2), (ea�, ea�), (ea�,�ea) and (�ea,�ea) are

G.c. between (K1
E, �) and (K2

E, �).
�
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Proof – Let us prove the first two statements. For any e � E(K2, K1
W1) and d � D(K1, K2

W2),

d � e � e and d are companions (equivalent companion definition)

� (�d, e�) is a G.c. between (K1
E, �) and (K2

E, �). (Proposition 1.27)

That is, (�e, e�) is a G.c. between (K1
E, �) and (K2

E, �). By Proposition 1.26, (e�, e�) and (e�,�e) are also

G.c. between (K1
E, �) and (K2

E, �). For any e � E(K2, K1
W1) and d � D(K1, K2

W2),

e � d � e and d are companions (equivalent companion definition)

� (�d, e�) is a G.c. between (K1
E, �) and (K2

E, �). (Proposition 1.27)

That is, (�d, d�) is a G.c. between (K1
E, �) and (K2

E, �). By Proposition 1.26, (�d,�d) and (d�,�d) are

also G.c. between (K1
E, �) and (K2

E, �).

The other statements follow from the first two by duality. �

3.4 – CHARACTERIZATION BY DECOMPOSITION

Let us introduce our third way to characterize an elementary operator, the so–called charac-
terization by decomposition. In this characterization, the t.i. window elementary operators (with window

W) from K1
E to K2

E will depend on a family of elementary operators from K1 to K2 that we call elementary
transformation tables or Elementary Look Up Tables (ELUTs). The characterization will be derived from
the characterization by selection.

We define the following four pairs of useful expressions. In these expressions � stands for the
mapping composition.

For any dilation � � �W(K1
E, K2

E) and any family of dilations (dv) � D(K1, K2)Wt, let

(d�)v(s) ���(fo,s)(v) (s � K1, v � W t) (96)

�(d)(f)
�� 


v � Wt
dv � (f � v) (f � K1

E), (97)

((d�)v) is called the family of ELUTs of the dilation �, and �(d)(f) is called the dilation of f w.r.t. the family of
ELUTs (dv).

For any erosion � � �W(K1
E, K2

E) and any family of erosions (ev) � E(K1, K2)Wt, let

(�e)v(s) ���(fo,s)(v) (s � K1, v � W t) (98)

(e)�(f) �� �
v � Wt

ev � (f � v) (f � K1
E), (99)

((�e)v) is called the family of ELUTs of the erosion �, and (e)�(f) is called the erosion of f w.r.t. the family of
ELUTs (ev).

For any anti–dilation �a � �
a

W(K1
E, K2

E) and any family of anti–dilations

(da
v) � Da(K1, K2)Wt, let
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(da
�a )v(s) ���a(fo,s)(v) (s � K1, v � Wt) (100)

�a
(da)(f)

�� �
v � Wt

da
v � (f � v) (f � K1

E), (101)

((da
�a )v) is called the family of ELUTs of the anti–dilation �a, and �a

(da)(f) is called the anti–dilation of f
w.r.t. the family of ELUTs (da

v).

For any anti–erosion �a � �
a

W(K1
E, K2

E) and any family of anti–erosions

(ea
v) � Ea(K1, K2)Wt, let

(�aea)v(s) ���a(fo,s)(v) (s � K1, v � Wt) (102)

(ea)�
a(f) �� 


v � Wt
ea

v � (f � v) (f � K1
E), (103)

((�aea)v) is called the family of ELUTs of the anti–erosion �a, and (ea)�
a(f) is called the anti–dilation of f w.r.t.

the family of ELUTs (ea
v).

In the next proposition, we state a result relative to the class of dilations, similar results could
be stated for the other classes of elementary operators.

Proposition 1.29 (composition properties) – Let (E,�) be an Abelian group, let W be a nonempty subset
of E, and let K1 and K2 be two bounded chains. We have the following statements:

� 	 ((d�)v) (Exp. (96)) is the composition of � 	 d� (Exp. (80)) with p 	 (pv) (Exp. (52))

(dv) 	 �(d) (Exp. (97)) is the composition of (pv) 	 p (Exp. (53)) with d 	 �d (Exp. (81)).
�

Proof – Let us prove that the mapping � 	 ((d�)v) (Exp. (96)) from �W(K1
E, K2

E) to D(K1, K2)Wt is the

composition of the mapping � 	 d� (Exp. (80)) from �W(K1
E, K2

E) to D(K1, K2
Wt

), with the mapping

p 	 (pv) (Exp. (52)) from D(K1, K2
Wt

) to D(K1, K2)Wt. For any � � �W(K1
E, K2

E), v � W t and s � K1,

(d�)v(s) � d�(s)(v) (Expression (52))

� (�(fo,s)�W t)(v) (Expression (80))

� �(fo,s)(v) (Expression (63))

� (d�)v(s). (Expression (96))

Let us prove that the mapping (dv) 	 �(d) (Exp. (97)) from D(K1, K2)Wt to �W(K1
E, K2

E) is the composition

of (pv) 	 p (Exp. (53)) from D(K1, K2)Wt to D(K1, K2
Wt

), with d 	 �d (Exp. (81)) from D(K1, K2
Wt

) to

�W(K1
E, K2

E). For any (dv) � D(K1, K2)Wt, f � K1
W and y � E, let d be the mapping given by Expression

(53), then we have

�d(f)(y) � 

u � W

d t((f � y)(u))(u) (Expression (81))

� 

u � W

d((f � y)(u))(� u) (Expression (79))
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� 

u � W

d((f � u)(x))(� u) (Expression (62) and x � y)

� 

v � Wt

d((f � v)(x))(v) (Exp. (77), v � � u and u � � v)

� 

v � Wt

dv((f � v)(x)) (Expression (53))

� 

v � Wt

(dv � (f � v))(y) (definition of the composition and y � x)

� �(d)(f)(y). (Expression (97))
�

Proposition 1.30 (characterization by decomposition of the t.i. elementary operators) – Let (E,�) be an
Abelian group, let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. We have the
following statements:

� 	 ((d�)v) (Exp. (96)) from �W(K1
E, K2

E) to D(K1, K2)Wt is a bijection,
its inverse is (dv) 	 �(d) (Exp. (97));

� 	 ((�e)v) (Exp. (98)) from �W(K1
E, K2

E) to E(K1, K2)Wt is a bijection,
its inverse is (ev) 	 (e)� (Exp. (99));

�a 	 ((da
�a )v) (Exp. (100)) from �a

W(K1
E, K2

E) to Da(K1, K2)Wt is a bijection,

its inverse is (da
v) 	 �a

(da) (Exp. (101));

�a 	 ((�aea)v) (Exp. (102)) from �a
W(K1

E, K2
E) to Ea(K1, K2)Wt is a bijection,

its inverse is (ea
v) 	 (ea)�

a (Exp. (103)).
�

Proof – Let us prove the first statement. By Proposition 1.29, � 	 ((d�)v) (Exp. (96)) is the composition
of � 	 d� (Exp. (80)) with p 	 (pv) (Exp. (52)). By Propositions 1.24 and 1.11 these two mappings are
bijections, therefore their composition � 	 ((d�)v) is also a bijection. Furthermore, the mapping
(dv) 	 �(d) (Exp. (97)) is its inverse since it is, by Proposition 1.29, the composition of (pv) 	 p (Exp. (53))

with d 	 �d (Exp. (81)) which are by Propositions 1.11 and 1.24, the inverses of the above two bijections.
The three other statements follow from the first one by duality. �

From the above characterization we can state the following two propositions.

Proposition 1.31 (number of t.i. elementary operators) – Let (E,�) be an Abelian group, let W be a non-
empty subset of E, let K1 and K2 be two bounded chains, and let k1 � (#K1) � 1, k2 � (#K2) � 1 and
w � #W. For any k1 � 1 and k2 � 1, the number of operators in a given class of t.i. window elementary

operators from K1 to K2 with window W is �(k1 � k2)!
k1!k2!

�w

. �

Proof – The result derives from Propositions 1.6 and 1.30. �

Figure 12 shows an example of number of t.i. elementary operators (e.g. erosions) with
k1 � k2 � 255 and w � 9. 

Proposition 1.32 (construction/decomposition of elementary operators) – Let (E,�) be an Abelian group,
let W be a nonempty subset of E, and let K1 and K2 be two bounded chains. Let (�v)v�Wt, (�v)v�Wt, (�a

v)v�Wt

and (�a
v)v�Wt be the families of operators from K1

E to K2
E given by, respectively,
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Fig. 12 – Example of number of erosions.

(510!/(255! 255!))^9
456203754093517760201776224596239809115926290007841189494168120\
  5373097509950657481522055492860742601795118933504459086883897\
  4953454359295434971703706939840852758135000304591578537624069\
  5596056096755517925868475417853293056422385049325569327243096\
  7992225071008877537075007279134119715796008381107349853562979\
  4428324672596730527199299223348538707090891066046391785020488\
  2570625900486964609586849760094937419518708945620648079148128\
  0289218048085815329276549831593895640784026233676946482040894\
  6314699869570934583552362817346187821682287541733602877866164\
  7728570340604772382153061679348625114197325694552113070543334\
  7036757177219439953885069491571275217759314583669854727275884\
  1315293404314521764590929646651232269189613102132683016295657\
  5228621781573348022491013037903287409623958125948392499346558\
  0860024102632920412316802880506020267702153176377746846603629\
  6393323069832763516545260141269461308505559839207227579085159\
  7071987386780823676350126232219004431373337281534963135796148\
  5965625101447153524185108314744534813802976119492915669350088\
  4208291628892667947101366390356997884333460732309043279437643\
  4964438695063531735576862041537448405714876532923024786796263\
  2113823650692331948829830729225062784989100210199842025828796\
  5567321437336291518475121613111121525624254552702295996388914\
  5829890113229824264870556885026260116064084999421139950616701\
   6928821725481081872842752

�v � (f 	 dv � f) � �v

�v � (f 	 ev � f) � �v

�a
v � (f 	 da

v � f) � �v

�a
v � (f 	 ea

v � f) � �v,

where, (dv)v�Wt, (ev)v�Wt, (da
v)v�Wt and (ea

v)v�Wt are, respectively, families of dilations, erosions, anti–dila-

tions and anti–erosions from K1 to K2. For any v � W t, the operators �v, �v, �a
v and �a

v from K1
E to K2

E

are, respectively, a dilation, an erosion, an anti–dilation and an anti–erosion. The operators �, �, �a and �a

from K1
E to K2

E given by, respectively,

� � 

v � Wt

�v

� � �
v � Wt

�v

�a � �
v � Wt

�a
v
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�a � 

v � Wt

�a
v.

are, respectively, a dilation, an erosion, an anti–dilation and an anti–erosion. Conversely, any operator �,

�, �a and �a from K1
E to K2

E which is, respectively, a dilation, an erosion, an anti–dilation and an anti–ero-
sion has this form. Furthermore, (dv)v�Wt, (ev)v�Wt, (da

v)v�Wt and (ea
v)v�Wt are given by, respectively, for any

v � W t,

dv(s) � �(fo,s)(v) (s � K1)

ev(s) � �(fo,s)(v) (s � K1)

da
v(s) � �a(fo,s)(v) (s � K1)

ea
v(s) � �a(fo,s)(v) (s � K1).

�

Proof –  Let us prove the result for the class of dilations. By construction, for any v � W t, �v is the com-
position of �v with the mapping f 	 dv � f; since both are dilations, �v is also a dilation. The rest of the
result is Proposition 1.30. The results for the other classes of elementary operators follow by duality. �

Figure 13 shows an elementary operator (e)� which is a t.i. window erosion (with window W)

from K1
E to K2

E, where E � [� 5, 5] � Z (the set of integers), W � [� 2, 2] � E,
K1 � {0, 1, 2, 3, 4, 5, 6, 7}, K2 � {0, 1, 2, 3} and E is equipped with the addition � modulus 11. In its
characterization  by decomposition, this erosion depends on a family (ex) of 5 erosions from K1 to K2 which
are derived from the erosion e given in Figure 10 by applying Expression (52). In this way the operator (e)� is

identical to e� shown in Figure 10. In Figure 13, a particular function f is shown; the transformation of f

through (e)� at 3 of E is 1. This value is obtained through Expression (99). Figure 13 shows a decomposition

of (e)�. Each branch is a particular erosion as stated in Proposition 1.32.
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�2

Fig. 13 – Erosion characterization by decomposition.
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CHAPTER 4

EXAMPLES

4.1 – NEURAL NETWORKS

In the previous chapter we saw that the elementary t.i. operators for gray–level images can be
characterized  alternatively in terms of three types of mapping: the structuring elements, the impulse
responses and the Elementary Look Up Tables. We will call these mappings characteristic functions. In this
section and in the following ones, we show that the classes of dilations and erosions recalled in the first
chapter are part of our general characterization.

In this chapter, we assume that K1 � K2 � K � [0, k] � Z.

We first consider the case of the elementary parametric neural networks. We define the fol-
lowing useful expressions.

For any increasing function a from K to K such that a(0) � 0 and a(k) � k, any nonempty
subset B of E, any function b from B to K � [0, k] � Z, and any families of binary operations (�u)u�B and
(�u)u�B  in, respectively, �� and ��, such that �u and �u are companions for any u � B, let

da,b,�(t)(u) �

� a(t �u b(u)) (t � K, u � B) (104)

ea,b,�(s)(v) �

� a(s) ��v b(� v) (s � K, v � B t) (105)

db,a,�(t)(u) �

� a(t) �u b(u) (t � K, u � B) (106)

eb,a,�(s)(v) �

� a(s ��v b(� v)) (s � K, v � B t). (107)

We observe that he underlying operators da,b,� from K to KB and ea,b,� from K to KBt are,
respectively, a dilation and an erosion. By using Theorem 2.7–(v) of Heijmans and Ronse (6) we can deduce
that da,b,� and ea,b,�  are companions. The same is true for db,a,� and eb,a,�.

For any increasing function a from K to K such that a(0) � 0 and a(k) � k, any nonempty subset B of E,
any function b from B to K � [0, k] � Z, and any families of binary operations (�u)u�B and (�u)u�B  in,
respectively, �� and ��, such that �u and �u are companions for any u � B, let

((da,b,�)u(t)
�

� a(t �u b(u)) (t � K)) (u � B) (108)

((ea,b,�)v(s) �

� a(s) ��v b(� v) (s � K)) (v � Bt) (109)

((db,a,�)u(t)
�

� a(t) �u b(u) (t � K)) (u � B) (110)

((eb,a,�)v(s) �

� a(s ��v b(� v)) (s � K)) (v � Bt). (111)

We observe that the underlying families ((da,b,�)u) and ((ea,b,�)v) are, respectively, families of
dilations and erosions from K to K. The same is true for ((db,a,�)u) and ((eb,a,�)v).

Proposition 1.33 (elementary parametric neural networks) – Let (E,�) be an Abelian group, and let K be

a bounded chain. Let �a,b, �a,b, �b,a and �b,a be the elementary operators from KE to KE defined, respec-
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tively, by Expressions (19) to (22). For any increasing function a from K to K such that a(0) � 0 and
a(k) � k, any nonempty subset B of E, any function b from B to K � [0, k] � Z, and any families of
binary operations (�u)u�B and (�u)u�B  in, respectively, �� and ��, such that �u and �u are compan-
ions for any u � B, we have the following statements:

ea,b,�
� � �a,b,�   and   �da,b,�

� �a,b,� (for confrontation)

�da,b,�
� �a,b,�   and   ea,b,�

� � �a,b,� (for selection)

�(da,b,�) � �a,b,�   and   (ea,b,�)� � �a,b,� (for decomposition)

eb,a,�
� � �b,a,�   and   �db,a,�

� �b,a,� (for confrontation)

�db,a,�
� �b,a,�   and   eb,a,�

� � �b,a,� (for selection)

�(db,a,�) � �b,a,�   and   (eb,a,�)� � �b,a,�. (for decomposition)

�

Proof – Let us prove the second statement in the case of the dilations. For any g � KE and any x � E,

�da,b,�
(g)(x) � �

v � Bt
da,b,�

t((g � x)(v))(v) (Expression (81))

� �
v � Bt

da,b,�((g � x)(v))(� v) (Expression (79))

� �
v � Bt

a((g � x)(v) ��v b(� v)) (Expression (104))

� a(�
v � Bt

(g � x)(v) ��v b(� v)) (a is a dilation (Prop. 1.4))

� a(�
v � Bt

g(v � x) ��v b(� v)) (Expression (62))

� a( �
� v � B

g(v � x) ��v b(� v)) (Expression (77))

� a(�
u � B

g(x � u) �u b(u)) (u � � v)

� �a,b,�(g)(x). (Expression (19))

The case of the erosions can be derived from the case of the dilations by duality. The first statement derives

from the second one by observing that da,b,� and ea,b,� satisfy da,b,� � ea,b,� and ea,b,� � da,b,�  (da,b,� and

ea,b,� are companions) and by applying Proposition 1.26. The third statement derives from the second one
by observing that (((da,b,�)u), da,b,�) and (((ea,b,�)v), ea,b,�) belong to the graph of (pv) � p (Exp. (53)) and by
applying Proposition 1.29. The last three statements can be proved in the same way as the first three ones.

�

Figures 14 and 15 show two examples of characteristic functions da,b,�, ea,b,�, ((da,b,�)u) and
((ea,b,�)v) for a given increasing function a from K � {0, 1, 2, 3, 4, 5, 6, 7} to K such that a(0) � 0 and
a(k) � k, a given function b defined on B, where B � [� 2, 2] � E � Z  (E is equipped with the addition
� modulus #E), and two given families of binary operations (�u)u�B and (�u)u�B  in, respectively, ��

and ��, such that �u and �u are companions for any u � B. Actually, Figure 14 corresponds to the case of
the Heijmans’ dilation and erosion with b(� 2) � b(2) � � 1, b(� 1) � b(1) � 0 and b(0) � 1.
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Fig. 14 – Example of characteristic functions for the Heijmans’ elementary operators.
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Fig. 15 – Example of characteristic functions for the elementary neural networks.
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4.2 – FLAT OPERATORS

Let us consider the case of the flat elementary operators (9). We define the following useful
expressions.

For any nonempty subset B of E, let

dB(t)(u) �

� t (t � K, u � B) (112)

eB(s)(v) �

� s (s � K, v � Bt). (113)

As special cases of  Expressions (104) and (107), we observe that the underlying operators dB

from K to KB and eB from K to KBt are both a dilation and an erosion, and they are companions.

For any u � B, let

(dB)u(t)
�

� t (t � K). (114)

For any v � B t, let

(eB)v(s) �

� s (s � K). (115)

As special cases of  Expressions (108) and (111), we observe that the underlying families
((dB)u) and ((eB)v) are both families of dilations and erosions from K to K.

Proposition 1.34 (flat elementary operators) – Let (E,�) be an Abelian group, and let K be a bounded

chain. Let �B and �B be the elementary operators from KE to KE defined, respectively, by Expressions (11)
and (12). For any nonempty subset B of E, we have the following statements:

eB
� � �B   and   �dB

� �B (for confrontation)

�dB
� �B   and   eB

� � �B (for selection)

�(dB) � �B   and   (eB)� � �B (for decomposition).

�

Proof – Let us prove the second statement in the case of the dilations. Let id denote the identity mapping

from K to K, and let bB(u) �

� 0 for any u � B. We have

�dB
� �did,bB,�

(d id,bB,� � dB)

� �bB
(Proposition 1.33)

� �B. (definition of id, bB, �
� and Expression (13))

The case of the erosions can be derived from the case of the dilations by duality. The first statement derives

from the second one by observing that dB and eB satisfy dB � eB and eB � dB and by applying Proposition
1.26. The third statement derives from the second one by observing that (((dB)u), dB) and (((eB)v), eB) belong
to the graph of (pv) � p (Exp. (53)) and by applying Proposition 1.29. �

Figure 16 shows an example of characteristic functions pB and ((pB)u) derived from a subset
B, where B � [� 2, 2] � E � Z, K � {0, 1, 2, 3, 4, 5, 6, 7}and E is equipped with the addition � modu-
lus #E. In this case, B is symmetrical with respect to the origin 0 (i.e., B � B t), dB and eB are identical to a
mapping from K to KB that we will denote by pB, and for any u � B, (dB)u and (eB)u are identical to a map-
ping from K to K that we will denote by (pB)u.
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pB(0) pB(1) pB(2) pB(3) pB(4) pB(5) pB(6) pB(7)
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Fig. 16 – Example of characteristic functions for the flat elementary operators.

� 2 20 � 2 20 � 2 20 � 2 20 � 2 20 � 2 20 � 2 20

4.3 – SET OPERATORS

From the above propositon, we can derive some relationship between the set elementary
operators and our general characterization. Let 1X be the characteristic function of a subset X of E and let
�(E) be the collection of all subsets of E. We assume that K � [0, 1] � Z.

Proposition 1.35 (set elementary operators) – Let (E,�) be an Abelian group. Let �B and �B be the ele-
mentary operators from �(E) to �(E) defined, respectively, by Expressions (1) and (2). For any nonempty
subset B of E, and any X and Y in �(E), we have the following statements:

eB
�(1Y) � 1

�B(Y)   and   �dB
(1X) � 1

�B(X) (for confrontation)

�dB
(1Y) � 1

�B(Y)   and   eB
�(1X) � 1

�B(X) (for selection)

�(dB)(1Y) � 1
�B(Y)   and   (eB)�(1X) � 1

�B(X) (for decomposition).

�

Proof – The result derives from Proposition 1.34 recalling that the mapping X � 1X is a bijection (7).�
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