
TerraML – A Cell-Based Modeling Language for

an Open-Source GIS Library

Bianca Pedrosa1, Frederico Fonseca2, Gilberto Camara1, Ricardo Cartaxo1

{bianca,gilberto, cartaxo}@dpi.inpe.br
1 Image Processing Division

Brazilian National Institute for Space Research
São José dos Campos, SP, Brazil

ffonseca@ist.psu.edu
 2 School of Information Sciences and Technology

The Pennsylvania State University
State College, PA, USA

1. Introduction

TerraLib Modeling Language (TerraML) is a spatial dynamic modeling language to

simulate dynamic processes in environmental applications. TerraML provides an

interface (front-end) from which the end-user can access software components provided

by an open-source GIS library called TerraLib (back-end). We decided to implement

dynamic models as software components with the objectives of incorporating new

functionalities via a flexible and interoperable way, and achieving a tightly coupled

integration between the dynamic model and the geographic data. In TerraML we

represent space as a cellular model, and represent time as a linear flow divided into

discrete intervals. The dynamic model is described by transitions and constraints, where

the transition concept corresponds to similar concepts on finite state machines and active

databases theories.

2. TerraML Schema

TerraML is based on XML (eXtensible Markup Language), which is a meta-language,

i.e., a language to create other markup1 languages. [1] Figure 1 shows the TerraML

Simplified Schema using the XML graphic notation [2]. A program written in TerraML

has a main section called Cellular Processor, which is divided in 5 subsections: input,

1 In a markup language (tag-set) each element is delimited by starting (< >) and ending (</ >) tags.

output, transition, constraint, and simulation. The input section is where data to be

retrieved are declared. In the output section, the cellular space is configured.

Transition is the section where the user specifies a set of rules upon which the cell

states evolve. The constraint section contains restrictions that limit, avoid, or force

the occurrence of a transition. Finally, the simulation section contains actions to be

processed during model execution.

Figure 1 – The TerraML Schema

In Figure 2, we present an overview of the language by using a simplified example of a

deforestation process. In this example, two images, use99 and road99, are retrieved and

assigned to the landuse and accessibility variables, respectively. The cellular

space is initialized with the landuse variable and a von Neumann neighborhood [3] is

specified. Three different transitions can happen in this simulation. Transitions from

“forest” to “deforested” state occur if a cell is close to roads (accessibility) or if all

its neighbors are in the “deforested” state. A transition from “in regeneration” to

“regenerated” happens after 10 years. Constraints are preconditions to limit, avoid, or

force the occurrence of a transition in its spatial, temporal, or both contexts. In this

example, constraints restricting the deforestation process to 10% over 20 years and fixing

the preserved cells are also specified. The simulation is processed for 20 time-steps that

are equivalent to 20 years. The results are stored and displayed on the screen one by one

in a sequence giving an animation effect.

Figure 2 – An example in TerraML showing changes in land use cover

<cellProcessor author="Bianca" date="3/26/2002" case="Amazon Forest" model="LUCC" >
 <input>
 <layer name="use99" attribute="class">landuse</layer>
 <layer name="road99" attribute="distance">acessibility</layer>
 </input>
 <output
 <cellspace neighborhood="0,3,6" name="use" init="landuse" />
 </output>
 <transition>
 <rule from="forest" to="deforested">
 <event>condition="accessibility=51"</event>
 </rule>
 <rule from="forest" to="deforested">
 <event>neighbor="all"</event>
 </rule>
 <rule from="in regeneration" to="regenerated">
 <event>time="after 10"</event>
 </rule>
 </transition>
 </constraint>
 <restriction state="deforested" spatial="+10%" temporal="20 years"/>
 <restriction state="forest reserve" type="static"/>
 </constraint>
 <simulation>
 <timer init=”2000” end=”2020” timeunit=”year” />
 <TRANSIT>
 <SAVE>
 <SHOW>
 </timer>
 </simulation>
</cellProcessor>

3. TerraML Data Structures

A TerraML program is mapped to a cell space, which is a generalized raster data

structure where each cell holds more than one attribute value. Cell-spaces are extensions

of cellular automata (CA) [4] to support non local actions [3]. In cell spaces each cell can

be handled as an individual geographic object to which traditional visualization

operations can then be applied.

In terms of implementation, the cell space structure can be divided in two parts called (1)

basic structure and (2) extended structure (Figure 3). The basic structure is defined a

priori and contains attributes that are common to all types of simulation models: the

georeferenced location for each cell, its location in cellular space, its state and latency.

The extended structure is dynamic, i.e., defined during the simulation process (run time)

to accommodate the data provided by the user in a TerraML program.

Figure 3 - The Cell Data Structure

The extended structure contains the attributes specified in the input and output sections,

which varies from program to program. For that reason, they are created and attached to

the cell structure via dynamic memory allocation [5]. These attributes refer to the

environmental and socio-economic characteristics of the cell and can be temporal or not.

Temporal attributes are the ones that have multiple occurrences in the cell such as the

different land uses in the simulation period. They are implemented with a database

temporal support for handling their multiple versions.

TransitionState State

Event

Action

has ahas a

is associated with

has a

triggers

executes

Figure 4 – Structure of a transition rule extended from [6]

Another important data structure present in TerraML is the transition (Figure 4). We

decided to model changes using the transition concept found on finite state machines [6]

and in active databases [7] theories, which assume that a transition (1) has a source and a

target state, (2) is triggered by an event, and (3) can be associated to actions. Events can

be expressed by means of relational conditions, neighborhood configurations, or

mathematical operations. Actions are performed in order to manipulate cell attributes or

to invoke an operation or any other application-dependent action [7]. This structure for

transitions can be easily adapted to support continuous behavior, according to the hybrid

automata theory. “A hybrid automaton is a formal model for a dynamical system with

discrete and continuous components” [8].

4. TerraLib

TerraLib is an open-source general-purpose GIS application development library

under development at the Brazilian National Institute for Space Research (INPE).

TerraLib provides, in its kernel (Figure 5), functionality for handling the different types

of geographic data and facilities for data conversion, graphical output, and spatial

database management [9].

Dynamic Modelling

Algo
rit

mhs

Data C
onve

rsi
on

Geographic

Data Types

S
patial A

nalysis

Dat
ab

as
e

Sup
or

t

Visualization

TerraLib

Figure 5 The TerraLib Structure

Algorithms that use the kernel structures, including spatial analysis, query and simulation

languages, and data conversion procedures are also provided. In TerraLib, data structures

and algorithms are independent following the computational trend of multi-paradigm

software development [5, 10, 11].

TerraLib aims to enable the development of a new generation of GIS applications, based

on the technological advances on spatial databases [9]. The basic idea behind TerraLib is

that the current and expected advances in database technology will enable, in the next

few years, the complete integration of spatial data types in data base management

systems (DBMS).

5. Conclusions and Future Work

 The advantages of TerraML over other dynamic modeling languages such as

PCRaster[12], MapScript[13], CALANG [14] and CELLAR [15] are:

• TerraML supports different data formats and is fully integrated with

general-use databases because of its integration with TerraLib.

• TerraML is an XML-based language, which is a global standard capable

of generating human-readable and interoperable documents [1].

• TerraML implements an integrated spatio-temporal framework, which

incorporates processes and focuses on the underlying components of

change at the conceptual and implementation levels.

• TerraML combines emerging and well-consolidate computational

technologies, such as finite state machines, hybrid automata, cellular

computing [16], components, and event programming in a multi-paradigm

software development approach.

The development of TerraML and the open source GIS software library is part of an

ongoing work. Future efforts will focus on a more complete integration of space and time

into the language, on modeling continuous behavior, and on proposing mechanisms to

manage multiple scales in both spatial and temporal dimensions.

6. References

[1] S. W. Houlding, "XML - an opportunity for <meaningful> data standards in the
geosciences," Computers and Geosciences, vol. 27, pp. 839-849, 2001.

[2] W3C, "World Wide Web Consortium," vol. 2002: www.w3.com, 2002.
[3] M. Batty, "GeoComputation Using Cellular Automata," in GeoComputation, S.

Openshaw and R. J. Abrahart, Eds.: Taylor&Francis, 2000, pp. 95-126.
[4] R. White and G. Engelen, "Cellular Automata as the Basis of Integrated Dynamic

Regional Modelling," Environment and Planning B: Planning and Design, vol.
24, pp. 165-174, 1997.

[5] J. Coplien, Multi-paradigm Design for C++: Addison-Wesley, 1999.
[6] J. Van Gurp and J. Bosch, "On the Implementation of Finite State Machines,"

Proceedings of 3rd Annual IASTED International Conference Software
Engineering and Applications, pp., Scottsdale, Arizona, USA, 1999.

[7] S. Cerri and P. Fraternali, Designing Database Applications with Objects and
Rules. The IDEA Methodology. Harlow, England: Addison Wesley Longman,
1997.

[8] T. A. Henzinger, "The Theory of Hybrid Automata," Proceedings of Proceedings
of the 11th Symposium on Logic in Computer Science (LICS'96), pp. 278-292,
1996.

[9] G. Câmara, R. C. M. Souza, B. M. Pedrosa, L. Vinhas, A. M. V. Monteiro, J. A.
Paiva, M. T. Carvalho, and M. Gatass, "TerraLib: Technology in Support of GIS
Inovation," Proceedings of GeoInfo 2000 - II Workshop Brasileiro de
Geoinformação, pp. 126-133, São Paulo, 2000.

[10] M. H. Austern, Generic Programming and the STL: Using and Extending the
C++ Standard Template Library: Addison-Wesley, 1999.

[11] Z. Zhang and D. A. Griffith, "Integrating GIS components and spatial statistical
analysis in DBMSs," International Journal of Geographical Information Science,
vol. 14, pp. 543-566, 2002.

[12] W. P. A. Van Deursen, "Geographical Information Systems and Dynamic
Models," in Faculty of Spatial Sciences. Rotterdan, The Netherlands: University
of Utrecht, 1995, pp. 126.

[13] D. Pullar, "MapScript: A Map Algebra Programming Language Incorporating
Neighborhood Analysis," GeoInformatica, vol. 5, pp. 145-163, 2001.

[14] C. E. Stocks and S. Wise, "The role of GIS in Environmental Modelling,"
Geographical and Environmental Modelling, vol. 4, pp. 219-235, 2000.

[15] G. Folino and G. Spezzano, "CELLAR: A High Level Cellular Programming
Language with Regions," Proceedings of Proceedings of 8th Euromicro
Workshop on Parallel and Distributed Processing, pp., Rhodes, Greece, 2000.

[16] M. Sipper, "The emergence of Cellular Computing," IEEE Computer, vol. 32, pp.
18-26, 1999.

