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Abstract 

In his short paper, we present two constructive decompositions for any mapping between lattices 
in tenns of the elementary mappings of Mathematical Morphology: erosions, dilations, anti-ero-
sions and anti-dilations. This decomposition result extends the ones already known for transla-
don Invariant mappings. 

1. INTRODUCTION 

Nowadays, Computer Vision is object of 
i ttense researches because of its large number 
of potential applications. Mathematical 
Morphology (MM) seems to be well adapted to 
solve a large class of problems in this field. 

Uectil the publication of volume 2 of Serra's 
book (1988), MM has been, essentially, 
res1.-Ticted to translation invariant transforma-
tiors. The field of applications of MM became 
largz with the introduction of a more general 
ddinition of erosion and dilation that uses the 
lattice notion. 

Ir this paper, we introduce two constructive 
dezompositions for any transformation oi - 
mapping between complete lattices that gen- 
eralize the already known decompositions for 

invariant mappings (Matheron, 

1975; Maragos, 1985; Banon and Barrera, 
1991). 

In Section 3, we recall the definitions of the 
four eiementary mappings of the MM: ero-
sions, dilations, anti-erosions and anti-dila-
tions. In Section 4, we give the decomposition 
theorem and therefore we answer the questton: 
does the MM elementary mappings can be used 
to represent any mapping between complete 
lattices and in what way this is possible? 

2. MAP'PINGS BETWEEN LATTICES 

Let (L, ), or simply L, be a complete lattice 
(Birkhoff, 1967). The infunum and the supre-
murn of a subset J6 of L will be denoted, 
respectively, A% and VJ6. The least and 
greatest element of L will be denoted, respec-
tively, O and /. 
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Let L  and L2 be two complete lattizes. We 

denote by L 211  the set of all functions from L i  

to L2. The elements in £ 24  (and L i £2) will be 
called mappings. A generic element of L i  will 
be denoted by X and one of 1,2 by Y. A generic 

mapping in L2Li (or L 1 L2) will be denoted by 
lower case Greek letters a, /3, etc. Finally, the 

two constant mappings in L i L2  that assume the 
values O and 1 will be denoted, respectively, by 
O and I. 

In image processing, the most usuál trans-
formations on binary irnages can be repre-
sented by the translation invariant set map-
pings from T(E) to itself, where the set E is an 
Abelian group and T(E) is the collection of all 
parts of E. The collection T(E) is an example 
of complete lattice. 

3. EROSIONS AND DILATIONS 

Let ip E L 211  and let 96 be a subset of L. We 
will denote by v(96) the image of 93 through 

A mapping 	E L211  is increasing (or 
isotone) iff 

X -45. X' ip(X) ip(r) (X and X' E L i). 

Since L 1  and £2 are complete lattices, then the 
above axiom is equivalent to any one of the fol- 
lowing statements: 

.1p(A96) 	Aip(93) Ge c L i); 	(1) 

W(a) ip(V93) (T. c L i); 	(2) 

Following Serra (1988), if the equalitY holds in 
(1), thenip is called an erosion. If it holds in (2), 
then lp is called a dilation. 

Let e and e be, respectively, the Minkowski 
addition and subtraction (Hadwiger, 1950) 
between subsets of an Abelian group E. The 
translation invariant set mappings from P(E) 
to itself, Xf-+ X e) B and X i--> X ê B, where 
B is a subset of E, are, respectively, examples 
of a dilation and an erosion (Heijrnans and 
Ronse, 1990). 

A mapping lp E L 211  is decreasing iff  

X' ip(X') v(x) (X and X' E Li). 
Since L i  and L2 are complete lattices, then the 
above axiom is equivalent to any one of the foi-
lowing statements: 

Vip(93) ip(A£6) (1 c L i); 	(3) 
ip(VX) 	Axp(93) (CG C L i ); 
Following Serra (1987), if the equality holds in 
(3), then lp is called an anti-erosion. If its holds 
in (4), then is called an anti-dilation. 
The translation invariant set mappings from 
9' (E) 	to 	itself, 	X )--> (X EB B)c 	and 
X (X e B) C  , where denotes the set corri-
plementation, are, respectively, examples of an 
anti-dilation and an anti-erosion. 

We will denote by E, 4, E a  and ti a,  respec- 
tively, the set of erosions, dilations, anti-ero- 

sions and anti-dilations in Li 2  z( 
I 	 • 	 " 

4. MAPPING DECOMPOSITION 

Let a, 13 E L 1 4 . We define the mapping aS 

and al3 E L24  by setting, for any X E 

= V{ Y E L2: a(Y)-.5. X 

a fi (X) = A { Y E L2 : a(Y) -.5 X 

Let 9(L i) L2 be the set of the functions from 1 2  
to T(L). We extend the partial arder relation 
C on T(L 1) to a partia! order relation 	on 
9(1, 1 )4  by setting, for any ff and 
ff' E 9)(4)4, 
ff -.5 ff' 	ff (Y) C Y(Y) (Y E L 2). 

For any ip E £24  , let enip) and 9G• (o) be the 
two functions in T(L 1 ) L2 defined by, for any 
Y E L2, 

.9G(tp)(Y)={X E L i : Y  

OG•CIPXY)={X E Li: "IP(X) 	Y}. 
The function .9G(tp) is called the left kernel (or, 
simply, kernel) of lp and the function %.(ip) is 
called the right kernel of 
These kemel definitions generalize the ore 
given by Matheron (1975) for translation 
invariant set mappings. 
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subset J3 of L is a closed interval of L (Birk-
hoff, 1967, p. 7) iff there exist two elements A 
and B in L such that, for any X E L, 
A -5. X -45. <4,  X E 96. We denote by [A , Bi 
Guch closed interval. 

We say that a function 9 is an interval function 
from £2  to T(L i) iff, for any Y E L2, 30') is 
the empty set of 9(4) or a closed interval of 
P(L1). 
To each pair (a, /3), such that V Y E £2, 
(a(Y) fi(Y)) or (exclusive) (a(Y) = 1 and 
/3(Y) = O)), we can associate a unique interval 
function [a, fi] E T(L 1 ) L2 given by, for any 
Y E £2, 

l[a(n,fi(n] if  a(Y) 5- fi(Y) 
[a, fA(Y) = 0 	otherwise. 

We can the mapping a and/3 the extremities of 
the interval function [a, IA. 

Finally, let Azi a  and E aE be the sets of pairs 
(a, fi), respectively, in d x 4 a  and E x E a, 

such that V Y E £2, (a(Y) 13(Y)) or (exclu-
sive) (a(Y) = I and fi(Y) = O). 

We are now ready to state the following 
decomposition theorem. 

Theorem 1 Any mapping .1p from cf, to 1,2 
hos the following sup-inf constructive decom-
position 

ip= V{ ar A 0/3. (a, 13) E 44 a and 
[a,]  

The proof of Theorem 1 is given in (Banon and 
Barrera, 1993) and it lies upon very nice prop-
caies of what we have called a morphological 
connection. 

Let .tp E L2L1  and a, fi E Li L2 . The pair 
(p, (a, 13)) is a morphological connection 
between L  and £2  iff 

a(Y) X fi(Y) .t> Y ip(x) 
((X, Y) E L i  x L2). 

Figure 1 illustrate for a given pair (X, Y) the 
above morphological connection property. 

Li 	 a 

Figure 1. Morphological connection (tp, (a, fi)). 

For complete lattices, the notion of morpho-
logical connection can be seen as a generaliza-
tion of the notion of Galois connection (Birk-
hoff, 1967, p. 124). 

In Theorem 1, the mappings aI and 013 are, 
respectively, erosions and anti-dilations. We 
say that aI and O7J are derived from the extre- 
mities of the interval. function [a, fi]. Actually, 

the pair (aI A Ofi, (a, fi)) is a morphological 
connection between L i  and £2. 

From Theorem 1, we see that any mapping 
is the supremum of a set of mappings that are 
the infimum of an erosion and an anti-dilation. 
Such erosion and anti-dilation are derived 
from the extremities of an interval function 
that is less than or equal to the kernel of ip and 



whose extremities are a dilation and an anti-
dilation. 

For a translation invariant set mapping ip, the 
sup-inf decomposition of Theorem 1 can be 
written as 

= v“. e A) A (9 B t 5 c: 
[A, Bi C {X: o E ip(X)} }, 

where B t  is the transpose ofB relatively to the 
origin o. For a direct proof, see (Banon and 
Barrera, 1991). 

In the same way, any mapping lp from L i  to £2 
has the following inf-sup constructive decom-
position 

= Alei V 0/3. (a, 13) E E aE and 
Ca, IA =5 5G■ con. 

In the above decomposition, the mappings al 
and Ofi are, respectively, anti-erosions and 
dilations. 

For a translation invariant set mapping tp, the 
above inf-sup decomposition can be written as 

AU. EI) 	v ( • e /3 c) c: 
[A, IA C {X: o 

or, equivalently, by using the definition of dual 
mapping ip* op*(x).(tp(x5) c) and changing, 
respectively, A and B into BC and AC, 

Au. ED A t) V (e e Bcy: 
[A, 13] C {X: o E ip*(x)}}, 

For an increasing translation invariant set map-
ping we get the well known Matheron's 
decompositions (1975), 

v{• e A: o E .tp(A)} 
= A { • El) A t : o E ip*(A)}. 

5. CONCLUSION 

In the previous sections, we have presented 
two constructive decompositions for any map-
ping between lattices in terms of the elemen-
tary mappings of MM: erosions, dilations, 
anti-erosions and anti-dilations. 

Actually, the proposed decompositions are 
redundant in the sense that smaller farnilies of 
such elementary mappings can be involved in 
the decompositions. The problem of a minirnal 
decomposition (or minimal decompositions) 
have been studied in (Banon and Barrera, 
1991, 1993) and can be related to the well 
known problem of Boolean function simplifi-
cation. 

The proposed decompositions apply to map-
pings between different lattices and so can be 
used to decompose many kinds of image trans-
formations (not only translation invariant set 
mappings). For example, they apply to trans-
formations between grayscale and binary 
irnages. 

By choosing a partial order relation betweén 
the pixel positions, the proposed. decomposi-
tion can be used, as well, to decompose the dig-
ital images themselves. 
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