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ABSTRACT:  A methodology is described for mapping the Amazon Basin Wetlands using region growing 
segmentation and region classification of multi-date JERS-1 data. The proposed methodology includes the 
following steps: imagery segmentation, feature extraction, unsupervised region classification, merging and 
mapping of unsupervised classes to three basic ones, editing, quality control through digital and visual revision, 
and, finally, addition to the basin mosaic. 
 
 
1 INTRODUCTION 
 
Wetlands comprise about 6% of the world’s surface (Williams, 1991). Natural wetlands are a major source of 
atmospheric methane, a greenhouse gas that is increasing at an estimated annual rate of 1 per cent (Blake and 
Rowland 1986, Matthews and Fung 1987). The estimate of global carbon cycle and carbon and methane budgets 
must consider the wetland contribution. However a basic requirement is accurate quantitative information about 
wetland spatial distribution.  

The annual average water level variation along the central Amazon river main stem of 7 to 13 meters leads to 
water penetrating inland 20 to 100 km, creating an enormous floodplain ecosystem (Goulding et al. 1995). In 
spite of its size and ecological importance, a geo-referenced map of the wetlands of the entire Amazon Basin is 
lacking. Several authors have mentioned this lack of information as a key problem for the regional studies 
regarding the carbon cycle (Junk, 1985; Piedade et al, 1991; Novo et al, 1997). Moreover, the application of 
sustainable development policies for the Amazon depends on a sound scientific understanding of the 
environment. Therefore, a sound knowledge of the functioning of Amazon Wetlands is mandatory. 

The large extent and lack of accessibility of major floodplains make remote sensing the only practical 
method for monitoring inundation at the basin scale (Hess et al, 1995). The application of satellite optical 
sensors, such as the Landsat Thematic Mapper, is limited by tropical weather condition characterized by cloud 
cover.  

As Synthetic Aperture Radar (SAR) systems are not limited by weather conditions and can detect flooding 
beneath many types of wetland vegetation (Hess et al, 1990), they have been used as an alternative source of data 
for land cover and wetland mapping. 

The extraction of information from SAR images is usually a complex task, since SAR systems employ 
coherent radiation and the resulting images are corrupted by multiplicative signal-dependent noise known as 
speckle (Lucca et al, 1998). There are some methods to reduce speckle, e.g.; multi-look, filtering, etc (Oliver, 
1998), but these methods cannot eliminate all the speckle. Several procedures have been adopted in the past to 
classify SAR data such as a decision-tree model (Hess et al, 1995.), maximum likelihood and an Iterated 
Conditional Modes (ICM) algorithm (Freitas 1998), and ICM classification of textural bands built by filtering 
polarimetric SIR-C data (Sant’ana 1998). Since single-frequency SAR have significant limitations (Hess et al, 
1995), all these approaches were successfully applied to multi-frequency airborne SAR data and based on 
per-pixel classification. 

The application of JERS-1 mosaic data to map the Amazon basin wetlands is not a simple task. The main 
difficulties are: 

• Calibration problems within JERS-1 mosaic.  
• Single frequency data. 
• Data volume. 

Costa et al. (1998) represents one successful attempt of mapping Amazon floodplain habitats using 
segmentation and supervised classification at Lago Grande in Monte Alegre region. Their best figures, however, 
were obtained with multi-date and multi-sensor data. 

Images from two dates (low and high water) are the only data available for mapping the entire Amazon Basin 
wetlands. 



 

So the purpose of this project was to propose a methodology for mapping the inundated Amazon Basin areas, 
using low and high water JERS-1 mosaics supplied by Jet Propulsion Laboratory (JPL). The experiment 
described in the next sections assesses the proposed methodology and presents results for a section of the 
Amazon Basin, near Manaus, used to develop and test the approach. 
 
2 TEST SITE 
 
A complex section of the JERS-1 mosaic (04° S to 00° S, 66° W to 60° W) near Manaus, was selected to 
develop the methodology (green hatched area in Figure 1). This area covers 297,400 km2, and includes large 
areas of floodplain: varzea, which is flooded by sediment and nutrient-rich water (white water), and igapó, which 
is flooded by nutrient-poor water (black water) (Sioli, 1968). This area also includes a wide variety of vegetation 
typical of wetlands in the central Amazon Basin and therefore is ideal for performing the proposed study. 

Figure 1 shows the entire area (magenta and orange) where wetlands shall eventually be mapped. Magenta 
(5,088,630 km2) represents lowland Amazon basin (defined as areas less than 500 m in elevation). Orange 
(291,685 km2) represents the Para and Amapa wetlands, outside the Amazon River Basin, but inside the Amazon 
region.  

 
Figure 1 Test Area (green hatched) and the entire area to be mapped(magenta plus orange). 

 
3 DATA AND METHODS  
 
During September-November 1995 (low water) and May-June 1996 (high water) SAR images were acquired by 
the National Space Development Agency of Japan´s JERS-1 satellite (Hess et al., 1998). The JERS-1 scene 
calibration and the mosaicking were accomplished by JPL at Pasadena (Chapman et al., 2002). 

DEM (Digital Elevation Model) data used to define lowland Amazon basin (altitude lower than 500 m) are 
available at http://edcwww.cr.usgs.gov/landdaac/gtopo30. 

All image analyses were made using SPRING (Sistema de Processamento de Informacoes Georeferenciada), 
a freeware Geographical Information and Image Processing System with an object-oriented data model which 
provides for the integration of raster and vector data format in a single environment 
http://www.dpi.inpe.br/spring (Camara et al., 1996). The test site encompassed a JERS-1 3 arc-seconds pixel 
resolution (93m at the equator) of 4800 lines by 7200 columns or a 34 Mbytes file for each 8-bit image date. 



 

The methodology includes the following steps: georeferencing, imagery segmentation, feature extraction, 
unsupervised region classification, merging and mapping of unsupervised classes to three basic ones, editing, 
quality control through digital and visual revision, and, finally, addition to the basin mosaic. Figure 2 shows 
these steps. 
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Figure 2 Steps of mapping (Flowchart) 
 

(a) Georeferencing  
High and low water JERS1 images were mosaicked, radiometrically calibrated and geo-referenced at the Jet 

Propulsion Laboratory. These mosaicked images from the test site were imported to the SPRING system, where 
the steps shown in Fig. 2 were carried out.  
 

(b) Region growing segmentation 
Pixel-based classification can result in a number of problems for SAR data due to the speckle noise (Lobo et 

al., 1996). To overcome these problems, the images were first submitted to a segmentation procedure. This 
procedure permitted running a region-based classification instead of pixel-based classification. Image 
segmentation is the process, by which individual image pixels are grouped into partitions, according to some 
intrinsic properties of the image, e.g., gray levels, contrast, spectral values or textural properties (Le Moigne and 
Tilton, 1995). The result of segmentation is a number of homogeneous regions, each having an unique label. 
There are several techniques to automatically segment digital images (Pal, 1993). The region growing technique 
is available in SPRING software. This technique is an iterative process by which regions are merged starting 
from individual pixels, growing iteratively until every pixel is processed and thereby forming regions whose 
boundaries are defined by closed polygons (Bins et al., 1996). To execute the segmentation, the user must 
provide two thresholds: similarity and minimum area. Similarity denotes the minimum difference in the gray 
level observed between two spatially adjacent pixels or average gray level of a set of pixels, which will yield 
different regions. If this difference is less than the similarity threshold value, the pixels belong to the same region. 
The minimum area threshold is associated with the smallest region size in pixels. In the segmented image, no 
region will be smaller than this threshold, defined by the user. Careful scrutiny and many trial-and-error 
interactions are required to establish these two thresholds. The appropriate values also depend on the data type 
and user needs. In this study, some critical areas over the entire image were selected and a study was made over 
these to define the best values. The segmentation process was carried out on images of two dates. 

 
(c) Feature extraction 

The aim of feature extraction phase is to determine the statistical attributes of each region outlined by one of 
the polygons resulting from the segmentation process. The result of the feature extraction phase is a file that 
contains a list of regions sorted in descending order according to their area. For each region on the list, the file 
also contains several statistics from the images selected by the user. In this study, two JERS1 images were 
selected on different dates. These statistical attributes may be used for a supervised or unsupervised 
classification; in both cases they will be used to determine the similarity measure between two regions outlined 
by polygons. 



 

 
 
   (d) Unsupervised Classification 

An unsupervised classification based on a clustering algorithm was applied to the list of regions, 
characterized by their statistical attributes, defined in the feature extraction file. The clustering algorithm, named 
ISOSEG (Bins et al., 1992) uses the covariance matrix and mean vector of the regions to estimate the centers of 
the classes. 

 
Roughly speaking, the classification process can be described by the following steps: 

1.  The user provides a percentage acceptance threshold. This threshold defines the maximum Mahalanobis 
distance (Richards, 1995) by which regions can be from the center of one class, and be considered as 
belonging to that class. It also determines the number of classes “clusters” detected by the algorithm. 

2.  The statistical attributes of the first region of the list (the largest one), are taken as the initial parameters of 
the first class. The classifier assumes that regions with large areas are the most representative of the class. 
Iteratively, the classifier removes from the list all regions with Mahalanobis distance smaller than the 
acceptance threshold. 

3.  Based on all regions removed from the list, a new center for the class is recalculated. This process is 
repeated until none of the regions are removed from the list. The next classes are recognized in the same 
way until the feature extraction list is emptied. 

4.  On the previous step, the regions were classified according to the order of cluster generation. This 
procedure may result in misclassification for some of the regions. To correct this possible distortion, the 
regions are reclassified using the new centers defined on the previous step. 

5.  If the number of classes after the reclassification procedure, step 4, is larger than the number defined on 
step 3, the algorithm uses the following approach to eliminate some classes: Classes with a small number 
of regions are eliminated, and regions from these classes are reclassified using the minimum 
Mahalanobis distance criterion. 

The user controls the level of detail through the acceptance threshold: more classes for high significance 
levels (<80%) or less classes for low significance level ( > 95%).  

 
This region-based classification approach was successfully used by Batista et al. (1994) and Shimabukuro et 

al. (1998) to assess deforestation in the Amazon region.  

 (e) Merging of classes 

This is an interactive phase where all resulting classes were reclassified into three classes, (flooded, 
non-flooded, open-water). The user defines the reclassification rules by comparing the high-low color composite 
and the classification results. 

 (f) Editing 

It is generally accepted that visual interpretation provides better classification accuracy than machine 
classification, because the interpreter can use additional clues, such as area, shape and contextual information, 
including topographic information, results of previous classification, etc. A region-based classification, in which 
the algorithm uses some contextual attributes besides spectral values of the pixels, is an attempt to improve 
digital classification. Even this alternative can result in an inadequate classification, so the procedure reported 
here, similar to other techniques, requires editing after the digital analysis steps to eliminate misclassified set of 
pixels. The editing is accomplished through the identification, on the computer screen, of flooded areas that were 
misclassified. The identification is made by inspecting the display of the high-low color composite image 
overlapped with the classification results. Misclassified areas are outlined and merged to the correct class as 
shown in Figure 3. 

 



 

 
 

Figure 3 Outlining un-mapped flooded areas 

(g) Quality control 

At the end of editing, a SAR specialist who also has general familiarity with whole area performs the 
quality control.  Georeferenced video data from some areas over the Amazon Basin is available and can be used 
as ground reference.  

(h) Addition to the mosaic 

After the quality control phase, the produced section is mosaicked with other sections.  
 
4 RESULTS AND DISCUSSION 

 
Optimizing segmentation time: As the image segmentation process demands significant computer processing 
time and the area to be mapped is extensive, 6 106 km2 (each date image has approximately 600 Mbytes), the first 
tests were aimed to optimize the processing time of this phase. The segmentation time is directly related to the 
image set and image size being segmented. An approach to reduce the processing time was to test a series of 
products derived from the original data set as they related to the difference image (high water minus low water) 
and ratio image (high water/low water). Both products did not yield good results. Figure 4(a) shows the polygons 
for the difference image segmentation over the high water image. Some flooded regions were not outlined (light 
bluish). The band math applied to the data set decreased the class separability. Two adjacent regions belonging 
to distinct targets, visible in the original images, produced the same or almost the same digital count after the 
band operation. 

 
Segmentation Thresholds: The next step was to define similarity and minimum area thresholds. For 

similarity, a tradeoff was inevitable; if it is too low, the growing process will generate over-segmented regions, 
with a large number of polygons and a large computing time; otherwise, polygons representing different cover 
type will be incorrectly merged together. After several experimental interactions applied to the images, the 
similarity and area thresholds were set to 6 and 50, respectively. They were set after a visual inspection secured 
that most of flooding areas were properly outlined. The minimum area was defined as a tradeoff between the 
mapping scale and the processing time. The 50 pixels value means that small regions, less than 50 pixels, will be 
merged with contiguous large regions, although they may be spectrally different. Figure 4(b) and (c) shows the 
result of different similarity thresholds. When a value of 10 was used as similarity, Figure 4(c), some flooded 
areas were not outlined. For the test site, segmentation resulted in 58,000 polygons. The segmentation software 
supplies the labeled image in two formats: a 32-bit raster image and a vector layer containing region polygons.  

 



 

(a) (b) (c)
 

Figure 4  Segmentation results: a - Difference image  (similarity= 6,area=50) b -Two dates images (similarity= 
6,area=50) c - Two dates images(similarity=10,area=50) 
 

Region-based classification: Two approaches were tested to merge thousands of labeled polygons from 
segmented image into three basic classes: open-water, non-flooded and flooded; supervised classification and 
unsupervised classification. For both classifications, the same feature extraction file was used. 

First, a supervised region classifier based in the minimum Bhattacharrya distance (Richards, 1995) was 
applied. This classifier compares the statistics of the training polygons to the statistics of each polygon of the 
pre-segmented image.  
 

This approach was partially successful for two reasons:  
• It was not computationlly feasible to collect a number of samples accounting for extreme variability of 

the  inundated area. As a consequence, some inundated areas were not classified. The large internal 
variance of the inundated areas can be confirmed from the result of unsupervised classification; where 
36 of the 44 unsupervised classes were identified as flooded.  

• When training polygon samples of non-flooded and open-water areas were selected instead of polygon 
samples of flooded areas, the classifier did not provide a good discrimination between flooded and 
non-flooded in some transition areas. 

 
Several acceptance thresholds were tried. The results were later compared to those of the unsupervised 

classification approach.    
 

For the unsupervised classifications, several acceptance thresholds were also tested. Figure 5 shows the 
classification results for different acceptance threshold values. Note that narrow water inundation channels that 
were classified as non-flooded for 90% acceptance threshold were accurately discriminated for 75% value. The 
discrimination between flooded and non-flooded was achieved by manipulating the acceptance threshold in 
transition areas. For the test site, the best acceptance threshold value was 75%.     

 
The 44 clusters for the 75% acceptance threshold were classified as follows: 36 clusters of flooded areas, 6 

of open-water and 2 of non-flooded. Figure 6 shows the results for the entire area. 
 

5 CONCLUSIONS 
 
The segmentation thresholds, applied to this section of mosaic (test site) seems to be adequate for other sections, 
but the classification thresholds must be assessed over each section, maybe because of differences in calibrations 
of distinct sections.   

A detailed visual inspection of the results obtained from classification approaches shows that unsupervised 
classification provides a better discrimination of flooded and non-flooded areas, especially at the transition areas. 
On the other hand, the supervised classifier, using Bhattacharrya distance, seems less sensitive to the mosaic 
calibration problems. 
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Figure 5 Classification results: a – High water Jers1 image b - Acceptance threshold 90% c - Acceptance 

threshold 75% d - Merge of unsupervised classes 
 
An option tested during the development of this methodology that seems interesting, is to use the result of a 

supervised classification during the editing of the result of unsupervised classification, copying some areas that 
eventually were better discriminated. This procedure tends to reduce the editing time.  

Results of this work demonstrated that region growing segmentation followed by a region clustering 
classification provides a viable approach to map wetlands from multi-date JERS1 images alone. 

Using the described methodology, Hess et. al. 2003 has mapped a subset of the Amazon basin (08° S to 00° 
S, 72° W to 54° W), corresponding to the central Amazon region. An overall accuracy of 95% was obtained, 
assessed using high-resolution digital videography.  
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