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Abstract 
 

This paper presents an updated report of the Brazilian experience on the use of JERS-1 data as an 
information source for biomass estimation, land use / land cover characterization and delineation of 
different habitats in Amazônia. Primary and secondary forest and savanna biomass measurements were 
acquired in Acre and Roraima, respectively, and their values were related to JERS-1 backscatter. JERS-1 
texture was used to improve land cover mapping accuracy in Tapajós, (Pará State) and the State of 
Rondônia. Floodplain habitats were mapped in Monte Alegre Lake (northeast of Brazilian Amazônia) 
with the joint use of JERS-1 and Radarsat images. Also the use of JERS_1 to detect deforestation, and a 
comparison with operational methods, is discussed 
 

1 Introduction. 
 
Key questions in Amazonian studies are: how do deforested areas evolve? How differences on biomass 
can affect carbon budget? How to classify different types of primary forest? Different types of forest have 
different potentials for sustainable exploitation. Biomass estimation for different Amazonian communities 
is a piece of the carbon balance related to changes in tropical environments. Mapping the different 
habitats in Amazon is very important towards the comprehension of such rich ecosystem. Remote Sensing 
is the necessary tool to use given the dimension of Amazon region, and particularly the use of SAR data, 
considering its complementary characteristics with optical data and cloud free acquisition. 
 
The Brazilian Space Research Institute (INPE) has been working on several aspects of the mentioned 
problems and this report focuses on some results based on JERS-1 data on the fields of biomass 
estimation (section 2), land cover characterization and delineation of different habitats in Amazon 
(section 3). 
 
Distinct methodologies and different aspects of Amazonian landscapes are discussed in the following 
sections. It is expected that these discussions may lead to a better understanding of the Amazonian 
environment and to an adequate evaluation of available and new methodologies that are necessary for 
monitoring this important ecosystem. 
 

2 Relationship between backscattering and biomass estimates. 
 
The spatial distribution of the tropical rain forest and savanna formation biomass for the entire Amazon 
region is a fundamental information to the understanding of global change processes. The relationship 
between  biophysical  parameters of vegetation cover and backscattering derived from JERS-1 image was 
examined for  two test sites. Alto Alegre test site (Roraima State) represents a sharp boundary  between 
forest and savanna formations (Santos et al., 1998b) and Rio Branco test site (Acre State) is an area of 
dense/open tropical rain forest (Santos et al., 1998a). 
 
In both test sites, the linear spectral mixture model was applied to TM/Landsat scenes to create a 
reference database for land cover classes discrimination and to locate sample sites for ground data 



collection. These TM/Landsat images were registered to the JERS-1 scenes with a geometric accuracy of 
one pixel to derive σ0 values (dB) from previously selected sample areas. The backscatter coefficient was 
derived from  digital numbers as follows (Rosenqvist, 1997): 
 
σ° = 10 log10 {(Σ DN2) / n} + CF 
 
where DN = digital number of the amplitude image pixel; n = number of pixels of the sample area and CF 
= offset calibration factor (-68.5 dB). 
 
Two procedures for data collection were used. In the savanna, biomass estimation of the  herbaceous, 
bush and shrub vegetation was measured by  cutting and weighting them in samples with size ranging 
from 200 to 500m2, according to the savanna physiognomy. At each sample all individuals of bush and/or 
arboreal strata were botanically identified and weighted. For the herbaceous strata, biomass and 
percentage soil coverage was estimated in at least five sections with 1m2 size each. In forest areas the 
following measurements were made: DBH, height, crown cover percentage, as well as the botanical 
identification of all individuals with DBH > 5cm for secondary succession and DBH > 10cm for primary 
forest, at sample areas of 1,000m2 and 2,500m2 respectively (Figure 1). The estimation of biomass values 
was modeled by dendrometric parameters into the allometric equations. Statistical procedures, using 
simple or multiple regression models were used to estimate the relationship between field data (biomass 

values) and those obtained from orbital images. 
The following land cover classes were identified: primary forest, intermediate secondary succession, 
savanna grassland, parkland savanna and savanna woodland (Santos et al., 1998a). The mean biomass 
values obtained for primary and secondary forest was around 194.71 ton/ha and 47.06 ton/ha (dry weight) 
respectively. Secondary succession samples presented 20% biomass related to the vegetation 
development degree and to the intensity of previous usage. Primary forest (DBH > 10cm) presented an 
average of 430 individuals/ha, DBH of 23.60cm and average canopy height of 14.54m (the highest 
individuals are up to 38m height). Secondary succession (DBH > 5cm) presented, in average, 1294 

Figure 1 - Example of typical physiognomic profile of a intermediate secondary succession. 
Source: Santos et al.(1998b). 



individuals/ha, DBH around 11.22cm, and height around 7.94m. In savanna formations, the estimated 
biomass (dry weight) was: 4.86 ton/ha for savanna grassland, 7.28 ton/ha for parkland savanna, and 20.15 
ton/ha for savanna woodland. The savanna grassland has just the herbaceous stratum, formed by graminea 
species and cyperaceae, presenting in average 48.57% of soil coverage. The parkland savanna presented 
230 individuals/ha at the upper stratum (bush and small trees) which represented 40% of the whole 
biomass. These values are different for savanna woodland, where 82% of the biomass belongs to the 
arboreal/bush stratum, showing an average of 300 individuals/ha. 
 
The estimated relationship between the backscatter values from JERS-1 and biomass indicators (Figure 2) 
is shown in Figure 2. In the simple regression model, biomass values were considered as independent 
variable (x) and the estimated equation y = 1.7881 ln(x) - 15.821 had a coefficient of determination r2 = 
0.8746. The range of backscatter values varied from -9.04 to -5.77 dB for forestry formations and from -
15.07 to -9.55 dB for savanna types. It could be observed that this regression function shows a high 
sensitiveness to biomass up to 100 ton/ha. The components of “vegetation”, “soil” and “shade” are related 
to  the variability of the vegetation structure and soil moisture content and are responsible for changes in 
the  backscatter signal.  
 

y = 1,7881Ln(x) - 15,821
R2 = 0,8746
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Figure 2 - Diagram of JERS-1 backscatter values of forest and savanna formations. 
                 Source: modified from Santos et al. (1998b). 
 
In the Acre test site the integration of TM-Landsat and Jers-1 images allowed to identify primary rain 
forest with or without bamboo species (Guadua weberbaueri Pilger) and different levels at secondary 
succession (Santos et al., 1998b). Primary forest with high proportions of “vegetation” and “shade” 
displayed backscatter coefficient between –7 to –6 dB. The different stages of secondary succession are 
defined on the –7.8 to –10.4 dB range. This range is affected by changes in the physiognomic-structural 
characteristics and by species composition of the natural vegetation regrowth. The biomass content was 
estimated from  a multiple regression model (determination coefficient r2 = 0.77 and standard error of the 
estimate Sxy = 32.64) derived from JERS-1 backscatter and TM/Landsat spectral information. The model 
was sensitive to biomass values up to  90 ton/ha.  
 

3 Feature extraction for land use/ land covers classification. 
 
Texture is an important feature to use SAR imagery for digital classification purposes. Several methods 
have been presented in the literature with limited success. Most of them rely on a filtering process over 
the original image, in which the texture information around a certain pixel position is extracted 
considering a determined neighborhood of that pixel. This texture information is assigned to the pixel 
position, which is the center of its neighborhood, and it is used as a component of a feature vector that 
will be used in pixel based classifier. Important issues are 1) filter size used to extract the texture 
information and 2) the underlying texture model. 



 
Haralick's texture features (Haralick et al.,1973), also known as co-occurrence features, are widely used. 
Here is presented a study to determine a convenient size of neighborhood for Haralick's feature extraction 
(section 3.1); a study which consider the joint use of co-occurrence features with features extracted by 
matched filtering( section 3.2) and an assessment of a region classifier based on Haralick's features, local 
statistics, distribution parameters and autocorrelation function derived features (section 3.4) for land use / 
land cover classification using JERS-1 imagery. In section 3.3, a texture feature extraction method based 
on autorregressive modeling is presented for primary forest classification as observed by JERS-1 
imagery. 

3.1 Use of texture measures for detection of tropical deforestation. 
 
The potential of using texture features for mapping land cover classes as seen in JERS-1 imagery were 
investigated for a test site in Rondônia (Ribeiro et al., 1998). Sixty-nine control plots were defined in the 
test area and their land cover classes were established from site visits, aerial and TM/Landsat imagery. 
Land covers classes under consideration were recent deforestation (RD); pasture or bare soil (PA); young 
secondary forest (Y2F); intermediate secondary forest (I2F); old secondary forest (O2F), and mature 
forest (MF). 
 
An analysis of the performance of 14 texture measurements (Haralick; 1979) was performed, by 
calculating texture-images of mean (mean); vari (variance); ener (energy); corr (correlation); entr 
(entropy); cont (constrast); homo (local homogeneity); diss (dissimilarity); smea (mean of sum vector); 
svar (variance of sum vector); sent (entropy of sum vector); dmea (mean of difference vector); dvar 
(variance of difference vector) and dent (entropy of difference vector). All texture images were 
normalized to have zero mean and unitary standard deviation. Window sizes of 5x5, 7x7, 9x9, 11x11, and 
15x15-pixels were investigated. The Mahalanobis distance (D2), as described in Schowengerdt (1997), 
were computed for all texture measurements and window sizes, for fifteen pair-wise combination of the 
land cover classes (RD-PA; RD-Y2F;PA-MF etc). The 11x11-pixels window was selected by maximizing 
the Mahalanobis distance. Figure 3a presents the D2 values for the RD-PA pair. The plots for other pairs, 
not showed here, presented similar results.  
 
Calculating the Mahalanobis distance between all pairs of the land cover classes, showed that texture 
measures - mean, variance, entropy, contrast, local homogeneity, and mean of sum vector - allowed to 
maximize inter-class distances and discriminate between several land cover classes (Figure 3b), 
particularly between mature forest (MF) and pasture (PA), and forest and recent deforestation (RD). It 
was also possible to observe, from Figure 3b, that entropy (entr) was the best one to discriminate recent 
deforestation (RD) from all other classes, mean of sum vector(smea) and mean provided a very good 
separation between RD and pasture (PA). Discrimination between mature forest (MF) and older stages of 
secondary growth (I2F, O2F) revealed to be more difficult. In general, the choice of which feature will be 
the best for pair-wise land cover class discrimination will depend on that particular class pair.  
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Figure 3 - Mahalanobis distances between paired cover classes: a) window size analysis for RD-PA 
classes; b) best texture measurements using 11x11 filter size. Source: modified from Ribeiro et al. (1998). 

3.2 Feature extraction by local statistics, co-occurrence and matched filters. 
 
Recent studies based on visual interpretation and usage of established classification techniques exhibited 
weaknesses concerning correct classification of all classes of interest in Amazônia, particularly different 
types of primary forest, when using radar data. Sometimes only forest-non forest discrimination is 
possible. Image texture is a key factor to discriminate primary forests, while L- band backscatter has the 
ability to discriminate forest from non-forest. 
 
In this study, 11 classes of general interest could be established near and inside the Tapajós National 
Forest, which is located south of city of Santarém, Pará State, Brazil. The classes defined for analysis are: 
1) dense forest – dissected plateau (DFDP); 2) dense forest – high plateau (DFHP); 3) urban areas; 4) 
open forest (OF); 5) dense forest – sedimentary area (DFSA); 6) mature regeneration; 7) pasture; 8) bare 
soil; 9) abandoned (dirt) pasture; 10) water; 11) aquatic vegetation. It was used the scenes 405/306 and 
405/307 (acquired Aug 13, 1996). Figure 4 presents a mosaic of samples of these classes. From this 
mosaic 28 texture feature images were extracted by specialized filtering determined for each texture 
model. Such a large number of features were chosen with hope of discriminating as many classes as 
possible. Even with such a large number of features it is expected that some classes can not be 
discriminated. The objective here is to develop an analysis methodology to discover which are the best 
features from the set, considering the classes of interest, and which classes cannot be well discriminated 
even with the best set composition. 
 
The methodology can be summarized as follows:1)extraction of 28 feature images; 2) selection of 11 
features using 2 discrimination ranking coefficients (Huber and Dutra, 1998) based on average Jeffries-
Matusita distance (JMD) (Fukunaga, 1990) for the classes; 3) grouping and renaming of not separable 
classes using a closeness threshold (by JMD); 4) assessment of the discrimination power of all possible 
subsets of 11 features by evaluating the classifier performance on those subsets The best subset was 
chosen as the one with higher overall accuracy 
 
The texture features used (Dutra et al., 1998) were: 7 types of local statistics filter, 10 types of co-
occurrence features and 11 output variance of matched filters to the classes textures. Matched filters are 
constructed by a linear composition of Laws (1980) filters as described in (Dutra et al., 1998). 
 
Ranking coefficients was used to pre-select features, because using exhaustive search with 28 features is 
not feasible. Also, the JMD between all pair of classes, for the chosen 11 features set, is used to build a 
graph linking all classes by minimum distance. This graph permits to identify classes which are not 
considered statistically separable by setting a minimum JMD to leave neighboring classes in the graph 
apart. 
 

 
Figure 4 - Mosaic with samples of JERS-1 scenes containing 11 classes of interest. 



                 Source: Dutra et al. (1998) 
 
 
Considering a threshold of 0.7, a new set of classes was obtained: 1) DFDP; 2) flat forest (FF) which is 
composed by DFHP, OF, DFSA and mature regeneration; 3) urban areas; 4) pasture + bare soil; 5) 
abandoned (dirt) pasture; 6) water and 7) aquatic vegetation. 
 
Each possible subset of features from the set with 11 features was used to train an  one hidden layer 
multilayer perceptron (MLP) classifier by resilient back-propagation (RPROP) method and considering 
the new set of seven classes The subset with the higher overall accuracy calculated on a validation set is 
selected. Training and validation sets are composed by 500 randomly chosen points per class. The best 
subset of features is composed by eight features: the original backscatter; coefficient of variation for 
intensity, entropy; contrast; homogeneity and three matched filters output variance of classes DFDP; 
urban areas and bare soil. 
 
Table 1 presents the overall accuracy together with Tau coefficient of agreement (Ma et al., 1995) 
considering the classification result using the best features subset and classifying into the seven grouped 
classes. For comparison the MLP classifier was trained on basic features, e.g. filtered backscatter image 
and intensity coefficient of variation, using the same training samples. See first column of Table 1. Figure 
5 shows the result of contextual MLP classification, which is an improvement of the MLP classifier as 
described in Dutra et al. (1998). 
 
 

Table 1: Classifier Performance for MLP (%). 
 

Validation 
Sets 

Basic 
Features 

Best 
Subset 

Best Subset 
+ Context 

Overall 
Accuracy 53.7 80.2 86.5 

Tau 45.6 76.9 84.2 

Source: Dutra et al. (1998). 
 
 
 

 
Figure 5 - MLP contextual classification result. Source: Dutra et al. (1998). 
 
 
As shown in the results, texture feature extraction plays an important role in land use classification when 
using JERS-1 imagery. Particularly, feature extraction from matched filtering allowed a better 
discrimination of dense forest of dissected plateau, which normally would be confused with most classes 
because its undulated relief. 
 



3.3 Feature extraction by autorregressive modeling. 
  
A texture feature extraction method using autorregressive modeling was developed and tested for rain 
forest classification using JERS-1 SAR image from Tapajós National Forest, Pará State, Brazil.  
 
The Autorregressive (AR) models assume time series as being generated by a linear filter (Figure 6) 
excited by a white noise. The input of this filter, called shocks, is a time sequence of independent random 
variables, identically distributed with null average and variance σ2, IID(0, σ2). The output of this filter Zt 
is given by equation 1. 
 

White Noise (at) → LINEAR 
FILTER 

→Time Series (Zt) 

 
Figure 6 - Time serie Zt as output of linear filter, excited by white noise at. 
                 Source: Soares et al. (1998). 
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where Z*

t = Zt - µ. 
 
The parameters φi, in the equations 1a and 1b, can be estimated by the Yule-Walker equations, using the 
recursive Levinson-Durbin algorithm, as described in Kay (1988). 
 
An extension for the two-dimensional case was used as described in Dutra (1990). The methodology for 
feature extraction and classification can summarized by the following steps: 
 
• Stage 1 - Autorregressive Model Estimation: a model is estimated for each textural class; 
 
• Stage 2 - Definition of Autorregressive Inverse Filters: inverse filters are derived from each AR 

model by calculating an estimate for at as a function of Zt (Equation 1) and its past values for each set 
of autorregressive parameters, which was estimated for each textural class; 

 
• Stage 3 - Inverse AR Filtering, Whitening and Energy: matched inverse autorregressive filters, 

relative to each class, are applied sequentially to the original image producing an estimate of the 
shocks (called residues) as seen by each inverse filter. For each residues channel the energy and 
whitening coefficient channels are calculated as indicate in Soares (1998). When a region is filtered 
by its matched correspondent filter, the resulting field is expected to yield minimum energy when 
compared to all other non matched filters and the whitening coefficient channels approximates zero 
(Soares, 1998). 

 
As a result, a set of M bands of filtered images, where M is equal of number of classes multiplied by 
three, are obtained from the original image: 
- The raw output of the inverse filters; 
- The whitening coefficient images calculated from the outputs of the inverse filters; 
- The energy bands, also calculated from the outputs of the inverse filters. 

 
• Stage 4 - Maximum Likelihood Classification: the set of filtered bands of the original image is then 

classified by the Maximum Likelihood classifier with the same training samples that had generated 
the AR parameters (Soares, 1998). 

 
To test the method, a mosaic of JERS-1 sub-images containing representative textures of two types of 
forest: dense flat forest and undulated (dissected) forest was chosen. The mosaic (Figure 6) is composed 
by JERS-1 sample areas from Tapajós National Forest (Pará State, Brazil).  



 
 

Figure 6 - Mosaic of JERS-1 images with dense flat forest (right) and undulated forest (left) The training 
areas are shown in red and green for flat forest and undulated forest. Source: Soares et al. (1998). 
 
Applying the maximum likelihood classification to the six band set, the result of Figure 7 was produced. 
  

 
 

Figure 7 - Classification on the set of all the bands generated in the stage-4. Source: Soares et al. (1998). 
  
The results were analyzed using the confusion matrix, and showed a Kappa coefficient of 96.1%, instead 
of a Kappa of 36.1% using the original channel only for classification, whose result is shown in Figure 8. 
 

 
 

Figure 8 - Maximum Likelihood Classification of the single channel original JERS-1 Mosaic. 
                Source: Soares et al. (1998). 

3.4 Region classifier based on textural features. 
 
In this section, a classification of a JERS-1 image from the Tapajós region (Pará State, Brazil) is 
presented. The classes of interest are: primary forest, old secondary forest, new secondary forest and 
recent activities (bare soil, pasture and crops) In order to perform the classification, a system over 
IDL/ENVI environment was developed and implemented (Rennó et al., 1998). It consists on the three 
main stages (modules): analysis and selection of textural features and classification. The selected features 
are used as discriminant attributes by a supervised region classifier. More than one hundred textural 
features were implemented in this system, split on four groups: local statistics (seven), distributional 
(eight), Haralick’s (eighteen) and autocorrelation (can be calculated from lags -4 to 4, and also ratios 
between two of them). 
 
The first set includes measures of local statistics as skewness, kurtosis, coefficient of variation and 
median, among others. The distributional measures are parameters of statistical distributions, some of 



them specific for radar data. The reader interested in more details about the distributions used to model 
radar data is recommended to Frery et al. (1997) and the references within it. The measures found in both 
groups are calculated without considering spatial distribution of pixels. The Haralick’s measures set is 
based on the Gray Level Co-occurrence Matrix (GLCM). The GLCM describes the frequencies of the co-
occurrence of two specific gray-levels given specific pixel locations in terms of relative direction and 
distance (Haralick, 1979). The dissimilarity, energy, homogeneity, cluster shade and cluster prominence 
are some measures that can be found in this set. 
 
It is evident that a large number of measures can be extracted and become impracticable to use all of them 
in the image classification step. The used decision rule to choose one or more measures is based on a 
discriminant factor, which is estimated from training samples. This discriminant factor evaluates the 
separability between classes, considering the variation within and between two classes. The last phase is 
the classification, which classify each region, from a previously segmented image, minimizing the 
Mahalanobis distance. In this work the segmented image was obtained from a landuse map built using a 
multitemporal series of TM/Landsat images (Sant'Anna et al., 1995). 
 
The classification was obtained in two steps (tree classifier): the first consisted on classifying groups of 
classes with similar characteristics and the second on classifying, for each group, the grouped classes. The 
result was obtained by using the median measure to separate the group formed by primary forest and old 
secondary forest classes from the group formed by new secondary forest and recent activities classes. The 
Haralick’s entropy measure was utilized to distinguish the former group, and the later one was separated 
by median measure. This result might be considered good because of the areas of old secondary forest, 
which present characteristics very similar to primary forest, were well classified. 
 
Figure 9 shows the JERS-1 image from 06/26/93 and the result of classification when two steps were 
used. The classified image presents four classes: primary forest, old secondary forest, new secondary 
forest and recent activities, colored by dark green, light green, yellow and magenta, respectively.  
 

  

Figure 9 - (a) JERS-1 image and (b) Classification based on median and Haralick’s entropy measures 
performed in two steps. Source: modified from Rennó et al. (1998). 
 

4 Application of region growing segmentation method for floodplain 
habitats delineation. 

 
The study was carried out in Monte Alegre lake (2o10`S/54 o 20`W) in the northeast of the Brazilian 
Amazon as reported by Costa et al., (1997). In this study multisensor (JERS-1 and Radarsat) image data 
set was used to map floodplain habitats using a region growing segmentation method. 
 
The data set for the study consisted of aerial photography, Radarsat and JERS-1 images and field 
observations such as hand-help photographs, collected GPS coordinates and field description of the test 
site. The color aerial photographs were acquired at 1:20,000 scale at the end of May, 1996. They were 

(a) (b) 



scanned, mosaicked, visually interpreted and subsequently digitized for creating a digital land cover map. 
The resultant map was used as a ground truth map. Three Radarsat standard mode images acquired in 
May (S1 and S6) and August (S6) and two JERS-1 images acquired in May and July were used to map 
the following ground classes: Water, Forest, Flooded Forest, Aquatic plants, Pasture.  

 
The images were ortho-rectified according to the methodology developed by Toutin, (1995). The 
accuracy of the model was on average 11.4m, the accuracy of the restitution was on average 19.2m, and 
the final resolution was 12.5m. Detailed information about the images ortho-correction are reported by 
Costa et al., 1997. A subscene (20 x 20km) near Maicurú river was selected and submitted to the 
following procedures: a) linear scaling from 16 to 8 bit; b) speckle filtering with Lee Filter (7 x 7 
window) (Lee, 1981); c) segmentation using a region growing algorithm; d) supervised classification of 
the pre-segmented image using a Bhattacharrya distance algorithm; e) class area estimation. Different 
threshold combination was tested, either for single data or for a combination of both, Radarsat and JERS-
1. Figure 10 shows a segmentation of a Radarsat S6 and a JERS-1, both acquired in May and Figure 11 
shows the radar color composition.  
 

  
Figure 10 – Segmentation of Radarsat S6 and 
JERS-1, May. Source: Costa et al. (1997). 
 

Figure 11 - Color composite, Radarsat S6 May 
(red), JERS-1 May (green) and JERS-1 August 
(blue). Source: Costa et al. (1997).

 
Table 2 summarizes the calculated area for each classified class. The ground truth map data has an extra 
class (no-data), which represents lack of information related to cloud cover in the area. To overcome this 
lack of information the ground truth map was compared with the images and the “no-data” class was then 
associated to the real classes. Therefore, it must be considered that the no-data area generated from the 
ground truth map corresponds, at least, to approximately 80 km2 of water, 20 km2 of forest and the 
remaining area (18.4 km2) could be part of flooded-forest, pasture and aquatic-plants classes. The 
parenthesis values in Table 2 correspond to the area values for the ground truth map data assuming spatial 
continuity of the ground class as displayed in the radar data set. The ground truth map classes followed by 
an interrogation mark are those where the spatial continuity assumption do not hold thoroughly. 
 

Table 2. Calculated area for the classified data (km2). 
 

 Water Forest Flooded-forest Aquatic-plants Pasture no data 
Ground truth map 82.4 (162.4) 43.6 (63.6) 33.0 (?) 41.3 (?) 28.5 (?) 118.4 
JM 167.9 72.9 24.6 43.1 42.55  
RS6M 164.4 77.8 21.1 64.2 23.5  
RS6MJM 159.9 78.72 31.1 57.35 23.9  
JJ 166.9 71.5 31.5 44.0 37.1  
RS6A 169.1 71.1 16.9 61.3 32.9  
RS6AJJ 168.46 70.0 27.5 53.3 31.7  
RS1M 164.86 85.2 36.9 43.2 20.8  
RS1MJM 165.8 72.1 29.8 56.6 26.7  

JM= JERS-1 May - Source: Costa et al., 1997. 



RS6M = Radarsat Standard mode beam 6, May 
RS6MJM= both JM and RS6M used to run the classification 
JJ= JERS-1 image, June 
RS6A = Radarsat Standard mode beam 6, August 
RS6AJJ= both JJ and RS6A used to run the classification 
RS1M= Radarsat Standard mode beam 1, May 
RS1MJM= both JM and RS1M used to run the classification 
 

It was observed an improved classification when JERS-1 and Radarsat are used in combination when 
compared with the digital ground truth map. The reasons for that are the distinct incidence angle, 
wavelength and date. 
 

5 Conclusions. 
 
Although is not possible to consider the results shown as definitive, certain conclusions can be drawn: 
 
1. There exists a relationship between the radar backscatter and biomass for the contact zone of forest 

and savanna formation. The sensitiveness of this relationship is quite high for biomass values up to 
about 100 ton/ha. 

2. Texture is a very important feature for improving classification accuracy but, in general, is not 
possible to point out a specific texture model as the best for all cases. 

3. Co-occurrence texture features can be used successfully either for per point or region classification.  
4. The results suggest that better results are obtained using different texture models at the same time and 

employing a feature selection routine to seek the best features according the set of classes of interest. 
5. The use of texture permitted the discrimination of old secondary forest from primary forest, which it 

was not possible with the single use of backscatter. 
6. Given the increasing power of modern computers, feature selection by exhaustive search, based on 

overall accuracy, is becoming feasible for moderate dimensionality. 
7. Joint use of other radar sources can improve mapping accuracy. 
8. Matched filtering provides a good radar texture extraction method, either by autorregressive 

modeling or whitening filters constructed by principal components of Laws filters. 
 
It is clear the usefulness of L-band data as an information source for tropical environment understanding. 
Given also the experience gathered using SIR-C polarimetric L-band data for limited areas, a considerable 
success for the forthcoming ALOS system is expected. 
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