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ABSTRACT

This scientific paper, part of a PhD Thesis currently under execution at the Division for Image

Processing of the Brazilian National Institute for Space Research (DPI – INPE), is committed

with building up a methodological guideline for modelling urban land use change through

GIS, remote sensing imagery and Bayesian probabilistic methods. A medium-sized town in

the west of São Paulo State, Bauru, was adopted as case study. Its urban structure was

converted into a 100 x 100 (m) resolution grid, and transition probabilities were calculated for

each grid cell by means of the “weights of evidence” statistical method and upon basis of the

information related to the technical infrastructure and socio-economic aspects of the town.

The probabilities therefrom obtained fed a cellular automaton (CA) simulation model –

DINAMICA- developed by the Centre for Remote Sensing of the Federal University of Minas

Gerais (CSR-UFMG), based on stochastic transition algorithms. Different simulation outputs

for the case study town in the period 1979-1988 were generated, and statistical validation tests

were then conducted for the best results, employing a multiple resolution fitting procedure.

This modelling experiment revealed the plausibility of adopting Bayesian empirical methods

based on the available knowledge of technical infrastructure and socio-economic status to

simulate urban land use change, what implies their possible further applicability for

generating forecasts of growth trends both for Brazilian and worldwide cities.
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1. Introduction

Recent generation models of urban dynamics have been dealing with diverse themes.

According to Batty (2000), there are currently some twenty or more applications of CA to

cities, such as the diffusion or migration of resident populations (Portugali et al., 1997), the

competitive location of economic activities (Benati, 1997), the joint expansion of urban

surface and traffic network (Batty and Xie, 1997), the generic urban growth (Clarke et al.,

1997), the urban land use dynamics (Deadman et al., 1993; Batty and Xie, 1994; Phipps and

Langlois, 1997; White and Engelen, 1997; White et al., 1998) , and so forth.

Specifically regarding urban land use dynamics, it is possible to identify basically three main

trends of CA models in respect to their balance between stochasticity and determinism. A first

one concerns the predominantly deterministic models, whose most evident representative is

the urban growth study for the San Francisco Bay area, conducted by Clarke et al. (1997).

Although this model incorporates a certain randomness in selecting the cells for urban growth

and in promoting the spread of growth seeds, its transition rules, which can be spontaneous,

diffusive, organic or road-influenced, are fundamentally deterministic in the sense that the

cell suitability for being urbanised is not dependent upon probabilistic methods.



A second trend relates to the stochastic models with both deterministic estimations of area for

land use transition and deterministic transition algorithms. A good example of this category of

models is the SIMLUCIA, conceived by White et al. (1998), which is an integrated model of

natural and human systems operating at several spatial scales, and was aimed at providing the

officials of the Caribbean Island of Santa Lucia with a tool to explore possible environmental,

social, and economic consequences of hypothesised climate changes.

In this model, a sophisticated set of equations taking into account aspects of the natural

environment is formulated in order to estimate the impact of economic and demographic

changes on land use. The stochasticity of this model is present in the calculation of the

probabilities of land use transition for each cell, which is basically a function of the cell

suitability for the new activity in question and its relative accessibility for such an activity. In

the SIMLUCIA transition algorithm, cells are ranked by their highest potential, and cell

transitions begin with the highest ranked cell and proceed deterministically downwards, until

the number of cells demanded by the above-mentioned equations is reached.

A third trend concerns the stochastic CA models with both stochastic estimations of area for

land use transition and stochastic transition algorithms. The modelling experiment presented

in this paper integrates this third category, in which the transition rules are randomised, the

cell transition probabilities are calculated through Bayesian probabilistic methods (“weights

of evidence”), and the Markov chain is in principle utilised for the definition of the transition

rates for each possible type of land use change. An overview of the “weights of evidence”

statistical method as well as an explanation of how it can be applied to the modelling of urban

land use dynamics are presented throughout the next section.

2. Methods: A Bayesian Method-Based Cellular Automaton Model



2.1 Generalisation Procedures Applied to the Land Use Maps

The city maps provided by the Bauru local authorities presented inconsistencies due to the

fact that illegal settlements are not shown on official maps, and not all of the legally approved

settlements drawn have been in fact implemented. In this way, satellite imagery arise as a

feasible solution for the identification of urban settlements actually existent, as well as for the

delineation of the true urban occupation boundaries of the case study town.

In these official maps, some urban zones refer to areas which are not yet occupied, and some

other zones categories do not correspond to the prevailing use indeed encountered within their

limits, reflecting just the local officials´ intention for their future use. In this sense, the

following procedures were applied to the initial (1979) and final (1988) land use maps (figure

1) used in the simulation experiment so as to render them workable by the computational

model and coherent to the reality they are related to:

(i) reclassification of the zones initially assigned by the Bauru local authorities

according to their dominant and effectively existent use, based on field

observations and satellite imagery;

(ii) reclassification of similar zones shown on official maps to only one category,

e.g. residential zones of different densities were all reclassified to residential

zones only; special use zones and social infrastructure equipments zones were

reclassified to institutional zones only, and so on;

(iii) adoption of eight land use zone categories: residential, commercial, industrial,

services, institutional, mixed use zone, leisure/recreation, and non-urban zone;



(iv) exclusion of districts segregated from the main urban agglomeration, i.e. those

which are located above 10 km from the official urban boundary;

(v) disregard of the traffic network and minor non-occupied areas in the

simulations.

For updating the land use maps used in the simulation, a MSS image of June 22, 1979 (WRS

237/75) and a TM image of November 29, 1988 (WRS 221/75) were employed. Official

topographic charts with scale 1: 50000 have been used for the registration of the images, with

a total average error of 1.308 pixel. The geographic coordinates of the control points were

then used for the registration of the city maps in vector format using SPRING GIS (from the

Division for Image Processing of the Brazilian National Institute for Space Research – DPI-

INPE). Finally, the city maps were superimposed on linearly enhanced colour composites of

the registrated images (MSS 457 and TM 147), allowing a visual crosscheck of existent and

non-existent settlements. It is worthy remarking that if modelling is concerned only with

urban expansion, i.e. only the classes urban and non-urban use are under consideration,

detailed land use maps derived from aerial photos and field checking are no longer necessary

and a simple binary classification of remotely sensed data suffices.

[Insert figure 1 about here]

2.2 Exploratory Analysis and Selection of Variables

As formerly stated, the maps of explaining variables relate to the technical infrastructure and

socio-economic aspects of Bauru. Initially, these maps were scanned in the OCE scanner

(model G6035S) and digitised in AutoCad release 2000. They were then exported as files



with extension DXF to SPRING. These same procedures were also adopted for the production

of the Bauru land use maps presented in figure 1. In SPRING, the maps of variables were then

subjected to a preliminary processing, including vector edition, polygons identification,

elaboration of distance maps and spatial statistical analysis maps like the Kernel points

density estimator, etc.

Since the “weights of evidence” statistical method (to be employed in the calculation of the

cells transition probabilities) is based on the “Bayes theorem of conditional probability”, the

selection of variables for the modelling analysis ought to take into account the checking of

independence amongst pairs of variables chosen to explain the same category of land use

change.

For this end, two methods were used: the Cramers Coefficient (V) and the Joint Information

Uncertainty (U). In both cases, it is necessary to obtain values from an area cross-tabulation

between pairs of maps of variables under analysis. Let the area table between map A and map

B be called matrix T, with elements Tij, where there are i = 1, 2, ..., n classes of map B (rows

of the table) and j = 1, 2, ..., m classes of map A (columns of the table). The marginal totals of

T are defined as Ti. for the sum of the i-th row, T.j  for the sum of the j-th column, and T.. for

the grand total summed over rows and columns. If the two maps are independent of one

another, with no correlation between them, then the expected area in each overlap category is

given by the product of the marginal totals, divided by grand total. Thus the expected area T*ij

for the i-th row and j-th column is:

                                                   .                                                     (1)T*i, j   =  Ti . Tj

              T ..



Then, the chi-square statistic is defined as:

                                                                                                 ,                                          (2)

the familiar (observed – expected)2 / expected expression, which has a lower limit of 0 when

the observed areas exactly equal the expected areas, and the two maps are completely

independent. The Cramers Coefficient (V) is then defined as:

                                             ,                                                     (3)

where M is the minimum of (n-1, m-1).

The Joint Information Uncertainty (U) belongs to the class of entropy measures, which are

also based on the area cross-tabulation matrix T, but can also be used for measuring

associations. Suppose that the Tij values are transformed to area proportions, p, by dividing

each area element by the grand total T... Thus, pij = Tij /T.., and the marginal proportions are

defined as pi. = Ti. /T.. and as p.j = T.j /T... Therefore entropy measures, also known as

information statistics can be defined using the area proportions as estimates of probabilities.

Proportions are dimensionless, so entropy measures have the advantage over chi-squared

measures of being unaffected by measurement units (Bonham-Carter, 1994).

Assuming that an area proportions matrix for map A and map B has been determined from T,

then the entropy of A and B are defined as:

                                                                                                                                                  (4)

           n     m
X2  =  ∑   ∑    (Ti, j   -  T*i, j)

2

         i=1   j=1
                           T*i, j

V  =         X2

       
       ž  T..  M

                   m
H (A)  =  -  ∑   pj  -  ln pj
                j=1



    

                                                                                       ,                                              (5)

              

where ln is the natural logarithm. The joint entropy of the combination, H(A,B), is simply

         

                                                                                                                                                   .                                               (6)

Then the “Joint Information Uncertainty” of A and B, U(A,B), can be used as a measure of

association and is defined as

                                                                                          ,                                           (7)

              

which varies between 0 and 1. When the two maps are completely independent, then H(A,B)=

H(A) + H(B) and U(A,B) is 0, and when the two maps are completely dependent, H(A) =

H(B)= H(A,B) = 1, and U(A,B) is 1.

The criterion which is used to determine whether one variable is independent of another is to

a large extent arbitrary as there is no large body of case results associated with the application

of these methods. Where this particular variant of logit modeling has been used in the

geosciences, Bonham-Carter (1994) reports that values less than 0.5 for Cramer’s Coefficient

and the Joint Information Uncertainty suggest less association rather than more. In all

comparisons made here, these associations are less than this threshold. Indeed all values are

less than 0.45 for V and less than 0.35 for U.

[Insert table 1 about here]

                   n
H (B)  =  -  ∑   pi  -  ln p i
                i=1

                      n     m
H (A,B)  =  -  ∑   ∑   pij    ln p i j
                   i=1   j=1

                     

U (A,B)  =  2  H(A) + H(B) - H(A,B)
                              H(A) + H(B)



The variables employed in the simulations and their notations are found in table 1, and the

respective values for the measures of association (V and U) between pairs of variables chosen

to explain the same category of land use change are found in table 2. As none of the

association measure values surpassed the thresholds, no variables preliminarily selected for

modelling have been discarded from the analysis. In practice, the variables selection routine

also include empirical procedures, based on the visualisation of distinct variables superposed

on the final land use map, so as to identify those more meaningful to explain the different

types of land use change  (figure 2).

[Insert table 2 about here]

[Insert figure 2 about here]

2.3 Estimation of Global Transition Rates

For the specific case study town in question – Bauru – in the period 1979-1988, five types of

land use change were detected (table 3). In order to calculate global land use transition rates

for the period 1979-1988, the initial and final land use maps were converted to raster files

with extension TIFF and resolution 100 x 100 (m), and then exported to the IDRISI

Geographic Information System. The adopted resolution is about a city block size, what was

deemed convenient for the purpose of urban land use analysis, for intra-city block variations

in land use are disregarded. In IDRISI, a cross-tabulation operation was made between both

land use maps (see figure 1) so as to generate global transition percentages (table 4) for the

five existent types of land use change.



[Insert table 3 about here]

[Insert table 4 about here]

For the estimation of global transition percentages in the case of simulations where the final

land use map is not available or in the case of land use change forecasts through DINAMICA,

the Markov chain is to be employed. This chain is a mathematical model designed to describe

a certain type of process that moves in a sequence of steps through a set of states, whose

formula is defined as:

                                                    ,                                                          (8)

where π(t ) is a column vector, with n elements, that represents the system condition in a

certain time t (e.g. area percentages for each ni land use category or state); π(t+1) is the vector

representing the occupation of n states in a given future time t +1; and P is the transition

probabilities matrix or the table for land use transition rates.

An important constraint of the Markov model lies on the fact that, in principle, it supposes

that transition probabilities do not change over time (stationary process). Moreover, given its

stochastic nature, the Markov chain masks the causative variables. It is not an explanatory

model, and is thus of no use in understanding the causes and driving factors of land use

transition processes. On the other hand, the Markov chain analysis has the great advantage of

presenting a mathematical and operational simplicity. Simple trend projection involves no

more than matrix multiplication, and the only data requirement is for current land use

information (JRC and ESA, 1994).

π (t + 1) = P . π (t )



2.4 Reckoning of the Cells Land Use Transition Probabilities

As previously said, the “weights of evidence” statistical method, employed in the calculation

of the cells transition probabilities, is based on the “Bayes theorem of conditional

probability”. Basically, this theorem concerns the favourability to detect a certain event,

which can be in the current case a given category of land use change (e.g. non-urban use to

residential use), provided that an evidence (e.g. water supply area), also called explaining

variable, has already happened. The evidences or explaining variables of the experiment

presented in this paper, which are summarised in table 1, mainly refer to the technical

infrastructure and socio-economic aspects of the case study town, Bauru.

The favourability to find the event (change from non-urban to residential use) R given the

presence of the evidence (water supply) S can be expressed by:

                           ,                                                           (9)

where P {RS} is the conditional probability of occurring the event R given the presence of the

explaining variable S. The equations of the Bayes theorem can be expressed in an odds form.

Odds are defined as a ratio of the probability that an event will occur to the probability that it

will not occur. The weights of evidence method uses the natural logarithm of odds, known as

log odds or logits. In this way, through some algebraic manipulations, the following

expression is obtained:

                                          ,                                                      (10)

P {R/S} =  P {R ∩ S}
                     P{S}

O {R/S} =  O {R}  P {S/R}
                          P {S/R}



where O {R S}  is the conditional (posterior) odds of R given S, O {R} is the prior odds of R

and                          is known as the sufficiency ratio (LS). In weights of evidence, the

natural logarithm of both sides of Equation 10 are taken, and loge LS is the positive weight of

evidence W+, which is calculated from the data. Then:

                                                                      .                           (11)

           

Similarly, the logits expression for the conditional probability of R given the absence of the

evidence S, will provide the negative weight of evidence  W –:

                                                          .                           (12)

If the evidence is uncorrelated with the events, then LS=1, and the posterior probability

equals the prior probability, and the probability of an event would be unaffected by the

presence or absence of a certain evidence. On the other hand, W+ is positive, and  W- is

negative, due to the positive correlation between the evidences and the events. Conversely W+

would be negative and W- positive for the case where a very limited part of the event occurs

on the evidence area than would be expected due to chance. Thus, if the events are

independent of whether the evidence is present or not, then W+ = W- = 0. In the weights of

evidence method, there is a specific way for calculating probability ratios (odds) in the case of

n maps of evidence or variables (Vi). The general expression for combining i=1,2,…,n maps is

either:

                    ,                                        (13)

for the likelihood ratios or:

logit  {R/S} =  logit  {R} + W+ 

logit  {R/S} =  logit  {R} + W -

                                                 n
O {R/V1, V2, V3,...,Vn} =  O {R} .  R LSi
                                                          i=1       

P{S/R}/P{S/R}



                                  ,                                      (14)

for the weights. In the particular case of the DINAMICA simulation model, adopted for the

modelling experiment being considered, the cells transition probabilities are calculated

through a formula which converts logit into conditional probability, as follows:

                                                                                                                ,                               (15)

where V refers to all possible variables (evidences) selected to explain the transition R and ψ

corresponds to a normalising constant, required to ensure that the conditional probability of

all cells with coordinates x,y lie between 0 and 1.

The first step in the very process of calculating the cells transition probabilities using

DINAMICA is to obtain a cross-tabulation map (figure 3) between the initial and final land

use maps elaborated for the city of Bauru, respectively for the years 1979 and 1988.

[Insert figure 3 about here]

In IDRISI, the land use cross-tabulation map of Bauru (1979-1988) was used to generate land

use transition maps (seen on the right column of figure 4) for each of the five possible types

of land use change presented in table 3. This was done through reclassification tables (“edit”

command), on which three basic rules were observed. First, all raster values corresponding to

                                                            n
logit  {R/V1, V2, V3,...,Vn} =  logit  {R} + ∑ W+

                                                                    i=1       

                                                                  n
                                                                ∑ W+

x , y
                                                   i=1
Px , y  {R/V1,...,Vn} = ψ      O{R}  .  e 

                                                                        n
                                                                      ∑ W+

x , y
                                                          i=1
                                           1 +   O{R}  .  e 



classes of land use permanence or transition whose initial land use was different from the

initial land use category in the considered type of land use change were assigned value 0

(black colour). This reclassification to value 0 is automatic for raster values not included in

the “edit” table. Second, all raster values corresponding to classes of land use transition whose

initial and final land use categories were equal to the initial and final categories of the land

use change at issue were assigned value 2 (dark grey). Third, all other remaining classes of

land use permanence or transition were assigned value 1 (light grey).

Once all possible types of land use transition maps were elaborated (nu_res; nu_ind; nu_serv;

res_serv; res_mix), they were then subjected to partial cross-tabulations with the respectively

selected evidences maps. The sets of evidences maps selected to explain each of the five types

of land use transitions are found in table 5. The evidences maps, pre-processed in the SPRING

Geographic Information System, were in the same manner as the initial and final land use

maps converted to raster files with extension TIFF and resolution 100 x 100 (m), and then

exported to IDRISI. The partial cross-tabulations disregard the raster values 0 (black colour)

in the land use transition maps and are accomplished through the “ermatt” command of

IDRISI.

[Insert table 5 about here]

The numerical values of cells proportions existing in the absence/presence of a binary

evidence (e.g. water supply) or in the different ranges of distances maps and found to be

overlying on either class 1 or 2 of the land use transition maps are (for each cross-tabulation

operation) selectively transferred to EXCELL files specially created for the calculation of the

weights of evidence, as shown in equations (10) and (11).



Using the values for the positive weights of evidence W+ concerning the several evidences

maps employed in the analysis of each category of land use change (table 6), the DINAMICA

simulation model will then calculate the cells transition probabilities according to equation

(15) for the five types of land use transition. By means of the cells transition probabilities,

DINAMICA will generate the respective transition probabilities maps (seen on the left

column of figure 4) for each of the five types of land use change existing in Bauru from 1979

to 1988. These maps are seen in ERMAPPER, a GIS employed by DINAMICA for

visualisation purposes.

[Insert figure 4 about here]

[Insert table 6 about here]

It is worth noticing the good ability of these probabilities maps to detect the transition areas

(dark grey) on the corresponding land use transition maps, for all the light and mid grey

regions on the probabilities maps relate to the very areas owning the highest transition

probabilities rates.

2.5 Model Calibration

For the calibration of the model, empirical procedures were adopted. They basically concern

the visual comparative analysis, for each type of land use change, amongst the general trends

of preliminary simulation results, the hints provided by both the transition probabilities map

and the land use transition map, and the guideline information contained in the simultaneous

overlay of different explaining variables maps upon the final land use map in vector format.



The model calibration, on the other hand, is as well accomplished by the analysis of scatter

plots relating subcategories of evidences (distances ranges), whenever they are available, with

their respective positive weights of evidence. In a general manner, when the plots present a

good fit of trendlines (which can assume different orders and types), the evidences to which

they are associated are highly prone to be included in the model.

The final decision towards the inclusion or exclusion of a given evidence will always rely

upon a broad judgement, in which the environmental importance of the evidence and its

coherence concerning the phenomenon (land use transition) being modelled are analysed. As

stated by Couclelis (1997), to take full advantage of CA models as simulating (and

forecasting) tools, planners and others need to rely as much on their right-brain powers of

pattern recognition and relationship perception as on left-brain analyses of the inevitably

innacurate quantitative outputs.

3. Results and Discussion

Upon basis of the carried out calibration process, it becomes evident that the probability of

certain non-urban areas in the city of Bauru to shelter residential settlements (“nu_res” land

use transition) largely depends on the previous existence of this type of settlements in their

surroundings, on the greater proximity of these areas to commercial activities clusters as well

as on the available accessibility to such areas.

As to the transition of non-urban areas to industrial use (nu_ind), there are two great driving

forces: the nearness of such areas to the previously existent industrial use and the availability

of road access. This can be explained by the fact that in the industrial production process, the



output of certain industries represent the input of other ones, what raises the need of

rationalisation and optimisation of costs by the clustering of plants interrelated in the same

productive chain. Furthermore, plots in the vicinities of industrial areas are often prone to be

devaluated for other uses, what makes them rather competitive for the industrial use.

Regarding the transition of non-urban areas to services use (nu_serv), three major factors are

crucial: the proximity of these areas to clusters of commercial activities, their closeness to

areas of residential use, and last but not least, their strategic location in relation to the N-S / E-

W services axes of Bauru. The first factor accounts for the suppliers market (and in some

cases also consumers market) of services; the second factor represents the consumers market

properly speaking; and the third factor corresponds to the accessibility for both markets

related to the services use.

Since the transition “residential to services use” (res_serv) already takes place relatively close

to the suppliers and consumers markets, it will solely consider a strategic location in relation

to the N-S / E-W services axes of Bauru, as well as the absence of water supply in the initial

time of simulation (note in table 6 that W+ in this particular case is negative), for the localities

close to the services axes but deprived of water supply refer to the immediate fringe of

consolidated urban areas, i.e. newly developed areas, which will be fully integrated to the

urban network by the final time of simulation.

Finally, the last type of land use transition concerns the shift from residential use to mixed use

(res_mix). The mixed use zones, which actually play the role of urban sub-centres, constitute

an strengthening of minor commercial centres, which at a later stage also start to attract

services and social infrastructure equipments besides more diversified commercial activities.



Therefore, new mixed use zones arise in more peripheral areas, where a greater occupational

gathering is at the same time assured. Thus, the decisive factors for this last type of land use

change are:

• existence of medium-high density of occupation (higher density values only occur

in the central commercial zone of the town or in the immediacies of already

existent mixed use zones);

• presence or proximity of social housing settlements (for they shelter the greatest

occupational densities in more peripheral areas, and hence, greater consumers

markets);

• nearness to planned or peripheral roads, since new mixed use zones arise in farther

areas of the town.

It is implied by the above analysis that the land use transitions show to comply with economic

theories of urban growth and change, where there is a continuous search for optimal location,

able to assure competitive real state prices, good accessibility conditions, rationalisation of

transportation costs, and a strategic location in relation to suppliers and consumers markets.

After the calibration for the evidences maps sets selection is accomplished, a new calibration

process concerning the script parameters of the DINAMICA simulation model takes place.

Such parameters refer to the number of iterations (runs), proportion of cells transition by

contiguity (“expander” operator) and by nucleation (“patcher” operator), average size and

variance of patches to be generated either by the expander or patcher operators, etc.



The expander is an algorithm of the DINAMICA model which realises transitions from a state

i to a state j only in the adjacent vicinities of cells with state j. The patcher operator, on its

turn, accomplishes transitions from a state i to a state j only in the adjacent vicinities of cells

with state other than j.

Due to the randomness of the DINAMICA transition algorithms, even though the same sets of

evidences maps for each type of land use transition and the same script parameters are kept in

different runs, distinct simulations results will be produced after each run of the model. In this

way, the three best urban land use simulation results for the city of Bauru in the period 1979–

1988 are presented in figure 5.

[Insert figure 5 about here]

The transition “non-urban – residential use” proved to be the most challenging for simulation,

once its boundaries are defined by highly unstable factors, such as the real state enterpreneurs´

decisions to develop certain areas in disregard of others, and the plots boundaries themselves,

which can have their forms drastically altered by merging or split operations.

The services corridors (light mid grey) were well modelled in all simulations. The industrial

use zone (mid grey in the north-eastern part of town) was considerably  well  detected  in  all

of  the three simulations results, specially in S2 and S3. The leisure and recreation zones (very

dark grey), the institutional zones (very light grey) and the central commercial zone (dark mid

grey triangle in the town centre) did not suffer any transitions. The new mixed zone that arose

in the north-western part of the town during the simulation period was rather well modelled,

particularly in S1 and S3.



To conclude, it is worth stressing here the wide feasibility (and the cells transition probability

maps are a concrete proof for this) to optimise the simulations results by means of a model

which embraces more refined algorithmic logics, such as the incorporation of fractal

parameters in the transition algorithms as well as the possibility to define patches average

sizes and variances for the expander and patcher algorithms separately.

4. STATISTICAL VALIDATION OF THE MODEL

With the purpose to conduct statistical tests for the spatial validation of models of land use

dynamics, Constanza (1989) presents a procedure entitled “Multiple Resolution Method”, in

which a sampling window, that can assume different sizes, moves over the entire images

considered, and the average fit between two given scenes (the real and the simulated one) for

a particular window size is calculated. In this estimation, a comparative analysis is conducted

between the absolute number of pixels belonging to the same classes existent on both scenes

and found within a given window. This multiple resolution method was implemented in a

UNIX environment programme named FIT, developed by CSR-UFMG. FIT was applied for

the best simulation results presented in figure 5, with sampling window sizes of 3x3, 5x5 and

10x10, and the values for goodness of fit obtained were 0.902937, 0.896092, and 0.901134,

respectively for S1, S2, and S3.

5. Conclusions

The urban land use dynamics models, driven by GIS and Remote Sensing data, have proved

to be useful for the identification of main urban growth vectors and their general land use

tendencies, what enables local planning authorities to manage and reorganise (if it comes into



question) city growth according to the environmental carrying capacity of concerned sites and

to their present and envisaged infrastructure availability.

The urban expansion forecasts provided by such models also help local authorities in general

to establish investments goals in terms of technical and social infrastructure equipments.

Decision makers from the private sphere can as well benefit from the modelling output data,

since companies of transportation, conventional and mobile phones, cable TV and internet,

and others will have subsidies for defining priorities as to where and how intense to invest.

Also the organised civil society, either through NGOs or local associations, can profit from

the modelling forecasts in order to enhance, by legal means, demanding social movements for

the implementation of social and technical infrastructure, since their requests and respective

arguments shall be based on realistic short- and medium-term urban growth trends.

Finally, it is worth mentioning that the “weights of evidence” statistical method is not

constrained by the straitjacket of rigid theories devices and does not either impose theoretical

restraints to the modelling objects. Since this a wholly empirical approach, its applicability

can be extended to further Brazilian and worldwide cities, provided that the minimum

necessary sets of evidences maps are available.
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Table 1: Definition of the 12 Independent Land Use Change Evidences or Variables

Notation Physical or Socio-Economic Land Use Change Evidence

water Area served by water supply.
mh_dens Medium-high density of occupation (25% to 40%).
soc_hous Existence of social housing.
com_kern Distances to different ranges of commercial activities concentration,

defined by the Kernel estimator.
dist_ind Distances to industrial zones.
dist_res Distances to residential zones.
per_res Distances to peripheral residential settlements,

 isolated from the urban concentration.
dist_inst Distances to social infrastructure (institutional use),

isolated from the urban concentration.
exist_rds Distances to main existent roads.
serv_axes Distances to the services and industrial axes.
plan_rds Distances to planned roads.
per_rds Distances to peripheral roads, which pass through non-occupied areas.



Table 2: Associations Between the Independent Evidences (Variables)

Evidence A Evidence B Cramer’s
Statistic

VA,B

Uncertainty

UA,B

water serv_axes 0.3257 0.0767
mh_dens soc_hous 0.0460 0.0017

plan_rds 0.2617 0.0701
per_rds 0.0201 0.0003

soc_hous plan_rds 0.1174 0.0188
per_rds 0.0480 0.0047

com_kern dist_res 0.4129 0.3447
per_res 0.1142 0.0310
dist_inst 0.1218 0.0520
exist_rds 0.2685 0.1499
serv_axes 0.2029 0.1099
per_rds 0.0434 0.0064

dist_ind serv_axes 0.1466 0.0477
dist_res serv_axes 0.2142 0.1002
per_res dist_inst 0.1487 0.0559

exist_rds 0.0592 0.0078
per_rds 0.1733 0.0553

dist_inst exist_rds 0.0601 0.0108
per_rds 0.0765 0.0238

exist_rds per_rds 0.0239 0.0019
plan_rds per_rds 0.0247 0.0029



Table 3: Existent Land Use Transitions

Notation Land Use Transition
NU_RES Non-Urban to Residential
NU_IND Non-Urban to Industrial

NU_SERV Non-Urban to Services
RES_SERV Residential to Services
RES_MIX Residential to Mixed Use

Table 4 – The Matrix of Transition Rates for Bauru, 1979-1988

Land
Use

NonU Res Comm Indust Inst Serv Mixed Leis/
Rec

NonU 0.9171 0.0698 0 0.0095 0 0.0036 0 0
Res 0 0.9380 0 0 0 0.0597 0.0023 0

Comm 0 0 1 0 0 0 0 0
Indust 0 0 0 1 0 0 0 0

Inst 0 0 0 0 1 0 0 0
Serv 0 0 0 0 0 1 0 0

Mixed 0 0 0 0 0 0 1 0
Leis/Rec 0 0 0 0 0 0 0 1

Table 5: Selection of Evidences (Variables) Determining Land Use Change

Evidences NU_RES NU_IND NU_SERV RES_SERV RES_MIX
water •

mh_dens •
soc_hous •
com_kern • •
dist_ind •
dist_res •
per_res •
dist_inst •
exist_rds •
serv_axes • • •
plan_rds •
per_rds • •



Table 6: The Weights of Evidence

Positive Weights of Evidence  W+
x,yLand Use

Transitions
Evidences

1 2 3 4 5 6 7

NU_RES com_kern1 3.749 2.106 1.864 0.491 -0.323 0 na
per_res3 1.968 1.615 1.392 0.892 -0.626 -0.469 na
dist_inst4 0.003 0.600 1.254 0.727 -0.359 -0.089 na
exist_rds5 0.231 0.320 0.353 0.510 0.443 0.196 -0.085
per_rds6 2.377 2.269 2.068 1.984 1.444 0.857 -0.127

NU_IND dist_ind2 3.862 4.016 3.792 3.452 1.763 0 0
serv_axes5 2.722 2.799 2.676 2.625 2.525 1.727 -3.832

NU_SERV com_kern1 3.412 4.469 2.912 0.878 0 0 na
dist_res3 2.144 1.523 0.621 -0.065 0 0 na

serv_axes5 3.508 3.321 2.917 1.869 0.450 0 0
RES_SERV water Presence -0.6611 Absence 0.2883

serv_axes5 2.780 1.948 1.461 0.888 -0.297 -1.412 -3.284
RES_MIX mh_dens Presence 0.6452 Absence -0.0635

soc_hous Presence 2.4678 Absence -0.3214
plan_rds5 3.506 1.863 0 0 0 0 0
per_rds6 1.775 1.652 1.848 0.903 0 0 0

Note: Distance Bands in meters
1 1: 0 -500; 2: 500-1000; 3: 1000-1500; 4: 1500-10000; 5: 10000-30000; 6: > 30000

2 1: 0 -500; 2: 500-1000; 3: 1000-1500; 4: 1500-2000; 5: 2000-5000; 6: 5000-10000; 7: >10000
3 1: 0 -500; 2: 500-1000; 3: 1000-2000; 4: 2000-5000; 5: 5000-10000; 6: > 10000
4 1: 0 -500; 2: 500-1000; 3: 1000-3000; 4: 3000-8000; 5: 8000-15000; 6: > 15000

5 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1250; 6: 1250-2000; 7: > 2000
6 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1500; 6: 1500-2500; 7: > 2500



Figure 1: Land Use in Bauru in 1979 (left) and 1988 (right)

Residential use is light grey; institutional use is black; services use zones and corridors and
industrial use are dark grey; commercial use is mid grey; and the white colour refers to non-
urban use.

Figure 2: Spatial Independence of Factors Determining the Transition from Residential to
Mixed Use (RES_MIX)

The buffer bands are distance to planned roads (plan_rds), the darker diffused spots are
areas of medium-high density of occupation (mh_dens), and the greater dark polygons
correspond to social housing (soc_hous).
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Figure 3: Land Use Change 1979 to 1988



Figure 4: Estimated Transition Probability Surfaces and Land Use Change: 1979-1988
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from Weights of Evidence

Existent Land Use Transition
1979-1988

N
U

_R
ES

N
U

_I
N

D
N

U
_S

E
RV

In the left column, the range of probabilities runs from high (mid grey) and medium (light grey) to low (dark
grey) and null (black). In the right column, changes in land use are in dark grey, land use permanences are
in light grey, whereas areas disregarded for the considered type of land use transition are in black.



Figure 4: continued
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Figure 5: The Three Best Simulations Compared to the Actual Land Use in 1988

Land Use 1988 Simulation 1

Simulation 2 Simulation 3

Leisure and recreation (very dark grey), institutional use (very light grey), and the central commercial zone
(dark mid gray triangle in the town centre) did not incur any transitions during the observed time period. The
new mixed land use zone that emerged in the north-western part of the city was accurately modeled particularly
in the first and third simulations.
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