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Abstract

In this short paper, we present two constructive decompositions for any mapping between lattices
in terms of the elementary mappings of Mathematical Morphology: erosions, dilations, anti–ero-
sions and anti–dilations. This decomposition result extends the ones already known for transla-
tion invariant mappings.

1. INTRODUCTION

Nowadays, Computer Vision is object of
intense researches because of its large number
of potential applications. Mathematical
Morphology (MM) seems to be well adapted to
solve a large class of problems in this field.

Until the publication of volume 2 of Serra’s
book (1988), MM has been, essentially,
restricted to translation invariant transforma-
tions. The field of applications of MM became
larger with the introduction of a more general
definition of erosion and dilation that uses the
lattice notion.

In this paper, we introduce two constructive
decompositions for any transformation or
mapping between complete lattices that gen-
eralize the already known decompositions for
translation invariant mappings (Matheron,

1975; Maragos, 1985; Banon and Barrera,
1991).

In Section 3, we recall the definitions of the
four elementary mappings of the MM: ero-
sions, dilations, anti–erosions and anti–dila-
tions. In Section 4, we give the decomposition
theorem and therefore we answer the question:
does the MM elementary mappings can be used
to represent any mapping between complete
lattices and in what way this is possible?

2. MAPPINGS BETWEEN LATTICES

Let (�, �), or simply �, be a complete lattice
(Birkhoff, 1967). The infimum and the supre-
mum of a subset � of � will be denoted,
respectively, �� and ��. The least and
greatest element of � will be denoted, respec-
tively, O and I.



Let �1 and �2 be two complete lattices. We

denote by �2
�1 the set of all functions from �1

to �2. The elements in �2
�1 (and �1

�2) will be
called mappings. A generic element of �1 will
be denoted by X and one of �2 by Y. A generic

mapping in �2
�1 (or �1

�2) will be denoted by
lower case Greek letters �, �, etc. Finally, the

two constant mappings in �1
�2 that assume the

values O and I will be denoted, respectively, by
O and I.

In image processing, the most usual trans-
formations on binary images can be repre-
sented by the translation invariant set map-
pings from �(E) to itself, where the set E is an
Abelian group and �(E) is the collection of all
parts of E. The collection �(E) is an example
of complete lattice.

3. EROSIONS AND DILATIONS

Let �� �2
�1 and let � be a subset of �1. We

will denote by �(�) the image of � through �.

A mapping �� �2
�1 is increasing (or

isotone) iff

X � X’ � �(X) � �(X’)   (X and X’� �1).

Since �1 and �2 are complete lattices, then the
above axiom is equivalent to any one of the fol-
lowing statements:

�(	�) � 	�(�)   (�� �1); (1)


�(�) � �(
�)   (�� �1); (2)

Following Serra (1988), if the equality holds in
(1), then � is called an erosion. If it holds in (2),
then � is called a dilation.

Let � and � be, respectively, the Minkowski
addition and subtraction (Hadwiger, 1950)
between subsets of an Abelian group E. The
translation invariant set mappings from �(E)
to itself, X � X � B and X � X � B, where
B is a subset of E, are, respectively, examples
of a dilation and an erosion (Heijmans and
Ronse, 1990).

A mapping �� �2
�1 is decreasing iff

X � X’ � �(X’) � �(X)   (X and X’� �1).

Since �1 and �2 are complete lattices, then the
above axiom is equivalent to any one of the fol-
lowing statements:


�(�) � �(	�)   (�� �1); (3)

�(
�) � 	�(�)   (�� �1); (4)

Following Serra (1987), if the equality holds in
(3), then � is called an anti–erosion. If its holds
in (4), then � is called an anti–dilation.

The translation invariant set mappings from
�(E) to itself, X � (X � B) c and
X � (X � B) c, where c denotes the set com-
plementation, are, respectively, examples of an
anti–dilation and an anti–erosion.

We will denote by �, �, � a and � a, respec-
tively, the set of erosions, dilations, anti–ero-

sions and anti–dilations in �1
�2.

4. MAPPING DECOMPOSITION

Let �� �� �1
�2. We define the mapping ��

and ��� �2
�1 by setting, for any X� �1,

��(X) = 
{Y� �2: �(Y) � X � �(Y)},

��(X) = 	{Y� �2: �(Y) � X � �(Y)}.

Let  �(�1)�2 be the set of the functions from �2
to �(�1). We extend the partial order relation
� on �(�1) to a partial order relation � on
�(�1)�2 by setting, for any � and
�’� �(�1)�2,

 � � �’ � �(Y) � �’(Y)   (Y� �2).

For any �� �2
�1, let ��(�) and ��(�) be the

two functions in �(�1)�2 defined by, for any
Y� �2,

 ��(�)(Y)={X� �1: Y � �(X)},

 ��(�)(Y)={X� �1: �(X) � Y}.

The function ��(�) is called the left kernel (or,
simply, kernel) of � and the function ��(�) is
called the right kernel of �.

These kernel definitions generalize the one
given by Matheron (1975) for translation
invariant set mappings.



A subset � of � is a closed interval of � (Birk-
hoff, 1967, p. 7) iff there exist two elements A
and B in � such that, for any X� �,
A � X � B � X� �. We denote by [A, B]
such closed interval.

We say that a function � is an interval function
from �2 to �(�1) iff, for any Y� �2, �(Y) is
the empty set of �(�1) or a closed interval of
�(�1).

To each pair (�, �), such that � Y� �2,
(�(Y) � �(Y)) or (exclusive) (�(Y) = I and
�(Y) = O)), we can associate a unique interval
function [�, �]� �(�1)�2 given by, for any
Y� �2,

 
[�, �](Y) � �[�(Y), �(Y)] if �(Y) � �(Y)

� otherwise.

We call the mapping � and � the extremities of
the interval function [�, �].

Finally, let �� a and � a
� be the sets of pairs

(�, �), respectively, in � � � a and � � � a,

such that � Y� �2, (�(Y) � �(Y)) or (exclu-
sive) (�(Y) = I and �(Y) = O).

We are now ready to state the following
decomposition theorem.

Theorem 1 – Any mapping � from �1 to �2
has the following sup–inf constructive decom-
position

� = 
{�I 	 O�: (�, �)� ��
a and

                                          [�, �] � ��(�)}.

The proof of Theorem 1 is given in (Banon and
Barrera, 1993) and it lies upon very nice prop-
erties of what we have called a morphological
connection.

Let �� �2
�1 and �, �� �1

�2. The pair
(�, (�, �)) is a morphological connection
between �1 and �2 iff

�(Y) � X � �(Y) � Y� �(X)
                                     ((X, Y) � �1 � �2).

Figure 1 illustrate for a given pair (X, Y) the
above morphological connection property.

�� �
X Y �(X)�(Y) �(Y)

�2�1

�

�

�

��
��	 �� �������
��� ����	����� ��, (�, �))�

For complete lattices, the notion of morpho-
logical connection can be seen as a generaliza-
tion of the notion of Galois connection (Birk-
hoff, 1967, p. 124).

In Theorem 1, the mappings �I and O� are,
respectively, erosions and anti–dilations. We
say that �I and O� are derived from the extre-
mities of the interval function [�, �]. Actually,

the pair (�I 	 O�, (�, �)) is a morphological
connection between �1  and �2.

From Theorem 1, we see that any mapping �
is the supremum of a set of mappings that are
the infimum of an erosion and an anti–dilation.
Such erosion and anti–dilation are derived
from the extremities of an interval function
that is less than or equal to the kernel of � and



whose extremities are a dilation and an anti–
dilation.

For a translation invariant set mapping �, the
sup–inf decomposition of Theorem 1 can be
written as

� = �{(� � A) � (� � B t c) c:
                            [A, B] � {X: o � �(X)}},

where B t is the transpose of B relatively to the
origin o. For a direct proof, see (Banon and
Barrera, 1991).

In the same way, any mapping � from �1 to �2
has the following inf–sup constructive decom-
position

� = �{�I � O�: (�, �)� � a� and
                                          [�, �] � ��(�)}.

In the above decomposition, the mappings �I
and O� are, respectively, anti–erosions and
dilations.

For a translation invariant set mapping �, the
above inf–sup decomposition can be written as

� = �{(� � A t) � (� � B c) c:
                            [A, B] � {X: o � �(X)}},

or, equivalently, by using the definition of dual
mapping � * (� *(X)=(�(X c)) c) and changing,
respectively, A and B into B c and A c,

� = �{(� � A t) � (� � B c) c:
                           [A, B] � {X: o � � *(X)}},

For an increasing translation invariant set map-
ping �, we get the well known Matheron’s
decompositions (1975),

� = �{� � A: o � �(A)} 
                            = �{� � A t: o � � *(A)}.

5. CONCLUSION

In the previous sections, we have presented
two constructive decompositions for any map-
ping between lattices in terms of the elemen-
tary mappings of MM: erosions, dilations,
anti–erosions and anti–dilations.

Actually, the proposed decompositions are
redundant in the sense that smaller families of
such elementary mappings can be involved in
the decompositions. The problem of a minimal
decomposition (or minimal decompositions)
have been studied in (Banon and Barrera,
1991, 1993) and can be related to the well
known problem of Boolean function simplifi-
cation.

The proposed decompositions apply to map-
pings between different lattices and so can be
used to decompose many kinds of image trans-
formations (not only translation invariant set
mappings). For example, they apply to trans-
formations between grayscale and binary
images.

By choosing a partial order relation between
the pixel positions, the proposed decomposi-
tion can be used, as well, to decompose the dig-
ital images themselves.
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