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Abstract
  In late September 1995 NASDA began a new phase of
operations for the JERS-1 SAR - the Global Rain Forest
Mapping project. The first rain forest area to be mapped was
the Amazon Basin, during October and November of that
year (the low flood season for much of the region). This data
acquisition was repeated nearly six months later to acquire
a second map of the Amazon, during the high flood season
in May/June 0f 1996. The main objective of this project is to
map inundation over the Amazon basin by comparing data
from the high- and low-flood seasons. Most of the data
collected during these two phases of this project, a total of
~5000 frames of data, was received and processed by the
Alaska SAR Facility, then sent to JPL and NASDA for post-
processing and analysis.
  The quality of the data processed by ASF for this project is
exceptional. It has proved to be very well calibrated, easy to
mosaic together, and to have the level of information content
required. We have been able to complete a 100 m mosaic
from 1500 frames of the entire Amazon basin from the �low-
flood season� and to perform a simple land-cover
classification on the resulting 3 GByte data set using a
supercomputer at JPL. First results from our analysis of the
multi-season data appear to confirm that inundation
beneath the canopy can be mapped using this data.
  A simple classification scheme was used to classify
different forest types (i.e., forest, hill forest, flooded forest),
disturbed areas such as clear cuts and urban areas, and
river courses in the Amazon basin. The algorithm used is a
standard maximum-likelihood classifier, using the radar
image local mean and standard deviation of texture as input.
Rivers and clear cuts are detected using edge detection and
region-growing algorithms. Results on forest/non-forest
classifications are reported by geographic region.
 

1.  Introduction
  The National Space Development Agency of Japan
(NASDA) initiated the Global Rain Forest Mapping Project
(GRFM) in 1995. The objective of this project is to use the
Japanese Earth Remote Sensing satellite (JERS-1) Synthetic
Aperture Radar (SAR) to map the world's tropical rain forest
regions at high resolution. This joint project between
NASDA's Earth Observation Research Center (EORC),
NASA's Jet Propulsion Laboratory (JPL), and the Space
Applications Institute of the European Commission's Joint
Research Center (JRC/SAI) has assembled a team of invited
scientists to evaluate, analyze, and use the data.
  The J-ERS-1 satellite travels in a 568 km altitude orbit
with a payload that includes an L-band, HH-polarized SAR
with a nominal 21m x 21m resolution, which images at
incidence angles between 30 and 36 degrees. The J-ERS-1

SAR was the first polar-orbiting imaging radar system
capable of monitoring the whole of the Earth's land surface,
because of its on-board tape recorder system. Further,
because of the ability of imaging radar to see through clouds
and at night, and the sensitivity of L-Band backscatter
measurements to different biomass levels, the J-ERS-1 SAR
is well-suited to multi-temporal studies of the Earth's land
surface.
  

2.  Methods and Research Activities
  The data used in this study are acquired by the JERS-1
SAR sensor under NASDA�s direction. All data for the study
was recorded on board the spacecraft and then downlinked
for further processing at the Alaska SAR Facility (ASF). ASF
processed the data to produce high resolution (~21 m),
calibrated data products which were then transferred to JPL,
where the data was first reduced, then a secondary
radiometric correction applied. In the reduced format data,
both mean backscatter (s0) and the standard deviation of
texture were generated. Backscatter images provided in a
full resolution (12.5m by 12.5m pixel spacing) 8 bit
amplitude format by ASF were averaged down using 8 x 8
pixel boxes to produce low resolution (100m by 100m pixel
spacing) byte amplitude images. The following equation (1)
from [3] was used to calculate the standard deviation of the
texture:
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where sp is the standard deviation of the pixel intensities
over some area and mp is the mean pixel intensity. While
other texture measures could be generated from the high-
resolution data, we have found this one to be most useful. In
practice, sp and mp for this study were calculated using 8x8
pixel boxes from full resolution backscatter images so that
the resulting texture image pixel size was the same as that
of the low resolution backscatter image.
  

  
Figure 1. Area covered during the two Amazon Basin mappings of the

GRFM project.



  After data reduction, the low-resolution byte images (2 x
1500 in all) from the low-flood season were mosaiced
together both at JPL and at NASDA using two different
approaches. A team from the University of California - Santa
Barbara (UCSB), working with their colleagues from the
Brazilian National Institute for Space Research (INPE) and
from the National Institute for Research of the Amazon
(INPA), have collected ground validation data from regions
near the Amazon River to verify the geometric accuracy of
the data and other characteristics.
  
2.1  Classification
2.1.1  Training Sites
  The J-ERS-1 SAR images used for classification were
taken from three separate areas of the Amazon rain forest:
 (1) Manu National Park, Peru
 (2) Manaus, Brazil
 (3) Sena Madureira, Brazil.
  A plant and wildlife preserve protecting areas of the
Western Amazon, Manu National Park is a popular study
site due to its biodiversity and pristine conditions. Manaus
and Sena Madureira are also important sites studied by
scientists worldwide. Data from all of these sites were
compiled to form a set of training patterns for the classifier.
These patterns then served as prototype vegetation models
against which all J-ERS-1 images of the Amazon were
compared.
  From ground measurements and study of J-ERS-1 SAR
images of Manu, two different forest patterns have been
differentiated in the Western Amazon, upland forest and
floodplain forest. Upland forest occurs in two varieties, the
first occurring in hilly regions of Manu north of the Rio
Madre de Dios. The hills are from 20-30m high and between
50-150m wide, thereby protecting much of the forest from
river flooding. Hilly forests are composed of a mosaic of
mature forests with a height ranging from 20-45m. On the
hill tops the canopy is closed, while on the slopes and in
rivulets between hills palm and bamboo becomes more
prevalent. This forest type is also semi-deciduous, which
implies that some tree species lose their leaves in the dry
season. The second type of upland forest is found on a
plateau between the base of the Andes and the Rio Manu. It
is similar to the hilly forests, but contains different soil and
trees only 20-30m high. The canopy is uneven and much of
the upland forest is deciduous, implying that this forest type
should experience the greatest amount of leaf loss in the dry
season. It is not readily apparent that upland and floodplain
forest types found in the Manu area are valid in all parts of
Amazon, and from studying images of the Manaus area, hilly
regions appear to be distinguishable from the combination
upland/floodplain forest type (i.e. the forest type).
  In the floodplain forest surrounding the rivers, regular
flooding damage occurs and therefore, many stages of forest
succession can be found. For example, areas far from the
rivers and flooding are the most mature, with a very
homogeneous, closed canopy and an average height of 50m.
The understory of this mature forest contains a homogenous
growth of palms. As one approaches the rivers, however, a
less regular forest can be found.  Stands of almost pure
Heliconia banana plants from 2-3m high signal the first
stage of regrowth. In areas where severe flooding has killed
everything, the forest is very disturbed with a dense cover of
liana vines. These areas generate a strong L-band response.

Other areas known as Aguajales are characterized by stands
of Mauritia palms. These palm stands range from very wet to
dry and also generate a strong L-band response.
  
2.2  Classification Method
2.2.1  Mean Backscatter and Texture Image
Generation
  Both mean backscatter and texture were essential
measurements for this classifier. Mean backscatter
separated flooded forest, open water, clear-cuts, and urban
areas. Texture distinguished more subtle features, such as
rivers hidden beneath the rain forest canopy.
  
2.2.2  River Masking / Image Processing
  In J-ERS-1 SAR data open water appears dark, with a very
low that is strongly affected by the noise floor. In addition,
the texture changes depending upon whether we are in the
center of a lake or near a river bank. As a result of these
properties, it was found that the best way to classify open
water was by applying a region growing operation to the data.
In this method, we find regions of connected dark pixels and
call them water. Since low vegetation also appears dark, a
threshold is applied to distinguish between the two classes.
  Our first attempts at classifying J-ERS-1 SAR image data
resulted in many false alarms in hilly regions. The
backscatter variations associated with the changing slopes
of the terrain was often mistaken for water by the classifier.
To correct this problem, image processing operations were
performed to isolate rivers in hilly regions. This involved
convolution with a 17 x 17 Difference of Gaussian edge
detecting filter, global thresholding, and region growing of
the resulting river areas.
  Both of these operations occur before the Bayesian
maximum-likelihood classification, creating image masks
which denote certain pixels as water or low vegetation.
These masks reduce the amount of confusion by effectively
removing potentially troublesome pixels through the use of
simple rules which are not based on probability measures.
The information contained within these masks is ultimately
combined with the results of the Bayesian classification
through a series of logical rules.
  
2.2.3  Maximum-likelihood Classification
  The classification scheme implemented in this algorithm is
based on a supervised Bayesian maximum-likelihood
classifier. Essential components of such a classifier are as
follows:
 (1) A feature vector containing the measurements of

interest
 (2) Training patterns representing distinct classes
 (3) Statistical models of these classes
 (4) Decision rules to determine which class the feature

vector is most likely to belong.
  For classification of J-ERS-1 images of the Amazon, the
feature vector was comprised of two components,
backscatter and the texture measurement discussed earlier.
Each pixel in a J-ERS-1 image to be classified is represented
by these two measurements.



  
  Seven vegetation classes were distinguished for the Manu
National Park area:
 (1) Upland forest
 (2) Floodplain forest
 (3) Flooded forest
 (4) Low vegetation, such as clear-cut
 (5) Water
 (6) Urban areas
 (7) Unknown.
  Once these were chosen, training patterns were created to
provide a model of each class. Since no one image contained
sufficient quantities of every class, the training patterns
were extracted from several images, using box sizes of 3 x 3
or 15 x 15 pixels for the calculations. The patterns for
floodplain forest, upland forest, and water were tabulated
from data taken of Manu National Park. Flooded forest and
urban areas were found in sufficient quantity in images of
Manaus, Brazil. Finally, low vegetation in the form of
extensive clear-cuts was found in an image of Sena
Madureira, Brazil.
  Bivariate Gaussian distributions were chosen to model
each training pattern. In order to calculate these
distributions, the mean, variance, and covariance of both
and texture were calculated and are listed in Table I. For the
purposes of decision making, the a priori probability of each
class occurrence was assumed to be equal.
  
2.2.4  Classifying Hill Forest
  Once the Bayesian classification was completed the
classifier searched for areas to be classified as hill forest.
First, 3 x 3 pixel box averages of backscatter and texture
around each pixel were passed through an initial threshold
filter to generate a first data set of hill forest candidate pixels.
This first pass through the scene served to exclude much of
the flooded forest, water and low vegetation using a box size
capable of resolving small features. Then, for a second pass,

standard deviations of DN (backscatter image pixel data
number) values for 15 x 15 boxes around the hill forest
candidate pixels were passed through another thresholding
operation generating a second data set containing updated
hill forest candidate pixels. This pass eliminated much of the
upland and floodplain forest regions. A third pass through
the scene involved passing the standard deviations of DN
values for 21 x 21 pixel boxes minus any pixels previously
classified as flooded forest around the updated candidate
pixels through yet another threshold filter in an attempt to
eliminate some of the residual hill misclassifications from
the previous passes, particularly on the borders of flooded
forest regions or rivers with other forest types. The result
was the final hill forest classification. Figure 2a), b) suggest
that threshold operations can be effective to perform the hill
forest classification as described above.
  
2.2.5  The Final Step
  An ambiguity of great concern involved the upland and
floodplain forest types. Since the training patterns were
created from an image of the Western Amazon where ground
observations were made, accurate forest classifications for
the Manu images can be expected. Furthermore, it is
assumed that the forests from the Western Amazon will
generalize throughout the entire rain forest.  However, some
suspicious forest classifications have appeared throughout
scenes near Manaus (e.g., upland forests occurring near
flooding rivers while floodplain forest occurs further away).
Two factors may be contributing to this problem:
 (1) the existing training patterns lack the necessary

information to generalize correctly throughout the
Amazon

 (2) very different forest types exist near Manaus which
require entirely new training patterns or rules to
correctly distinguish them.
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Figure 2.  a) : Training patterns created by averaging given pixel.
 b) : Training patterns created by 15x15 boxes around a averaging 3x3 boxes around a given pixel



  This forest type ambiguity lead to the employment of a
final step consisting of grouping the Upland and Floodplain
Forest classes into a single forest class. In addition, the
brightness of forest and hill forest pixels were made
proportional to the backscatter to show features in these
regions which could contribute to a better understanding of
the nature of the terrain from the final classified image.
  
2.2.6  Generalizing the Classifier
  In creating a classifier which operates on only one or two
images, it is conceivable to account for most image oddities
directly within the context of the classifier code. However,
when faced with the prospect of producing vegetation maps
for hundreds or thousands of images, there must be some
way for the algorithm to adjust to a wide variety of
circumstances. In our classifier, this is handled by a set of
user-controlled options. At the present time, the following
options are in place:
 (1) Toggle on or off averaging filters which smooth the forest

and low vegetation classifications.
 (2) Permit pixels to be classified as urban. This is necessary

since highly disturbed forest may look identical to some
urban areas.

 (3) Permit pixels to be classified as hill forest.  Selecting
this option only for scenes with hills present will avoid
hill forest misclassification.

 (4) Allow the user to manually set the threshold between
water and low vegetation.

 (5) Allow the user to exert greater control over the J-ERS-1
image correction process mentioned earlier.

3.  Results
  Figure 3 shows a small segment of the multi-season data
set after the data from the two dates has been co-registered.
This data was then used in a supervised classification
(maximum likelihood), the result of which is also shown in
the figure. Table I shows classification accuracies for the
single-season data used separately, and the significant
improvement obtained when the combined high-flood and
low-flood data are used. Work is currently in progress to
optimize the estimates of inundation extent from the multi-
season data sets. The mosaic of the second (high flood)
season data should be completed later this year.
  
Table I. Classification accuracies for supervised classification of multi-

season GRFM data for the area shown in Figure 3.

Class High + Low
Flood

High Flood
only

Low Flood
only

Water 99.2 53.9 97.4

Forest 93.2 64.7 61.6

Flooded Forest 96.4 96.8 50.2

Flooded Shrubs 66 18 40

Clear Cut 1 80.6 50 22.2

Clear Cut 2 86.4 74.2 74.2

Sandbar 77.9 57.9 18.6

Total 92.2 65.9 63.8

  
  
  

  

Figure 3. Example of multi-seasonal data and resulting supervised classification for an area south-west of Manaus, Brazil.



3.1  Classification Results
  The classifier was first tested on the Manu National Park
training image. Several noteworthy features were
immediately apparent in the vegetation map. First, irregular
yellow spots represented areas of bright L-band response,
such as palm stands, inundated areas, and regions of highly
disturbed forest. Several small rivers which were barely
discernible in the original image showed a high texture, and
therefore were easily distinguished by the classifier. Three
examples are the Rio Blanco which empties from the
southwest into the Rio Madre de Dios, and the Rio Los
Amigos and Rio El Amiguillo in the hills north of the Rio
Madre de Dios. The floodplain forest can be seen
surrounding the Rio Madre de Dios and the small rivers in
the hills.
  Looking at a vegetation map of a J-ERS-1 SAR image
taken near Manaus, Brazil, in July 1993, we saw additional
features that can be discerned by the classifier. The
effectiveness of the river masking procedure was evident, as
displayed by the algorithm's ability to accurately classify
large expanses of open water as well as follow narrow,
convoluted waterways and inlets. Large tracts of flooded
forest were detected in addition to inundation effects near
small rivers. Clear cutting was also prevalent, and some
areas of low vegetation were detected near river boundaries.
  Not everything was perfect, however. Rather large
occurrences of the Unknown class appeared at the
boundaries between water and flooded forest. This can be
attributed to the classifier attempting to average two very
dissimilar pixel types and getting caught somewhere in
between the two vegetation classes. Some of the clear-cuts
also contained erroneous spots of water. These
misclassifications were the result of darker than usual clear-
cuts combined with an imperfect thresholding operation
during the river masking procedure.  Some of this can be
remedied with the user options, but often at the expense of
smaller waterways being mislabeled as low vegetation. There
is just not enough separation between these classes in the
data.
  Regarding the hill forest classification, particularly
troublesome areas appeared at the boundaries of flooded
forest with forest classes. Some misclassification may
remain in the final product, however since the brightness of
the hill forest class is proportional to the backscatter, it is
possible in many cases to pick out this form of
misclassification by visual inspection.
  An upper bound on the classifier performance (hill forest
and urban regions not included) was estimated by
calculating the classification accuracy in areas of the Manu
training image for which ground truth was available. In
Table II, the "# ground truth pixels" column represents the
number of pixels known, from the ground truth data, to
belong to a specific class while the "# matching pixels"
column shows how many of those pixels were actually
assigned to the correct class in the final classification image.
The "upper bound on performance" column is simply the
percentage of correctly classified pixels. The water
measurements were made on small rivers hidden under the
forest canopy, so for expanses of open water the
performance of the classifier is expected to be better than
what is shown here.
  Perhaps more interesting than looking at the classification
of one scene is comparing a sequence of vegetation maps

created from data taken over an entire year. As the season
shifted from dry to rainy, a definite seasonal effect was
observed. Manu images taken in March showed a few large
flooded forest regions that did not appear elsewhere
throughout the year. These spots were regions in the original
image which generated high L-band responses and only
appeared flooded during the height of the wet season. More
likely than not, these were spots that had experienced
recent flooding damage or were sensitive palms which grew
leaves only during the wettest months.
  

Table II. Upper bound on the classifier performance.  

Class # ground truth
pixels

# matching
pixels

upper bound on
performance

Forest 300 287 96%

Flooded Forest 150 143 95%

Low Vegetation 50 49 98%

Water 100 82 82%

  

4.  Conclusions
  An algorithm has been presented that classifies vegetation
types present in J-ERS-1 images of the Amazon Rain Forest.
Radar backscatter and the standard deviation of texture are
measurements used to distinguish the vegetation types. At
the heart of the algorithm is a supervised, Bayesian
maximum-likelihood classification capable of differentiating
the following classes: Forest, Flooded Forest, Low Vegetation
(clear-cut areas), Urban, and Water. A series of thresholding
operations are employed to differentiate a class denominated
Hill Forest. Image processing techniques such as edge-
detection, thresholding, and region growing are implemented
to reduce confusion by masking some water and low
vegetation pixels before the Bayesian classification is
actually run. An image scaling operation is also performed to
reduce the effect of cross-track calibration errors. Realizing
the difficulty in trying to create a generalized algorithm
which can deal with hundreds of images, a set of user
options to tailor the classification rules is under continual
development.
  Results indicate an excellent ability to classify water in all
forms, including open water and rivers hidden beneath the
rain forest canopy. Flooded forest, low vegetation, hill forest
and urban areas are also distinguished with only occasional
confusion. Upland and floodplain forest are classified
accurately in images of Manu, but there appears to be some
difficulty in generalizing these two forest classes beyond the
Western Amazon, so they have been combined into a single
forest class.
  The ultimate goals of this classifier are to track
deforestation, detect seasonal effects such as flooding, and
accurately map the forest types throughout the Amazon. So
far, we are well on our way to achieving all three goals. Clear
cuts have been accurately detected in images of Manaus
and Sena Madureira, and our vegetation maps have shown
the ebb and flow of flood waters in seasonal sequences
taken over Manu and Manaus. Evaluation of the classifiers
performance could be enhanced by increased availability of
ground truth data, however the results are very promising
thus far, with our algorithm capable of classifying to a high
degree of accuracy images ranging from the Western Amazon
to Brazil.
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