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Abstract. Mathematical morphology is a general theory that stud-
ies the decomposition of operators between complete lattices in
terms of some families of simple operators: dilations, erosions, an-
tidilations, and antierosions. Nowadays, this theory is largely used in
image processing and computer vision to extract information from
images. The KHOROS system is an open and general environment
for image processing and visualization that has become very popu-
lar. One of the main characteristics of KHOROS is its flexibility,
since it runs on standard machines, supports several standard data
formats, uses a visual programming language, and has tools to help
the users to build in and install their own programs. A set of new
programs can be organized as a subsystem called a toolbox. We
present MMach, a fast and comprehensive mathematical morphol-
ogy toolbox for the KHOROS system dealing with 1-D and 2-D gray-
scale and binary images. Each program that is applicable to gray-
scale and binary images has specialized algorithms for each of
these data types, and these algorithms are chosen automatically
according to the input data. Several examples illustrate applications
of the toolbox in image analysis. © 1998 SPIE and IS&T.
[S1017-9909(98)01701-2]
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1 Introduction

Mathematical morphology is a solid algebraic theory
study operators~i.e., transformations! between complete
lattices,1,2 and is an extremely powerful tool to extract im
age information.3,4

From a theoretical point of view, mathematical morpho
ogy studies the decomposition of operators between c
plete lattices in terms of some families of simple operato
dilations, erosions, anti-dilations, and anti-erosions. Th
operators are called theelementary operators of mathemat
cal morphology.

In mathematical morphology, operators are built
combining the elementary operators through the union,
tersection, and composition operations. Once an operat
built, it can also be used as a primitive to build other o
erators and so on. This decomposition procedure can
described by a formal language, and a particular implem
tation of this language is called amorphological machine
~MMach!. The programs for an MMach are also calle
morphological operators.

From a practical point of view, an MMach is a tool t
extract image information. Usually a goal is broken heur
tically in subgoals that are achieved by primitive operato
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The right composition of these primitives gives the opera
that achieves the desired goal. For example, to extract
ellipses from images like the one in Figure 1, we cou
transform the ellipses into line segments~Figure 2!, elimi-
nate iteratively the end points of these segments until
segments representing the small ellipses disappear~Figure
3!, and finally, recover from the original image the ellips
marked by the remaining fragments of the segments~Figure
4!.

Thus a good system to perform mathematical morph
ogy applications must have two main characteristics:
algorithms for the elementary operators and a suitable
terface to prototype new operators.

The KHOROS system is a portable environment for i
age processing and visualization that has become
popular. It runs on several UNIX based architectures, ha
visual programming language for user interface, and p
vides tools to build and install new programs.

As the original set of programs for mathematical mo
phology in KHOROS is not satisfactory, we decided
implement a toolbox dedicated to image processing
mathematical morphology. This toolbox, called MMac
was first freely distributed in 1993. Now in its forth ve
sion, it has hundreds of users and is still freely distribu
at http://www.dca.fee.unicamp.br/projects/khoros/mma
tutor/mmach.html.

An important characteristic of MMach is that its imple
mentation follows exactly a formal specification of the o
erators and operations. In this paper, we give the for
specification of MMach as well as several illustrative a
plication examples and the main characteristics of its ar
tecture.

Fig. 1 Ellipses of several sizes.

Fig. 2 Medial axis of the ellipses.
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We believe that in addition to reading this text throu
once, the readers may want to consult the mathema
definitions. For this purpose, Table 1 is useful, since hav
the name of the operator it is straightforward to get t
number of the corresponding mathematical expression.

Following this introduction, Section 2 gives the form
specification of the implemented toolbox. Section 3 p
sents several application examples. Section 4 presents
main characteristics of the KHOROS system. Section
gives some aspects of the toolbox architecture and
cusses the main algorithms implemented. Section 6 p
sents a comparison of MMach with other freely availab
software for mathematical morphology. Section 7 summ
rizes the main contributions of this paper and gives so
directions for future works.

2 Morphological Image Processing

It has been shown5,6 that any operator between comple
lattices can be described in terms of the four classes
elementary operators of mathematical morphology.

This result means that by combining the elementary
erators implemented in our toolbox, one can create,
theory, any image processing algorithm. In practice, ma
useful operators can be implemented efficiently using
composition in terms of elementary operators. Howev
for some useful operators this kind of implementation i
plies bad performance.

Therefore, given priority for developing an efficien
computational tool, we decided to implement hierarchica
most of the operators, but keep special algorithms for so
particular operators. So the kernel of the toolbox contain
reduced set of chosen operators besides the elementar
erators.

At the beginning, we decided to organize the MMa
menu hierarchically, based on the number of element
operators used in their decomposition. Thus, taking an
creasing complexity order, we defined the following fam
lies of operations and operators: basic image operations

Fig. 3 Markers for the long ellipses.

Fig. 4 Long ellipses.
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Table 1 Toolbox content.

Toolbox Operators: MMach-1.4
Category Operator Executable Expression

Image Creation Frame vframe 1

Relations Equal vequal 3
Less or Eq vless 2

Operations Addition vaddm 10
Ext.Intersection vextintersec 6
Ext.Union vextunion 7
Intersection vintersec 4
Negation vneg 8
Subtraction vsubm 9
Sym-Differ. vsymdif 12
Toggle vtoggle 11
Union vunion 5

Structural Element 333 Str.El. vstrflat

Cylinder vcylinder 22
Disk-City Block vdiskstr 20, 18
Disk-Euclidian vdiskstr 20, 17
Disk-Chess Board vdiskstr 20, 19
Rotate-SE vrotstr 27
Semi-sphere vsphere 21
Viff to Str.El. viff2str

Dilation and Erosion Dilation vdil 31
Dilation by Segment vdilseg 39
Dist. Function vdist 43
Erosion vero 32
Erosion by Segment veroseg 40
N Dilation. vndil 13, 31
N Erosion vnero 13, 32

Geometric Manipulation Expansion by Dilation or
Erosion

vexpand 48, 49

Shrink by Dilation or Erosion vshrink 50, 51

Morphological Filters Center Filter vcentfilt 13, 63
Closing vclose 53
Closing by Segment vcloseseg 57
co-ASF vcoASF 59, 62
coc-ASF vcocASF 61, 62
oc-ASF vocASF 58, 62
oco-ASF vocoASF 60, 62
Opening vopen 52
Opening by Segment vopenseg 56
N-Closing vnclose 55
N-Opening vnopen 54

Connected Filters Cond. Dilation vconddil 64
Cond. Erosion vcondero 65
Closing of Holes vclohole 68
Inf-Reconstruction vopenrec 66
Labeling vlabelm 69
Minima Imposition vminimpos 70
N Cond. Dilation vnconddil 13, 64
N Cond. Erosion vncondero 13, 65
Regional Max vrlocmax 71
Regional Min vlocmin 72
Sup-Reconstruction vclorec 67
ctronic Imaging / January 1998 / Vol. 7(1)
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Table 1 Continued.

Toolbox Operators: MMach-1.4

Category Operator Executable Expression

Residues Close Reconst. Top Hat vcloserecth 77

Last Erosion vlastero 80

Morph. Close Top Hat vcloseth 75

Morph. Gradient vmorphgrad 73

Morph. Open Top Hat vopenth 74

Morph. Skel. vskel 79

N-Cond. Bisector vncondbisec 81

Objects on Frame Off vedgeoff 78

Opening Reconst. Top vopenrecth 76

Hat

Sup-generating and Inf-generating Adaptive Threshold vthreshm 82

Inf-Generating vinfgen 87

Inf-Canonical vicanon 92

Sup-Generating vsupgen 86

Sup-Canonical vscanon 91

Thinning and Thickening Cond.Exoskel by Thick vcondskthick 104

Cond.Skel by Thin vcondskthin 103

Cond.Thick vcondthick 96

Cond.Thin vcondthin 95

Exoskel by Thick vkthick 100

N-Cond.Thick vncondthick 102

N-Cond.Thin vncondthin 101

N-Smoothing Segm. vsmoothseg 106

N-Thick vnthick 98

N-Thin vnthin 97

Refined Skel by Thin vskelthinP 108

Skiz vskiz 105

Skel by Thin vskthin 99

Thinning vthin 93

Thickening vthick 94

Watershed vwatersh 107
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operators, and first, second, and third level image opera
Although this organization is a clear criteria, it is not intu
tive for users without a deep knowledge of the operato
decomposition. Therefore, from MMach version 1
we have reorganized the toolbox menu in the followi
families of operations and operators: relations, operatio
structural elements, dilations and erosions, geometric
nipulation, morphological filters, connected filters, re
dues, sup-generating and inf-generating, thinning,
thickening.

2.1 Image Representation

Let Z be the set of integers,E be a rectangle ofZ2, andK
be an interval@0,k# of Z, with k.0. The collection of func-
tions from E to K will represent the gray-scale images
interest. We denote such collection byKE and its generic
elements byf , g, f 1 , f 2 , f i and f n . When it is certain that
we are dealing just with functions, a constant function
KE will be denoted by the element ofK which character-
lectronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
s.

,
-

izes it, for example, 0, 1,k. When K5$0,k%, the setKE

will represent the binary images. A binary imagef may be
represented equivalently by the subsetF of E such thatx
PF⇔ f (x)5k.

Figure 5 presents a binary image. Figures 6 and
present, respectively, a gray-scale image and the grap
its representation as a function.

Let ]E denote the limit points of the rectangleE. The
function in $0,k%E given by

f ~x!5 H k if xP]E
0 otherwise, ~1!

is called the frame ofE.

2.2 Relations

One of the most fundamental notions in mathematical m
phology is the less or equal relation that induces the no
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 177
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of partial ordering in a set of objects. In an MMach t
existence of a function that checks this relation is import
for the construction of iterative morphological operato
with an undefined number of iterations. For this kind
operator the satisfaction or not of the ordering relation
tween images produced in two consecutive iterations
fines if the next iteration will be performed or not.

An imagef 1 is less than or equalan imagef 2 , denoted
f 1< f 2 , if the following statement holds:

f 1< f 2⇔@ f 1~x!< f 2~x!, for any xPE#, ~2!

Fig. 5 Binary image.
178 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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where < denotes the less than or equal relation betwe
integer numbers. Figures 8 and 9 show, respectively, a s
ation where this relation holds and where it does not.

An imagef 1 is equalto an imagef 2 , denotedf 15 f 2 , if
the following statement holds:

f 15 f 2⇔@ f 1~x!5 f 2~x!, for any xPE#, ~3!

where 5 denotes the equality relation between integ
numbers.

Fig. 6 Gray-scale image.
Fig. 7 3-D representation.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



ges
tur

tion

f

ely
ro-
ded

MMach: a mathematical morphology toolbox

Downl
2.3 Operations

Some useful definitions of punctual operations on ima
are given here. These definitions are based on struc
properties of the interval@0,k# of Z.

The intersectionof f 1 and f 2 , denotedf 1∧ f 2 , is the
function in KE given by, for anyxPE,

~ f 1∧ f 2!~x!5min$ f 1~x!, f 2~x!%. ~4!

The union of f 1 and f 2 , denotedf 1∨ f 2 , is the function
in KE given by, for anyxPE,

~ f 1∨ f 2!~x!5max$ f 1~x!, f 2~x!%. ~5!

Figures 10 and 11 show, respectively, the intersec
and the union of the two 1-D functions of Figure 9.

The two binary operations∧ and∨ from KE3KE to KE

are calledintersectionand union, respectively. Actually,

Fig. 8 f1<f2 .

Fig. 9 f1<uf2 .
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
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these operations applied to two distinct functionsf 1 and f 2

produce, respectively, the infimum and the supremum of 1

and f 2 , with respect to the partial ordering<. For this
reason, the two binary operations∨ and ∧ are also called
infimumandsupremumoperations~or simply infimum and
supremum!.

Usually, in practice, we need to perform successiv
several intersections or unions, so it is useful to have p
grams that implement extended intersections and exten
unions.

Let I 5$1,2,3,...,n% be a set of indices. Theextended
intersection of a set of functions$ f i : i PI %, denoted
∧$ f i : i PI %, is the function inKE given by

∧$ f i : i PI %5~~ f 1∧ f 2!∧...!∧ f n. ~6!

The extended unionof a set of functions$ f i : i PI %, de-
noted∨$ f i : i PI %, is the function inKE given by

Fig. 10 Intersection.

Fig. 11 Union.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 179
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∨$ f i : i PI %5~~ f 1∨ f 2!∨...!∨ f n. ~7!

The complementary~or negative! of f , denoted2 f , is
the function inKE given by, for anyxPE,

~2 f !~x!5k2 f ~x!. ~8!

The unary operation2 from KE to KE is called acomple-
mentaryoperation~or negation!. Figure 12 shows a func
tion and its negation.

The differencebetweenf 1 and f 2 , denotedf 12 f 2 , is
the function inKE given by, for anyxPE,

~ f 12 f 2!~x!5 H f 1~x!2 f 2~x!

0
if f 2~x!< f 1~x!

otherwise . ~9!

The binary operation2 from KE3KE to KE, is calleddif-
ferenceoperation~or subtraction!. Actually, we havef 1

2 f 2< f 1∧(2 f 2), and we get the equality for binary im
ages, that is, forf 1(E)5 f 2(E)5$0,k%. Figure 13 shows the
subtraction of a constant from a function.

Thesumof f 1 and f 2 , denotedf 11 f 2 , is the function in
KE given by, for anyxPE,

~ f 11 f 2!~x!5 H f 1~x!1 f 2~x!

k
if f 2~x!1 f 1~x!<k
otherwise . ~10!

The binary operation1 from KE3KE to KE is calledsum
operation~or addition!. Figure 14 shows the addition of
constant to a function.

Let f , f 1 , and f 2 be such thatf 1< f < f 2 . The toggle
transform off with respect tof 1 and f 2 , denotedf 1@ f # f 2 ,
is the function inKE given by, for anyxPE,

~ f 1@ f # f 2!~x!5 H f 1~x!

f 2~x!

if ~ f 2 f 1!~x!<~ f 22 f !~x!

otherwise . ~11!

Fig. 12 Negation.
180 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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The transform@•# from KE3KE3KE3KE to KE is called
the toggleoperator.

Note that the toggle produces image enhancement, s
it increases the relative distance between the gray level
the image and preserves their partial ordering. Figure
shows the effect of the toggle operator, characterized by
two extreme functions of Figure 16, when applied to t
intermediate function of Figure 16.

The symmetrical differencebetweenf 1 and f 2 , denoted
f 1' f 2 , is the function inKE given by,

Fig. 13 Subtraction.

Fig. 14 Addition.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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~ f 1' f 2!5~ f 12 f 2!∨~ f 22 f 1!. ~12!

The transform' from KE3KE to KE is calledsymmetrical
differenceoperation.

Note that in the binary case the result of this operation
the set of points that is contained in one input image a
not in the other. Figure 17 shows two functions and th
symmetrical difference.

Fig. 15 Toggle.

Fig. 16 Three ordered functions.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
2.4 Operators and Operations on Operators

An operator is a mapping fromKE to KE. We denote op-
erators by Greek letters:a, b, g, G, etc. Therefore, an op
eratorc transforms an imagef into an imagec( f ).

The identity operator is the mapping, denotedi, given
by, for any f PKE,

i~ f !5 f .

The operators may be combined by simple operation
build other operators. In this section, we present some
erations defined on the space of operators.

Many useful operations on operators are inherited fr
operations on functions. In the following, we present so
operations on operators inherited from the operations
fined in the previous section. A common characteristic
all these operations is that they have a parallel nature.

Let c1 and c2 be two operators fromKE to KE. The
intersectionof the operatorsc1 andc2 is the operator from
KE to KE, denotedc1∧c2 , given by, for anyf PKE,

~c1∧c2!~ f !5c1~ f !∧c2~ f !.

The operation ofintersectionbetween the operatorsc1 and
c2 , denoted∧, is the mapping given by

~c1∧c2!°c1∧c2 .

Analogously, we define the operations ofunion, addi-
tion, and subtraction, denoted by∨, 1, and 2, respec-
tively. These binary operations can be extended to a
quence of identical operation or reduced to a unary oper
by fixing one of its arguments. We writec( f )∧g to denote
the intersection of the functionsc( f ) andg.

Let c be an operator fromKE to KE. The negationof
the operatorc is the operator fromKE to KE, denoted2c,
given by, for anyf PKE,

Fig. 17 Symmetrical difference.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 181
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~2c!~ f !52c~ f !.

The operation ofnegationfor operators, denoted2, is the
mapping given by

c °2c.

An important operation on operators that is not inheri
from an operation on functions is the composition. A s
lient difference between composition and the other ope
tions presented before is that it has a sequential nature

Thecompositionof the operatorc1 with the operatorc2

is the operator fromKE to KE, denotedc2c1 , given by, for
any f PKE,

~c2c1!~ f !5c2@c1~ f !#.

The operation ofcompositionof two operators is the map
ping given by

~c1 ,c2!°c2c1 .

Of course, any operator may be composed with its
The succession ofn self compositions of a generic operat
c, wheren is a positive integer, is denoted

cn. ~13!

For example, the operatorcc will be denotedc2. This
notation is extrapolated forn50 by statingc05i.

In practice, n self compositions of an operatorc is
implemented by a recursive procedure, that is, for anf
PKE,

cn~ f !5 f n ,

where f i 115c( f i) and f 05 f .
Analogously, an undefined number of self compositio

of an operatorc is implemented by the following recursiv
procedure, for anyf PKE,

c`~ f !5 f n ,

where f i 115c( f i), f 05 f , andn is the first iteration such
that f n5 f n11 . To implement this kind of iterative system
is necessary to use the relations stated in Section 2.2.

2.5 Structural Elements

Important classes of operators are characterized by fu
tions from B,Z2 to K. These functions are calledstruc-
tural elements and are denoted by the lower case letteb.

2.5.1 Notations

Usually, the domain of a structural element is much sma
than the image that should be transformed. Hence, a
venient representation for it is a structure composed o
matrix and a vector~i.e., a pair of numbers!, defined from
the origin@i.e., the point~0,0!# to a point of the matrix, for
example its right up corner. An example of a structu
element is the pair
182 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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F . 1 .

5 4 5

. 8 .
G ,~5,2!,

where the dots in the matrix represent points that are ou
the structural element domain. When the origin belongs
the domain of the structural element, it may be denoted
by a matrix, the origin being represented by a bold char
ter. For example, the structural element

F . 1 .

5 4 5

. 8 .
G ,~1,1!

may be represented just by

F . 1 .

5 4 5

. 8 .
G .

When a structural element is a function that is constan
equal to zero, it is called flat. We convention to substitu
the function by its domain in the representation of a fl
structural element and denote it by a capital letter. In t
case, instead of representing the function by the gray le
of its points, we represent it by a matrix of zeros~if the
point is not in the function domain! and ones~if the point is
in the function domain!. For example, the flat structura
element$(21,21),(0,0),(1,1)% is represented by

F 0 0 1

0 1 0

1 0 0
G .

The image operators that are characterized by a st
tural element are denoted by a Greek letter with an ind
that may be the lower case letterb ~for generic structural
elements! or an upper case letter~for flat structural ele-
ments!: gb ,gB ,fb ,fB ,GA ,Gb ,... .

2.5.2 Discs, semisphere, and cylinder

In practical applications some important flat structural e
ments are the disks. The notion of disk depends on
notion of distance in a metric space.

A distance~or metric! d is any function defined fromE
to R that, for anyu,v,wPE, satisfies the following prop-
erties

d~u,v !>0@d~u,v !50⇔u5v#, ~14!

d~u,v !5d~v,u!, ~15!

d~u,w!<d~u,v !1d~v,w!. ~16!

The valued(u,v) is called thedistancebetweenu andv.
Let u and v be two elements ofE represented by

(u1,u2) and (v1,v2), respectively. Three particular ex
amples of distances are: theEuclideandistance
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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de~u,v !5@~u12v1!21~u22v2!2#1/2, ~17!

the city blockdistance

db~u,v !5uu12v1u1uu22v2u, ~18!

and thechessboarddistance

dm~u,v !5max$uu12v1u, u22v2u%. ~19!

Let x be an element ofE andr be a positive integer. A
digital diskunder the distanced of centerx and radiusr is
the subset ofE given by

Dd~x,r !5$yPE:d~x,y!<r %. ~20!

Two particular disks used often in practice are the
33 square centered at the origin and the cross containe
this square. These subsets are called theelementary square
and theelementary cross.

Let (o1 ,o2)PZ2 ando3 , r PK. A semisphereof center
(o1 ,o2 ,o3) and radiusr is the structural functionb from B
to K given by, for any (x1 ,x2)PB,

b@~x1 ,x2!#5o31@r 22~x12o1!22~x22o2!2#1/2, ~21!

whereB is the digital disk~under the Euclidean distance!
of center (o1 ,o2) and radiusr .

Let hPK and B be a digital disk~under the Euclidean
distance!. A cylinder is the structural functionb from B to
K given by, for anyxPB,

b~x!5h. ~22!

2.5.3 Operations on structural elements

Next, we present some operations on structural elem
that are useful in characterizing important classes of op
tors.

Let W be a finite subset ofZ2 andB be a subset ofW.
We denote byBc the complementof B with respect toW,
that is,

Bc5$xPW:x¹B%. ~23!

We denote byB1u the translateof B by any vectoru
in Z2, that is,

B1u5$x1u:xPB%. ~24!

The Minkowski addition of two subsetsA andB of Z2 is
the subsetA% B of Z2, given by,

A% B5ø$A1b:bPB%. ~25!

Of course, the two arguments of the Minkowski additi
may be the same subset. The succession ofn21, wheren
is a positive integer, self additions of the subsetB, denoted
nB, is given by

nB5~B% B! % ...% B.
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This notation is extrapolated forn50 by stating

0B5$~0, 0!%.

We denote byB̆ the reflectionof B, that is,

B̆5$2x:xPB%. ~26!

Another useful operation on structural elements is
clockwise integer rotation around the origin. Let (x1 ,x2) be
an element ofZ2 and let (x1a ,x2a) denote the integer rota
tion of (x1 ,x2) by a degrees, that is, the point inZ2 that is
the nearest neighbor of the real rotation of (x1 ,x2) by a
degrees.

Let B be a flat structural element anda be a positive real
number. Theinteger rotationof B by a degrees is the sub
set

Ba5$~x1a ,x2a!:~x1 ,x2!PB%. ~27!

For example, the integer rotation by 45 degees of the su

F 0 0 1

0 1 0

1 0 0
G is the subsetF 0 0 0

1 1 1

0 0 0
G .

2.5.4 Interval

Some important families of operators are characterized b
collection of structural elements called intervals. In th
subsection we introduce the notion of interval and the
tations adopted to represent it.

Let W be a finite subset ofZ2. Let A and B be two
subsets ofW, such thatA,B. The collection@A,B# of
subsets ofW, such that

@A,B#5$X,W:A,X,B% ~28!

is called an interval of extremitiesA andB.
Often the interval@A,B# is represented in a single ma

trix, whose values are 0~when at a given point bothA and
B have the value 0!, 1 ~when at a given point bothA andB
have value 1! and3 ~when at a given pointA andB have
different values!. For example, the interval of extremities

F 1 1 1

0 1 0

0 0 0
G and F 1 1 1

1 1 1

0 0 0
G

is represented by

F 1 1 1

3 1 3

0 0 0
G .

2.6 Dilations and Erosions

Dilations and erosions are the most fundamental classe
operators in mathematical morphology. Their algebr
definitions involve the notion of infimum and supremum
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 183
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complete lattices. Dilations commute with the suprem
operation, while erosions commute with the infimum ope
tion. In fact, through the Galois connection concept we c
establish a one-to-one relation between the set of dilat
and the set of erosions; that is, for each dilation there
corresponding erosion and vice versa. We say that a
formed by a dilation and its corresponding erosion con
tutes an adjunction. These definitions and properties
quite general, but we study here just some subclasse
dilations and erosions defined on gray-scale images. F
complete characterization of translation invariant gray-le
dilation and erosion, see Banon in Refs. 7 and 8.

A property of the elementary operators defined on gr
scale images is that any anti-dilation and anti-erosion
be obtained directly by the composition of, respectively
dilation and an erosion with the negation. Thus, it is enou
to state the notions of dilation and erosion to get the ot
corresponding elementary operators.

2.6.1 Dilations and erosions by structural elements

We now recall the definition of two important subclasses
dilations and erosions that are based on the Abelian gr
property of (Z2,1).

Let u be the operation fromK3Z to K defined by, for
any tPK andvPZ,

tuv5H 0
0
t1v
k

if t50
if t.0 and t1v<0
if t.0 and 0<t1v<k
if t.0 and t1v.k

~29!

Similarly, let 2̇ be the operation fromK3Z to K defined
by, for anytPK andvPZ,

t2̇v5H 0
t2v
k
k

if t,k and t2v<0
if t,k and 0<t2v<k
if t,k and t2v.k
if t5k

~30!

The dilation of f by b is the functiondb( f ) in KE,
given by, for anyxPE,

db~ f !~x!5max$ f ~y!ub~x2y!:yP~B̆1x!ùE%. ~31!

The erosion of f by b is the function«b( f ) in KE,
given by, for anyx in E,

«b~ f !~x!5min$ f ~y!2̇b~y2x!:yP~B1x!ùE%. ~32!

The two operatorsdb and «b from KE to KE are called
dilation anderosionby b.2 In the previous expressions, w
recall that max(B)50 and min(B)5k.

The fundamental idea under these definitions is to tra
form the image based on local comparisons between
image and translations of the structural element, which a
as a sensor of geometrical properties of the function. M
precisely, «b( f )(x) can be equivalently computed b
translating spatiallyb until x, denotedbx , and then trans-
lating bx vertically by the maximumv, such that the trans
lation of bx by v is less or equal tof .
184 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)

oaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
s

ir

e
of
a
l

r

p

-
e
s

The pair («b ,db) forms an adjunction onKE ~Ref. 2, p.
388!. Yet the use of the operationsu and2̇ is important to
give similar treatment in the limit cases for the spatial a
gray-scale dimensions: the spatial translation of the str
tural element is restricted to the image domain, while
vertical translation saturates at 0 andk. Figures 18 and 19
show a function and its dilation and erosion by the stru
tural elementsg5@24 25 ... 46 474847 46 ... 25 24# and
g5@15 16 ... 28 293029 28 ... 16 15#.

The dilation and erosion of a functionf by a flat struc-
tural elementb are, respectively, the functionsdB( f ) and
«B( f ) in KE, characterized just by the structural eleme

Fig. 18 1-D dilation.

Fig. 19 1-D erosion.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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B, the domain ofb. The functionsdB( f ) and «B( f ) are
called dilation and erosion off by B and are given, for any
xPE, by

dB~ f !~x!5max$ f ~y!:yP~B̌1x!ùE% ~33!

and

«B~ f !~x!5min$ f ~y!:yP~B1x!ùE%. ~34!

The two operatorsdB and «B from KE to KE are called
dilation and erosion byB ~Ref. 4, p. 80!. Particularly, when
B5$(0,0)%, the dilation and erosion byB are the identity
operator.

Figures 20 and 21 show a function and its dilation a
erosion by the flat structural element@11111#. Figures 22
and 23 show the dilation and erosion, respectively, of
binary image of Figure 24 by an Euclidean disc of diame
10. Figure 25 shows a gray-scale image, while Figures
and 27 show its dilation and erosion by an Euclidean d
of diameter 10.

2.6.2 Self decomposition of dilations and erosions

Dilations and erosions can be decomposed in terms of o
simpler dilations and erosions. Such decompositions h
impact on the implementation of these operators.

If ( E,1) constitutes an Abelian group, then the dilatio
and erosions defined in the last section are translation
variant operators,5 i.e., to translate the image and then a
ply the operator is equivalent to applying the operator a
then translating the resulting image.

Now we present two useful properties of dilations a
erosions by flat structural elements.

Property 1. The dilation~erosion! by a structural setB is
equivalent to the union~intersection! of dilations~erosions!
by subsets in a family whose union isB, that is,

Fig. 20 1-D flat dilation.
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Fig. 21 1-D flat erosion.

Fig. 22 Binary dilation.

Fig. 23 Binary erosion.

Fig. 24 Binary image.
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dB5∨$dBi
:øBi5B%, ~35!

~«B5∧$«Bi
:øBi5B%!. ~36!

Property 2. If the dilation ~erosion! by the Minkowski
addition of two subsetsA and B is a translation invarian
operator, then it is equivalent to the composition of t
dilation ~erosion! by A andB, that is,

dA% B5dAdB , ~37!

~«A% B5«A«B!. ~38!

A particular consequence of Properties 1 and 2 is t
dilation and erosion by any subsetB can be built by com-
posing dilations and erosions by subsets of the elemen
square. Some studies reveal that this decomposition
lead to algorithms for dilations and erosions more effici
than the direct ones~Ref. 9, p. 48!.

The two operatorsd b
n and«b

n , wheren is a nonnegative
integer, fromKE to KE are called, respectively,n-dilation
and n-erosion. Figures 18 and 19 show a function and
24 dilation and 15 erosion by the structural element@1 2 1#.
Actually, whenb is flat, d B

n and «B
n are equivalent to the

dilation and erosion bynB.
We call the subsets

F 0 0 0

0 0 1

0 0 0
G ,F 0 0 0

1 0 0

0 0 0
G ,F 0 1 0

0 0 0

0 0 0
G and F 0 0 0

0 0 0

0 1 0
G

of directional structural elements.

Fig. 25 Gray-scale image. Transmitters of filariosis.

Fig. 26 Gray-scale dilation.
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Let L be a generic digital line segment~i.e., that has an
arbitrary size and slope! with one of its extremities at the
origin. The segmentL can be represented as a sequence
directional structural elementsB1 ,B2 ,...,Bn , which de-
scribes the path to go from the origin to the other extrem
of L. Hence, as a consequence of Proposition 1, the dila
and erosion off by the line segmentL are given by

dL~ f !5i∨dB1
~ f !∨dB2

~dB1
~ f !!

∨...∨dBn
~dBn21

~ ...~dB1
~ f !!!! ~39!

and

«L~ f !5i∧«B1
~ f !∧«B2

~«B1
~ f !!

∧...∧«Bn
~«Bn21

~ ...~«B1
~ f !!!!. ~40!

2.6.3 Distance function and threshold

Two other important families of erosions are the distan
functions and the thresholds. A distance function map
binary image into an equivalent gray-scale model, while
threshold transforms a gray-scale image into a simplifi
binary model.

Let x be an element ofE, X be a subset ofE, andd be
a distance. The distance between the pointx and the subse
X, under the distanced, is the value given by

d~x,X!5min$d~x,y!:yPX%. ~41!

Let k be a positive integer such that

k.max$d~x,y!:x,yPE%. ~42!

Thedistance functionapplied tof , under the distanced, is
the function inKE given by, for anyxPE,

Cd~ f !~x!5d~x,$yPE: f ~y!50%!. ~43!

The operatorCd from $0,k%E to KE is called thedistance
functionoperator under the distanced. The distance func-
tions are erosions from$0,k%E to KE.

Figures 28 and 29 show a binary image and its cor
sponding distance function. Note that in the image rep
sentation of the distance function used in this figure, hig
points in the function surface are represented by dar
gray levels.

Fig. 27 Gray-scale erosion.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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The comparisonbetweenf 1 and f 2 , denotedf 1< f 2 , is
the function inKE given by, for anyxPE,

~ f 1< f 2!~x!5 H k
0

if f 1~x!< f 2~x!

otherwise . ~44!

The unary operations .< f and f <. from KE to KE are
called, respectively,right and left adaptive thresholdwith
respect tof . These unary operations are an antidilation a
an erosion, respectively.

The composition of a distance functionCd with the left
adaptive threshold operatorf <. is an erosion in$0,k%E. If
f is a constant function equal tor 11PK, then f <Cd is
the erosion characterized by the digital disk of center~0,0!
and radiusr , that is,

«Dd
~~0,0!,r !5~r 11<Cd!. ~45!

2.7 Geometric Manipulation

In this section, we present some elementary operators
change the domain of definition of the image by expans

Fig. 28 Overlapped blobs.

Fig. 29 Distance function.
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or shrinking. The difference between these operators
the conventional expansion and shrink is that in the c
ventional procedures just one point is considered, while
the morphological procedures a neighborhood around e
point is taken into account. The analysis of the neighb
hood follows the one performed by dilation and erosion

Let N be the set of positive integers and letN* be the set
of nonnegative integers. Let (n1,n2)PN2 and let E
5@0,1,...,n121#3@0,1,...,n221# be a rectangle ofZ2. Let
s5(s1,s2)PN2 and let o5(o1,o2)PN* 2, such thato1
,s1 ando2,s2. The vectorss ando will be called scale
factor and offset.

Let sE5@0,1,...,(s1n1)21#3@0,1,...,(s2n2)21# and let
B,sE% (sĚ). sE will be the domain of the expanded im
ages.

Let f PKE, we define f and f̄ in KsE by, for any y
PsE,

fI ~y!5 H f @~y2o!/s#
0

if 'xPE:y5sx1o
otherwise , ~46!

f̄ ~y!5 H f ~~y2o!/s!

k
if 'xPE:y5sx1o
otherwise . ~47!

The functionsfI and f̄ are expansions off with trivial
interpolations. In the first function, the interpolated val
is 0, while in the second function it isk. The operators2̇
and2. from KE to KsE are called, respectively, inf and su
expansion.

The expansion by dilationof f in KE by the structural
elementB, the scale factors, and offseto, is the function
expand2dB,s,o( f ) in KsE, given by, for anyxPsE,

expand2dB,s,o~ f !~x!5max$ fI ~y!ub~x2y!:

yP~B̆1x!ùsE%. ~48!

The expansion by erosionof f in KE by the structural
elementB, the scale factors, and offseto, is the function
expand2«B,s,o( f ) in KsE, given by, for anyxPsE,

expand2«B,s,o~ f !~x!5min$ f̄ ~y!2̇b~y2x!:

yP~B1x!ùsE%. ~49!

The two operators expand2dB,s,o and expand2«B,s,o from
KE to KsE are calledexpansion by dilationandexpansion
by erosion,with the structural elementB, the scale factor
s, and offseto.

Note that the expansions by dilation and erosion ar
composition of an expansion with a dilation and an erosi
As 0 andk are the neutral elements for dilation and erosi
the sup expansion is used in the first case, while the
expansion is used in the second one.

Figures 30 and 31 show an image and its expansion
dilation, using as structural element the image of Figure
itself.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 187
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Let E/s5@0,1,...,bn1 /s1c21#3@0,1,...,bn2 /s2c21#,
wherebxc is the integer part ofx, and letB,E% Ě, where
E/s is a shrinking ofE.

The shrinking by dilationof f in KE by the structural
elementB, the scale factors, and offseto is the function
shrin2dB,s,o( f ) in KsE, given by, for anyxPE/s,

shrin2dB,s,o~ f !5max$ f ~y!ub~x2y!:

yP~B̆1sx1o!ùE%. ~50!

The shrinking by erosionof f in KE by the structural
elementB, the scale factors, and offseto is the function
shrin2«B,s,o( f ) in KsE, given by, for anyx in E/s,

shrin2«B,s,o~ f !~x!5min$ f ~y!2̇b~y2x!:

yP~B1sx1o!ùE%. ~51!

The two operators shrin2dB,s,o and shrin2«B,s,o from
KE to KE are called, respectively,shrinking by dilationand
shrinking by erosion,with the structural elementB, the
scale factors, and offseto.

The shrinking by dilation and erosion correspond to
evaluation of the dilation and erosion operators on a grid
E followed by a sampling.

Fig. 30 Image to be expanded.

Fig. 31 Expansion by dilation.
188 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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2.8 Morphological Filters

As stated by Serra~Ref. 1, p. 101!, the morphological filters
are the family of increasing~i.e., preserve the partial order
ing! and idempotent~i.e., a second application of the op
erator does not affect the result! operators. These filters ar
useful for shape and size classification as well as for no
reduction.

In this section, we present some morphological filte
that have been used for image processing. All of these
erators are presented in dual pairs. The behavior of the
of a filter is equivalent to the behavior of the filter itse
when applied to the complementary image; that is, if a fil
affects the peaks of the images, then its dual affects s
larly the valleys and vice-versa.

Two important morphological filters are opening an
closing. They are particularly useful for shape and s
classification and constitute the basis for a complete fam
of filters with a rich set of properties.

The operatorsgb andfb from KE to KE, given by

gb5db«b ~52!

and

fb5«bdb , ~53!

are called~morphological! openingandclosingby b ~Ref.
3, p. 50!.

Figures 32 and 33 show a function and its opening a
closing by the flat structural element@11111#. Figures 34
and 35 show a function and its opening and closing by
structural element@5 10 5#.

The operatorsgn,b andfn,b from KE to KE, given by

gn,b5db
n«b

n ~54!

and

Fig. 32 Flat opening.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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fn,b5«b
ndb

n , ~55!

are calledn-openingandn-closingby b. Actually, whenb
is flat, gn,B and fn,B are equivalent to the opening an
closing bynB.

The shape and size classification based on directio
properties may be performed by the following specializ
morphological operators.

Let L be a digital line segment. The operatorgL andfL

from KE to KE, given by

Fig. 33 Flat closing.

Fig. 34 Opening.
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gL5dL«L ~56!

and

fL5«LdL , ~57!

are calledopeningandclosing by the line segment L.
The next operators are built by sequential compositio

of openings and closings. In fact, this family of operato
cover all possible sequential combination of openings a
closings. Contrasting with the opening and closing ope
tors, they have similar actions on the peaks and valleys
the images. However, there are still some differences
behavior due to the fact of beginning by an opening or b
closing. The operators that begin by an opening affect m
the peaks, while the ones that begin by a closing aff
more the valleys.

The two operatorsun,b andcn,b from KE to KE, given
by

un,b5fn,bgn,b ~58!

and

cn,b5gn,bfn,b , ~59!

are calledn2fg-filter and n2gf-filter by b ~Ref. 1, p.
203!.

The two operatorsun,b andcn,b from KE to KE, given
by

un,b5gn,bfn,bgn,b ~60!

and

cn,b5fn,bgn,bfn,b , ~61!

are calledn2fgf-filter andn2gfg-filter by b ~Ref. 1, p.
203!.

Alternated sequential filters consist of iterations of filte
of increasing strongness. They produce refined filter effe
by modifying sequentially details of increasing scale.

Fig. 35 Closing.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 189
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Denote then2fg, n2gf, n2fgf, n2gfg filter by
b, generically bycn,b . The operatorcn,b from KE to KE,
given by

cn,b5cn,bcn21,b ...c1,b , ~62!

is called ann alternated sequential filterby b ~Ref. 1, p.
203!.

Figure 36 shows a function and its filtering by an alte
nated sequential filter of type 32fg, characterized by the
flat structural element@111#. Figure 37 shows the result o
the application of an alternated sequential filter on the
age of Figure 38.
Another interesting morphological filter is the center filte

Fig. 36 Flat ASF filter.

Fig. 37 Filtered image.
190 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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Its remarkable property is that it is self-dual, that is, it a
fects peaks and valleys of the images exactly in the sa
way.

The operatorbb , from KE to KE, given by

bb5~i∧fbgbfb!~gbfbgb , ~63!

is called theprimitive of the center filter.The infinite suc-
cessive compositions of this primitivebb

` is called thecen-
ter filter ~Ref. 1, p. 159!.

Yet several other morphological filters could be bu
from the filters that we have just presented. For exampl
quite useful refinement of opening and closing operator
built by the union of openings and the intersection of clo
ings. Heijmans presented in Ref. 10 other strategies to b
new morphological filters from the ones that we have p
sented here.

2.9 Connected Filters

Connected filters constitute a particular family of morph
logical filters that are useful to change topological prop
ties of images~to know more about digital topology, se
Ref. 11!. On binary images, the effect of connected filters
to eliminated objects of the image or of its background~i.e.,
holes!. On gray-scale images, the effect of the connec
filters is to join adjacent flat zones~i.e., plateaus of constan
gray level!. On binary images these filters are based on
connectivity of the 2-D space and on gray-scale ima
they are based on the connectivity of the 2-D or 3-D spac

This family of filters is particularly useful in image seg
mentation, because connected filters have good prope
for selecting objects preserving the details of their edge

Let g be an element ofKE. The operatorsdb,g and«b,g

from KE to KE, given by

db,g5db∧g ~64!

and

Fig. 38 Corrupted image.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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«b,g5«b~g, ~65!

are calledconditional~or geodesic! dilation anderosionby
b given g ~Ref. 3, p. 393!.

The operatorsdb,g
n and «b,g

n , wheren is a nonnegative
integer, are calledn-conditional dilatationanderosionby b
given g.

Let f be an element ofKE. The operatorsgb, f andfb, f

from KE to KE, given by, for anygPKE,

gb, f~g!5db,g
` ~ f ! ~66!

and

fb, f~g!5«b,g
` ~ f !, ~67!

are calledinf-reconstructionand sup-reconstructionfrom
the markerf .12

Figure 39 shows an erosion of the image of Figure
Figure 40 shows the inf-reconstruction of the image of F
ure 28 from the image of Figure 39, using the element

Fig. 39 Erosion by a disk.

Fig. 40 Inf-reconstruction.
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square as the flat structural element. Note that the sm
objects were eliminated by this filtering and the remaini
objects keep their original shapes.

The inf-reconstruction using the erosion of the input im
age as a marker is also called opening by reconstruct
The reason for this name comes from two facts: it is bu
by an inf-reconstruction procedure, and it is an algebr
opening, that is, it belongs to the class of operators that
increasing, anti-extensive~the transformed image is alway
less or equal the input image!, and idempotent. Other ex
amples of operators that are also algebraic openings are
morphological openings and the union of morphologic
openings.

Dually, the sup-reconstruction that use a dilation as
marker is called closing by reconstruction, since it is
element of the class of the algebraic closing; that is,
class of operators that are increasing, extensive~the input
image always is less or equal the transformed image!, and
idempotent. Other examples of operators that are algeb
closings are the morphological closings and the intersec
of morphological closings.

Figure 41 shows a function and a marker. Figure
shows the same function and its inf-reconstruction from
marker, using the subset@111# as the flat structural elemen
Figure 43 shows the sup-reconstruction of the image
Figure 25 from a dilation by a large structural eleme
~closing by reconstruction!, using the elementary square a
the flat structural element.

Figure 44 shows a function and a marker. Figure
shows the inf-reconstruction of the function from th
marker, using as structural element~nonflat! the function
@111#. Note that the mountains pointed by the marker we
preserved, while the others were eliminated.

The application of the reconstruction operators w
good markers gives a powerful tool for image segmen
tion. Some operators derived from these operators are: c

Fig. 41 Function and its marker.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 191
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Fig. 42 Flat inf-reconstruction.

Fig. 43 Closing by reconstruction.

Fig. 44 Function and its marker.
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minimum and maximum.

All these operators depend on the choice of a connec
ity relation and this is done via the choice of a flat structu
elementB. Usually, the elementB adopted is the elemen
tary square~8 connectivity! or the elementary cross~4 con-
nectivity!.

The operatorFB from $0,k%E to $0,k%E, given by, for
any gP$0,k%E,

FB~g!52gB, f~2g!, ~68!

is called theclosing of holesin g. Note that inFB(g) there
are no holes. The image of Figure 46 is the effect of
application of this operator on the image of Figure 47.

Let k>uEu, let i °xi be a numbering process of th
elements ofE ~that is a bijection from@1,...,uEu#,N to E!,
and let f be an element ofKE such thatf (xi)5 i , for xi

PE. The operatorLB from $0,k%E to KE, given by, for any
gP$0,k%E,

LB~g!5gB,g∧ f~g!, ~69!

is calledlabeling of g ~Ref. 3, p. 405!. Note that inLB(g)
each point of a connected component ofg is associated to
the same value.

The labeling operator is fundamental for applicatio
that depend on geometrical measures of the objects.

Let f be an element of$0,k%E. The operatorG f ,B from
KE to KE, given by, for anygPKE,

G f ,B~g!5fB, f~~g~1!∧~k21!∧ f !, ~70!

is calledminima impositionon g based on the markerf .12

This filter is quite important in image segmentation. F
example, if it is applied on an image of enhanced edges

Fig. 45 Inf-reconstruction.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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the marker image has a connected component pointing
object of interest for the segmentation, it will eliminate a
the undesired edges and keep just the true edges o
chosen objects. Figure 48 shows a function, a marker,
the minima imposition on the function based on the mark

A point x in E is a local maximum~resp. local mini-
mum! of a function f PKE if and only if the valuef (x)
> f (y) @resp.,f (x)< f (y)#, for any y in the neighborhood
of x. Equivalently, we can say that the local maximu
~resp., local minimum! are the invariant points of the dila
tion ~resp., erosion!, that is, the set of points where th
function f [dB( f ) @resp.,f [«B( f )# value isk. Note that
[ is the equality operator defined by formula 84.

A regional maximum~resp.,regional minimum! M of a
function f PKE is a connected component with a give
valueh ~plateau of altitudeh!, such that every point in the
neighborhood ofM has a strictly lower~resp., higher!
value. The regional maximum and the regional minimu
can be extracted from the functions by the following ope
tors.

The operators%B
max and%B

min from KE to $0,k%E, given
by, respectively,

%B
max~ f !5~1[~~ f 11!2gB, f~ f 11!!!~~ f [k! ~71!

and

%B
min~ f !5~1[~fB, f~ f 21!2~ f 21!!!~~0[ f !, ~72!

are calledregional maximumoperator andregional mini-
mumoperator.13

The holes in the image of Figure 49 are the regio
maxima of the image of Figure 29.

Fig. 46 Closing of holes.

Fig. 47 Blob contours.
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2.10 Residues

The family of residue operators consist of operators that
built by the difference between two morphological oper
tors. They are commonly used to detect changes of c
trast, to segment and to compress images.

2.10.1 Gradient

Let the flat structural elementsA and B be subsets of the
elementary square. The operatorCA,B from KE to KE,
given by

CA,B5dA2«B , ~73!

is called ~morphological! gradient ~Ref. 3, p. 437!. This
operator performs the enhancement of edges. Particula
if A and B are two or three point line segments it does
directional enhancement of edges. The image of Figure
is the complement of the gradient~with A andB being the
elementary square! of the image of Figure 51.

2.10.2 Top hats and reconstruction residues

An important class of residue operators are the top h
These operators are built by the subtraction of an open

Fig. 48 Minima imposition.

Fig. 49 Objects and their markers.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 193

erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



at
ng
o

ors
ing

ato

of
ure

tion
te

ts
f
3.

sed
d in
e

Barrera et al.

Downl
from the identity or of the identity from a closing. Note th
these definitions are consistent with the fact that openi
are antiextensive operators and closings are extensive
erators. In the following, we give some top hat operat
defined from the morphological and reconstruction open
and closing.

The operatorgb
t from KE to KE, given by

gb
t 5i2gb , ~74!

is called~morphological! opening top hatby b ~Ref. 3, p.
474!.

The operatorfb
t from KE to KE, given by

fb
t 5fb2i, ~75!

is called ~morphological! closing top hatby b ~Ref. 3, p.
474!.

Let A be a subset of the elementary square. The oper
GA,b

t from KE to KE, given by, for anygPKE,

Fig. 50 Inverted gradient.

Fig. 51 Calculator pad.
194 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)

oaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
s
p-

r

GA,b
t ~g!5g2gA,eb~g!~g!, ~76!

is called opening by reconstruction top hatby A and b
~Ref. 3, p. 474!.

The operatorFA,b
t from KE to KE, given by, for anyg

PKE,

FA,b
t ~g!5fA,db~g!~g!2g, ~77!

is calledclosing by reconstruction top hatby A andb ~Ref.
3, p. 474!.

The image of Figure 52 is the result of the application
the closing by reconstruction top hat on the image of Fig
25.

The next residue operator uses the inf-reconstruc
from a particular marker, the frame image, to elimina
objects that are on the frame.

The operatorGB from $0,k%E to $0,k%E, given by,

GB5i2gB, f , ~78!

where f is the frame ofE, is calledobjectsof g on frame
off. Note that inGB(g) there are no connected componen
on the frame ofE. The image of Figure 46 is the result o
the application of this operator to the image of Figure 5

2.10.3 Morphological skeletons

In the following, we present three operators that are ba
on the detection of centers of maximal shapes containe
an object~Ref. 9, p. 166!. These operators are built by th
union of particular residue operators.

The operatorsB from $0,k%E to $0,k%E, given by

sB5~$«B
i 2gB«B

i : i 50,1,...%, ~79!

Fig. 52 Subtraction.

Fig. 53 Blobs.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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is called the~morphological! skeleton of parameter B~Ref.
4, p. 207!.

The operator%B from $0,k%E to $0,k%E, given by

%B5~$«B
i 2gB,«

B
i 11«B

i : i 50,1,...%, ~80!

is calledlast erosion of parameter B~Ref. 1, p. 28!.
The image of Figure 54 is the result of the application

this operator on the image of Figure 28. The resulting i
age has been dilated by the elementary square for be
visualization.

The operatorbn,B from $0,k%E to $0,k%E, given by, for
any gPKE,

bn,B~g!5~$«B
i ~g!2dB,g

n ~«B
i 11~g!!: i 50,1,...% ~81!

is calledn-order conditional bisector of parameter B~Ref.
3, p. 383!.

In fact, the conditional bisector is an intermediate ope
tor between the last erosion and the morphological sk
eton, depending on the choice of the parametern it is near
to one or other. Forn50, the conditional bisector will be
the morphological skeleton itself. For values ofn bigger
than a given minimum, the conditional bisector will be th
last erosion itself.

These operators are frequently used to produce mar
that identify overlapping objects. The image of Figure 54
an example of use of the last erosion with this purpose. T
objects in this image are markers for the cells of the ima
of Figure 28.

2.11 Sup-generating and Inf-generating Operators

The sup-generating operators are useful to detect sha
They act as a template matching where some toleranc
permissible for the matching. This property is achieved
verifying if the shapes to be transformed are limited by tw
fixed shapes that define the interval that characterizes
operator. A sup-generating operator can also be built
terms of intersection of an erosion and an anti-dilation.
dual, the inf-generating operator, can be built in terms

Fig. 54 Dilation of the last erosion.
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union of an anti-erosion and a dilation. They have the
names, because with the supremum of sup-generating
erators or the infimum of inf-generating operators we c
perform any complete lattice operator.6

The adaptive thresholdof f with respect tof 1 and f 2 ,
denotedf 1< f < f 2 , is the function in$0,k%E given by, for
any xPE,

~ f 1< f < f 2!~x!5 H k
0

if f 1~x!< f ~x!< f 2~x!,
otherwise. ~82!

The operatorf 1<.< f 2 from KE to $0,k%E is called
adaptive thresholdtransformation of parametersf 1 and f 2 .
Actually, we have

f 1< f < f 25~ f 1< f !∧~ f < f 2!, ~83!

where f 1<. is an erosion and .< f 2 is an anti-dilation.
The equalitybetweenf 1 and f 2 , denotedf 1[ f 2 , is the

function in $0,k%E given by, for anyxPE,

~ f 1[ f 2!~x!5 H k
0

if f 1~x!5 f 2~x!

otherwise. ~84!

The binary operation[ from KE3KE to $0,k%E is called
equalityoperation. Actually, we have

~ f 1[ f 2!5 f 1< f 2< f 1 . ~85!

The image of Figure 55 is the result of the thresholdi
~with f 1 and f 2 being two constant functions such thatf 1

< f 2! of the image of Figure 52.
Let F be the set representation for the functionf

P$0,k%E. Let W be a finite subset ofZ2 and letA andB be
two subsets ofW such thatA,B. Thesup-generatingand
inf-generatingof f with respect to (A,B), denotedlA,B( f )
andmA,B( f ), is the function in$0,k%E, given by

lA,B~ f !~x!5k⇔xP$yPE:Fù~W1y!P@A1y,B1y#%,
~86!

for any xPE, and

mA,B~ f !52lA,B~2 f !. ~87!

The operatorslA,B andmA,B are calledsup-generatingand
inf-generatingoperators of parametersA andB.4,14

Fig. 55 Threshold.
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The sup-generating operators are useful to detect b
mensional shapes. For example, the interval of extremi

A5F 0 0 0

0 1 0

0 0 0
G and B5F 0 0 0

0 1 0

0 0 0
G

characterizes the sup-generating operator which detects
lated points~according to 8 connectivity!, while the interval
of extremities

A5F 0 0 0

0 1 0

0 0 0
G and B5F 0 0 0

0 1 1

0 0 0
G

detects horizontal segments of size one or two.
A possible equivalent representation forlA,B is, for any

f PKE,

lA,B~ f !5«A~ f !∨«Bc~2 f !, ~88!

whereBc is the complement ofB relative toW. Note that
this representation is an intersection of an erosion of
image with an erosion of its complement. Inspired by t
property, Serra~Ref. 3, p. 39! calledlA,B hit-missoperator
of parametersA ~hit! andBc ~miss!.

As the hit-miss representation of the sup-generating
erators is classical, usually we find in the literature t
characterization of the sup-generating operators byA and
Bc. In the following sections of this paper we also ado
this convention.

Finally, we should say that the hit-miss representation
in fact an intersection of an erosion with an anti-dilatio
However, the decomposition of the sup and inf-generat
operators in terms of elementary operators can be m
easily seen in the following representations:

lA,B5«A∧2d B̌c ~89!

and

mA,B5dA∨2« B̌c. ~90!

Table 2 presents some intervals that are commonly use
parameter for sup- and inf-generating operators.

The next pair of operators are thesup-decomposition
~i.e., supremum of sup-generating operators! and theinf-
decomposition~i.e., infimum of inf-generating operators!
general representations for binary operators.

Let A andB be two finite sequences ofn subsets with
elementsAi andBi , such thatAi,Bi . The two operators
cA,B and vA,B from $0,k%E to $0,k%E, given by the fol-
lowing n21 operations

cA,B5∨$lAi ,Bi
: i 51,...,n% ~91!

and

vA,B5∧$mAi ,Bi
: i 51,...n%, ~92!
196 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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are calledn-sup-canonicaloperator andn-inf-canonical
operator of parametersA andB.

Let A be a subset ofW, i be a positive integer, andq
P$0,45,90,180%. We denote byAi ,q ~or simplyAi , whenq
is fixed in the context! the subset built by an integer rota
tion by i 3q degrees ofA. For example,

if i 52, q545, and Bc5F 0 0 0

1 0 1

1 1 1
G ,

then

B2,45
c 5F 1 1 0

1 0 0

1 1 0
G .

The image of Figure 56 is the result of the application
a sup-decomposition operator that detects end points
digital lines on the image of Figure 57. This operator
characterized by the sequencesAi ,q andBi ,q

c , whereA and
Bc are the end point parameters of Table 2,q545, andi
P$0,1,2,...,7%. The resulting image has been dilated by t
elementary square for better visualization.

2.12 Thinning and Thickening

This family of operators is particularly useful for binar
image processing, where it is used to build skeletons
detect geometrical properties. These operators are base
two simple operators: thinning and thickening. The th
ning operator eliminates the center of shapes detected
the hit-miss operator, while the thickening operator ad
the center of the detected shapes.

Let A andB be two subsets ofW, such thatA,B. The
two operatorssA,B and tA,B from $0,k%E to $0,k%E, given
by

sA,B5ı2lA,B ~93!

and

tA,B5ı∨lA,B , ~94!

are calledthinning and thickening by (A,B) ~Ref. 3, p.
390!.

Let g be an element of$0,k%E. The operatorssA,B,g and
tA,B,g from $0,k%E to $0,k%E, given by

sA,B,g5sA,B∨g ~95!

and

tA,B,g5tA,B∧g, ~96!

are calledconditional thinningand thickening by (A,B)
given g ~Ref. 3, p. 393!.

Let A andB be two infinite sequences of subsets ofW,
respectively, with elementsAi andBi such thatAi,Bi .
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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Table 2 Some useful pairs of structural elements for canonical operators, thinning, and thickning.

Struct. Element A Struct. Element Bc @A,B# Canonical operator Thinning Thickening

0 0 0 1 1 1 0 0 0 Homotopic
0 1 0 0 0 0 x 1 x - skeleton -
1 1 1 0 0 0 1 1 1

0 0 0 1 1 1 0 0 0 Homotopic
0 0 0 0 0 0 x x x - - Exoskeleton
1 1 1 0 0 0 1 1 1

0 0 0 1 0 0 0 x x Homotopic
0 1 1 1 0 0 0 1 1 - marking -
0 0 0 1 0 0 0 x x

0 0 0 0 0 0 x x x Skeleton
0 1 0 1 0 1 0 1 0 End Points Pruning -
0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 x x x Background Exoskeleton
1 0 1 0 1 0 1 0 1 End Points - Prunning
1 1 1 0 0 0 1 1 1

0 0 0 1 1 1 0 0 0 Point
0 1 0 1 0 1 0 1 0 Isolated Points Cleaning -
0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 Pointwise Hole
1 0 1 0 1 0 1 0 1 Pointwise Hole - Cleaning
1 1 1 0 0 0 1 1 1

1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 Triple Points - -
0 1 0 0 0 0 x 1 x

1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 Triple Points - -
1 0 0 0 0 1 1 x 0

1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 Triple Points - -
0 0 1 1 0 0 0 x 1

1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1 - Boundary -
1 1 1 0 0 0 1 1 1
Fig. 56 Dilated end points.
lectronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
Fig. 57 Logic circuit.
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The two operatorssn,A,B and tn,A,B from $0,k%E to
$0,k%E, given by the followingn21 successive compos
tions ~using the firstn elements ofA andB!

sn,A,B5sAn ,Bn
•••sA1 ,B1

~97!

and

tn,A,B5tAn ,Bn
•••tA1 ,B1

, ~98!

are calledn-thinning and n-thickening of parametersA
andB ~Ref. 3, p. 390!.

Figure 3 presents the result of an application of
n-thinning operator on the image of Figure 2. This opera
performs the successive elimination of end points of dig
line segments and is characterized by a sequence bui
repetitions of the sequence of structural elements use
the operator that detects end points.

The two operatorsSA,B and TA,B from $0,k%E to
$0,k%E, given by

SA,B5s`,A,B ~99!

and

TA,B5t`,A,B , ~100!

are calledskeleton by thinningandexoskeleton by thicken
ing of parametersA andB ~Ref. 4, p. 202!.

Figure 2 presents the result of the application of
skeleton by thinning operator on the image of Figure
This operator is characterized by the sequencesAqi and
Bqi , whereq545, andA andBc are the parameters for th
homotopic skeleton given in Table 2. A remarkable pro
erty of this skeleton is that it preserves the topologi
structure of the original image.

Let g be an element of$0,k%E. The two operators
sn,A,B,g andtn,A,B,g from $0,k%E to $0,k%E, given by the
following n21 successive compositions

sn,A,B,g5sAn ,Bn,g
...sA1 ,B1,g

~101!

and

tn,A,B,g5tAn ,Bn ,g ...tA1 ,B1 ,g , ~102!

are calledn-conditional thinningand n-conditional thick-
eningof parametersA andB given g.

The operatorsSA,B,g and TA,B,g from $0,k%E to
$0,k%E, given by the following successive infinite comp
sitions

SA,B,g5s`,A,B,g ~103!

and

TA,B,g5t`,A,B,g , ~104!

are calledconditional skeleton by thinningandconditional
exoskeleton by thickeningof parametersA andB giveng.
198 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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Let us denote the infinite sequenceAiq simply by Aq .
Figure 58 presents the result of the application of the c
ditional exoskeleton by thickening on the image of Figu
54, conditioned by the image of Figure 28. This operator
characterized by the sequencesAq and Bq , where q
545, andA and B are the parameters for the homotop
exoskeleton given in Table 2.

Note that the effect of this operator is similar to th
inf-reconstruction operator, but it preserves the number
objects of the marker.

Let A and Bc and C and Dc be the parameters for the
homotopic skeleton and for the detection of end poin
given in Table 2. The operatorS from $0,k%E to $0,k%E,
given by, for anyf PKE,

S~ f !5SC 45 ,D45
@SA45 ,B45

~2 f !#, ~105!

is calledskiz ~Ref. 1, p. 260.!
The first operator is a skeleton that preserves the top

ogy of the complement of the input image, while the se
ond one is a pruning of this skeleton. The skiz gives
partition of the domainE. Figure 59 presents an applicatio
of the skiz operator on the image of Figure 60.

Let C andDc be the parameters for the homotopic thic
ening given in Table 2 and letg, f P$0,k%E, such that
«nB( f )<g. The operatorTn,g from $0,k%E to $0,k%E given
by

Tn,g~ f !5TC 45 ,D45 , f~TC 45 ,D45 ,«B~ f ! ...~TC 45 ,D45 ,«~n22!B~ f !

3~TC 45 ,D45 ,«~n21!B
~ f !~g!!∨g!...∨g!∨g, ~106!

is calledn-smoothing segmentation~Ref. 4, p. 205!.
The effect of the smooth segmentation is similar to t

one of the conditional exoskeleton by thickening, that is
partitions the input image keeping the topology of th
marker. However, usually the smooth segmentation p

Fig. 58 Conditional exoskeleton by thickening.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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duces division lines better positioned. This happens
cause the smooth segmentation does successive recon
tions of n-erosions, while the exoskeleton does a dir
reconstruction.

The operatorV from KE to $0,k%E, given, for any f
PKE, by

V~ f !5TC 45 ,D45 , f <k~TC 45 ,D45 , f <k21 ...~TC 45 ,D45 , f <2

3~TC 45 ,D45 , f <1%
B
min~ f !!

∨%B
min~ f !!...∨%B

min~ f !!∨%B
min~ f ! ~107!

is calledwatershed.15

If we interpret f as a topographic surface, then the w
tershed produces a partition of the domainE, where each
part is the domain of a catchment basin. Figure 61 sho
the catchment basins separated by dams in the graph
1-D function.

To get the catchment basins the operator performs
cessive reconstructions of cuts at consecutive levels: the

Fig. 59 Skiz.
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at level one is reconstructed from the regional minima,
cut at level two is reconstructed from union of the result
the previous reconstruction and the regional minima and
on.

Let A5F 0 0 0

0 1 1

0 1 0
G , Bc5F 1 1 0

1 0 0

0 0 0
G ,

C5F 0 0 0

1 1 1

0 1 0
G and Dc5F 0 1 0

0 0 0

0 0 0
G

and letA45, B45, C 45, andD45 be the respective infinite
sequences created by rotations of these four subsets.
operatorSA,B,C ,D from $0,k%E to $0,k%E, given by the
following succession of compositions

Fig. 60 Internal markers for the keys.
Fig. 61 Watershed.
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SA45 ,B45 ,C 45 ,D45
5...~sAi ,Bi

∧sAi 11 ,Bi 11
∧sCi ,Di

!

...~sA1 ,B1
∧sA2 ,B2

∧sC1 ,D1
! ~108!

is calledrefined skeleton by thinning.16

Figures 62 and 63 show, respectively, the images p
duced by the application of the skeleton by thinning, us
the homotopic parameters, and its refinement to the im
of Figure 64.

3 Examples of Applications

For demonstrating the potential of MMach, we present
this section some examples of applications of these too
image analysis. These applications illustrate the use of
age analysis in cytology, industrial automation, a
medicine.2 ~Note that these and other examples are dep
ited in the subdirectory workspaces of the MMach to
box.!

3.1 Noisy Edge Detection

The goal in this example is to detect edges of objects
images corrupted by noise. The original imagef 1 ~Figure
38! is a gray-scale image that presents a disk corrupted
additive Gaussian noise. By using an alternated seque
filter with three stages and two structural elementsB1 and
B2 , we get the filtered imagef 2 ~Figure 37!:

f 25g3B2
f3B2

g3B1
f3B1

g2B2
f2B2

g2B1

3f2B1
gB2

fB2
gB1

fB1
~ f 1!, ~109!

whereB1 is the elementary cross andB2 is the elementary
square.

By using a threshold transformation with threshold va
20 and an internal contour extractor, we get the cont
image f 4 ~Figure 65!:

f 45 f 32«B1
~ f 3!, ~110!

where

Fig. 62 Skeleton by thinning.

Fig. 63 Refined skeleton by thinning.
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f 35~20< f 2! ~111!

and 20 means a constant image.

3.2 Segmentation of Overlapped Objects

The goal in this example is to separate overlapped~binary!
objects, for instance, to count the number of objects in
image. This procedure may be useful in cytology or in
dustrial automation. The solution for this problem cons
tutes an interesting application of the distance function.

The original imagef 1 ~Figure 28! presents some over
lapped blobs. This image is binary so we apply the dista
function operator to get a landscape model of the ima
Image f 2 ~Figure 29! presents the result of the distanc
function:

f 25Cd~ f 1!. ~112!

Imagef 3 is the result of the regional maximum operato
followed by a dilation~large enough to ensure that there
only one marker for each blob! and an erosion~to ensure
that they will not cause an ill positioning of the watersh
lines!:

f 35eB
2~dB

2~%B
max~ f 2!!!, ~113!

where B is the elementary square. Figure 49 present
composition of imagesf 1 and f 3 , which permits a better
visualization of the position of the markers.

Fig. 64 Letters.

Fig. 65 Edges.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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Image f 4 ~Figure 66! is the negation of the image ob
tained by the application of the watershed operator to
image created by the negation of the union of the mar
image and the distance function image:

f 452V@2~ f 2~ f 3!#. ~114!

Image f 5 ~Figure 67! is obtained by the subtraction of im
agesf 1 and f 4 :

f 55 f 12 f 4 . ~115!

As the borders are not very smooth, we should appl
morphological filter. Imagef 6 ~Figure 68! is the result of
an opening by a disk:

f 65gB~ f 5!, ~116!

whereB is an Euclidean disc of diameter 7.

Fig. 66 Watershed lines.

Fig. 67 Subtraction.
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3.3 Automatic Quality Control on Printed Circuit

Boards

The goal in this example is to detect holes on printed circ
board~PCB! images. This may be useful in quality contro
for instance, if a board has less holes than were expec
then this board may be rejected.

The original imagef 1 ~Figure 69! presents a circuit
board from where we want to extract the holes. The ho
are presented in imagef 2 ~Figure 70!, which is obtained by
applying the operator close holes and subtracting the or
nal image from that image:

f 25FB~ f 1!2 f 1 , ~117!

whereB is the elementary square.

Fig. 68 Opening.

Fig. 69 PCB.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 201
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3.4 Keys of a Pocket Calculator Machine

The goal in this example is to identify objects in the ima
of a pocket calculator. Two segmentation problems can
explored in that image: extraction of the digits printed
the keys and of the keys themselves.

The original imagef 1 ~Figure 51! presents part of the
panel of a pocket calculator machine. In this example leB
be the elementary square.

3.4.1 Digits segmentation

Imagef 2 ~Figure 71! presents an enhancement of the dig
that is obtained by an opening by reconstruction top
transformation:

f 25GA,B
t ~ f 1!, ~118!

whereA55B. The image has been inverted for better
sualization.

Image f 3 ~Figure 72! shows the result of a threshol

Fig. 70 Holes of the PCB.

Fig. 71 Top Hat.
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applied to the top hat:

f 35~128< f 2<255!, ~119!

where 128 and 255 represent two constant images.

3.4.2 Edges segmentation

The successive composition of the morphological gradie
the imposition of minima and the watershed constitute
very powerful tool for image segmentation that is known
Beuchers’ paradigm.15 The division lines given by the wa
tershed operator when applied on the gradient filtered
the minima imposition will give exactly the edges of th
objects pointed by the marker. The main quality of th
method is changing the problem of heuristic edge detec
to the problem of heuristic detection of markers to objec
which is a much simpler problem. Let us use this approa
to detect the keys of the calculator.

A good internal marker for a key is the digit printed o
it, but as a marker it must be a connected component.
necessary to apply some transformation to imagef 3 . Image
f 4 ~Figure 60! is the result of ann-dilation applied tof 3 :

f 45dB
3~ f 3!. ~120!

The external markers are obtained by applying the S
operator on the imagef 4 ~with an extended domain!. Image
f 5 ~Figure 73! is the result of the union of the internal an
external markers:

f 55 f 4~S~ f 4!. ~121!

By applying the morphological gradient operator on t
original image we get imagef 6 :

f 65CB,B~ f 1!. ~122!

Figure 50 shows the inverse of imagef 7 for better visual-
ization of the details.

Beucher’s paradigm says that we have to impose n
minima to the gradient image according to the mark
found. Imagef 7 ~Figure 74! is the result of this procedure

Fig. 72 Result of the digits segmentation.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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which is performed by applying the minima imposition o
eratorG on the gradient imagef 6 conditioned to the image
of the markersf 5 :

f 75G f 5,B~ f 6!. ~123!

Image f 8 ~Figure 75!, which presents the desired edge
is obtained by taking the division lines of the watershed
image f 7 :

f 852V~ f 7!. ~124!

3.5 Identification of Filariosis Transmitters

The goal of this example is to identify filariosis transm
ters, which are a kind of worm, in microscopic images. T
original image f 1 ~Figure 25! shows an image with two
worms.

In this example letB denote the elementary square. O
first subgoal is to separate the parts of the image that h
some visual similarities with the worms. To achieve this
apply a morphological filter, subtract the image from t
result of the filtering, and apply a threshold.

Fig. 73 Markers for the keys.

Fig. 74 Minima imposition.
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Image f 2 ~Figure 43! is the result of the application o
the closing by reconstruction operator on the original i
age:

f 25fB,d
B
5 ~ f 1!~ f 1!. ~125!

An enhancement of the worms and other similar obje
is presented in imagef 3 , which is obtained by a subtractio
of the original image from the imagef 2 :

f 35 f 22 f 1 . ~126!

Figure 52 shows the inverse of imagef 3 for better visual-
ization.

The worm like objects are presented in imagef 4 ~Figure
55!, which is obtained by applying the threshold opera
on imagef 3 :

f 45~12< f 3<91!. ~127!

Our next subgoal is to separate the worms from the ot
extracted objects. Note that the main characteristic to
tinguish the worms from the other objects is their size,
we apply a similar operator to the one used to classify
ellipses~Figures 1 through 4!.

Image f 5 ~Figure 76! presents a simplified model of th
objects that preserves their lengths. This image was
tained by applying the skeleton by thinning on the ima
f 4 :

f 55uSA45 ,B45
~ f 4!u, ~128!

whereA45 and B45 are built from the parameters for th
homotopic skeleton given in Table 2.

Imagef 6 ~Figure 77! presents a shortening of the worm
model. This image is obtained by applying a pruning of t
skeleton:

f 65sC 45 ,D45

136 ~ f 5!, ~129!

Fig. 75 Keys.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 203
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Fig. 76 Skeleton.

Fig. 77 First pruning.

Fig. 78 Second pruning.

Fig. 79 Residue.
204 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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whereC 45 and D45 are built from the parameters for th
skeleton pruning given in Table 2.

The remaining lines are part of the worms so they can
used as markers to reconstruct them, but first it is neces
to separate them from the rounded objects. Imagef 7 ~Fig-
ure 78! presents the rounded objects that are obtained
applying once more a pruning of the skeleton:

f 75SC 45 ,D45
~ f 6!. ~130!

Imagef 8 ~Figure 79! presents the markers for the worm
that are the result of the subtraction of imagef 7 from f 6 :

f 85 f 62 f 7 . ~131!

Finally, image f 9 ~Figure 80! presents the filariosis
transmitters, which are obtained by the inf-reconstruct
of image f 4 from imagef 8 :

f 95gB, f 8
~ f 4!. ~132!

Figure 81 shows the composition of the segmented
age with the original image.

4 KHOROS System

KHOROS17,18 is a software environment designed for r
search on image processing. It has been created at the
partment of Electrical and Computer Engineering of t
University of New Mexico, Albuquerque, and has becom
very popular. According to recent statistics of th
KHOROS group, it has nearly 10,000 users around
world that can have support and exchange informat
through a very active mailing list.

Since image processing encompasses a wide spectru
applications, it has been designed from a very broad p

Fig. 80 Worms.

Fig. 81 Worms in the original image.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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spective. For example, it includes mechanisms for distr
uted computing, interactive visualization of many da
types, and suitable user interfaces.

One of the most powerful features of KHOROS is CAN
TATA, its high-level abstract interface. CANTATA is a
graphically expressed, data-flow oriented language
provides a visual programming environment for the syste
Data flow is an approach in which a program is describ
as a directed graph, where each node represents an o
tion ~or function! and each direct arc represent a path ov
which data tokens flow. A CANTATA program is calle
workspace. Figures 82, 83, and 84 are examples of wo
spaces.

KHOROS has been designed to be portable and ex
sible. It relies on existing standards~X Windows and
UNIX !, incorporates tools for software development a
maintenance~a high level user interface specification and
code generation tool set!, a flexible data exchange forma
tools to export and import standard data formats, and
algorithm library.

The user programs can be organized as independent
systems, called toolboxes, that can easily be integrate
the system. Usually, a new toolbox is deposited at f
.khoros.unm.edu and can be accessed by the communi
KHOROS users via anonymous ftp.

KHOROS has been extensively used19–22to perform im-
age processing research, algorithm development, and

Fig. 82 Workspace.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
t
.

ra-

-

-

n

b-
o

of

ta

visualization. In fact, the known applications cover a ve
broad spectrum: industrial inspection, medical diagno
optical measurement, remote sensing, semiconductor
cessing, optics, medical imaging, ecosystem analysis,
biology, etc.

5 Mathematical Morphology Toolbox for
KHOROS

We implemented MMach~a contraction for a morphologi
cal machine! for 1-D and 2-D gray-scale or binary image
as a KHOROS toolbox, where each family of morpholog
cal operators is presented as a submenu of the toolbox m
menu.

5.1 Architecture

Following the theory of mathematical morphology, most
the operators are built by composition of the element
operators and operations.

The dilations and erosions can be further decompose
terms of dilations and erosions by subsets of the elemen
square, but there are also available algorithms for eros
and dilation by a generic structural element. Yet in the c
of gray-scale image processing, the generic structural
ment may be flat or not.

The structural elements are represented by a special
structure. This structure is more general than the one u
to represent images, since the structural element doma
not necessarily rectangular. So, of course, images ma
converted to this structure, but the converse is not true

As the elementary operators for binary images ha
some additional properties over the corresponding ones
gray-scale images, different algorithms were chosen in e
case. Special algorithms for distance function, inf and s
reconstruction, labeling, and watershed are also availab

To simplify its use, the system has been designed to
data type oriented, that is, when executing a given ope
tion or operator that makes sense on different data type
switches automatically to the most efficient algorithm f
Fig. 83 Subroutine that performs the ASF filter (altfilter).
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 205
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Fig. 84 Subroutine that performs the contour extraction (contour).
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the current input data. This polymorphism property is qu
important, since it permits to represent the operators w
all their theoretical generality keeping the performance
its use.

We should also point out that all the operators built fro
dilations and erosions~characterized by structural ele
ments! are polymorphic. However, we present just the
nary definition for some of them, as some sup- and i
generatings, some thinnings and thickenings, and s
residues. We have adopted this presentation because
behavior of these operators on gray-scale images is not
known.

Complex operators can be built either as CANTATA
C programs, using main programs or subroutines of
available primitives.

Figure 82 presents the workspace constructed to s
the application example 1~detection of edges on noisy im
ages!. This workspace is composed of four icons: user
fined, which gets the original image; altfilter, which pe
forms the alternated sequential filtering; contour, wh
performs the edge extraction; and edit image, which op
a visualization window. Actually, the icons altfilter an
contour are data-flow subroutines presented in Figures
and 84.

5.2 Contents

The toolbox is composed by several groups of progra
relations, operations, structural elements, dilations and
sions, morphological filters, connected filters, residues, s
generating and inf-generating operators, and thinning
thickening~Table 1!.

The right choice of the parameters for these opera
gives a large number of tools to extract image informati
image sharpening and smoothing, threshold segmenta
elimination of particles that hit the image edges, closing
holes, size distributions, skeletons and their characteris
points ~triple, end, etc.!, geometrical segmentation and fi
tering, etc. For example, Table 2, which has been ada
from Ref. 3, p. 392 for the square grid, gives some use
pairs of structural elements for operators built from the s
and inf-generating operators.

MMach has some tools for the creation of structural
ements: small structural elements may be edited inte
tively; disks, semispheres, and cylinders may be defi
206 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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parametrically and images may be converted into struct
elements. A complete specification of a structural elem
involves the definition of its origin, so we have attended
this point: in a disk the origin is its center; in a sphere a
in a cylinder the origin is the center of its domain; and in
image the origin is the point (bn1/2c,bn2/2c), wheren1 and
n2 are the sizes of the image in the horizontal and verti
directions.

The composition of the skeleton by thinning built fro
the pair of structural elements

A5F 0 0 0

0 1 1

0 1 0
G and Bc5F 1 1 0

1 0 0

0 0 0
G ,

with the skeleton by thinning built from

A5F 0 0 0

1 1 1

0 1 0
G and Bc5F 0 1 0

0 0 0

0 0 0
G ,

gives a new interesting skeleton.16

For each program of the toolbox there is an online h
associated, which gives the definition of the operators an
set of well-known parameters to extract useful image inf
mation.

5.3 Algorithms for Erosions and Dilations Defined
by Structural Elements

Since the erosions and dilations defined by structural
ments are an important part of the kernel of the syste
considerable effort has been put on making them as fas
possible in current general purpose hardware. In orde
achieve a better performance, different algorithms w
chosen for binary and gray-scale images.

5.3.1 Dilation and erosion for binary images

The key factor used to implement fast erosion and dilat
algorithms~by structural elements! for binary images is the
inherent parallelism of the 32-bit bitwise operations, fou
in general purpose CPU instructions set.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



le-
by
le-
of
ral

it-
es

is,
the
ked
ing
es.
lle
ge

f th
ag
ns
sa

s a
2-

nts
iz

ruc
tar

d
g
the

ed

en
ons

ing
ro

of
pe

ase
op

ila

c-
me
hi

ata

f a
10

ms
p-
lgo-
on,

the

e
dis-

wo
ro-

wo
om-

the
he
o-
he
the
side
ss-
s

ale

both
hat

n-
der,

MMach: a mathematical morphology toolbox

Downl
As a particular consequence of Property 1, the imp
mentation of binary dilation and erosion can be made
translating the image by all the points of the structural e
ment and taking, respectively, the logical OR and AND
the translated images. By using this formulation, the pa
lelism can be easily achieved.

To use the intrinsic parallelism of the logical 32-bit b
wise AND and OR operations, we pack the binary imag
in sets of 32 pixels in a 32-bit integer.

As the packed image is stored in a row by row bas
vertical translations are efficiently handled by adding
current packed pixel address by the width of the pac
image. Horizontal translations are implemented by shift
and masking operations to shift 32-bit integer boundari

Using this approach we can compute 32 bits in para
with the additional benefit of reading and writing the ima
data in a more efficient packed binary pixel format.

In order to achieve more~added! performance, for op-
erators defined by structural elements that are subsets o
elementary square, the image is subdivided in nine im
regions: one middle, four corners, and four side regio
Each region is processed separately to avoid unneces
testing for image boundaries.

The KHOROS has a bit format that already support
packed image format. The implementation follows the 3
bit parallel algorithm described using structural eleme
that are subsets of the elementary square. Some optim
tions have been made for the limit cases, when the st
tural element is an empty set or the complete elemen
square.

5.3.2 Dilation and erosion for gray-scale images

Following the definition, the implementation of dilation an
erosion~by structural elements! can be made by translatin
the structural element over the input image and taking
local maximum and minimum.

By this approach, the neighborhood of each pixel ne
to be accessed; that is, it is necessary to accessn3N3M
array elements, wheren is the cardinality ofB, andN and
M are the number of rows and columns of the image.

Taking as structural element just subsets of the elem
tary square, this algorithm leads to good implementati
for gray-scale dilation and erosion.

The implementation is divided into ten cases, accord
to the cardinality of the structural element, from ze
~empty set! to nine ~the complete elementary square!. In
each case, the structural element points~i.e., the values for
local translations! are stored in a corresponding number
fast registers. The nested conditional expressions were o
to avoid unnecessary steps.

To achieve a better performance, as in the binary c
the image was subdivided in nine subregions and some
timizations were made for the limit cases.

5.3.3 Performance evaluation

Table 3 shows the performance evaluation for some d
tions and erosions in the binary and gray-scale cases.

The execution time for each operator, given in millise
onds ~ms!, has been calculated from measure of the ti
spent by a sequence of a thousand operators. The mac
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 T
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we used was a SUN SPARCstation-2 and the input d
were images of size 256325631 ~binary! and 2563256
38 ~gray scale!.

The speed-up of performing a dilation or an erosion o
binary image by the dedicated algorithm is between 8 to
times ~Table 3!.

5.4 Algorithms for Other Important Operators

In order to achieve a better performance, special algorith
were implemented for commonly used morphological o
erators. The operators implemented through special a
rithms are: distance function, inf- and sup-reconstructi
labeling, and watershed.

5.4.1 Distance function

The distance function algorithms implemented were
ones proposed by Soille~Ref. 23, p. 25!. They are based on
the following principles: identification of the pixels in th
edges of the image; and propagation of the computed
tance through a first-in, first-out queue.

When the notion of distance used is the Euclidean, t
distance images are computed, one for the horizontal p
jection and other for the vertical projection. From these t
distance projection images the Euclidean distance is c
puted.

The complexity of these algorithms depends on
number of 1 pixels in the input binary images, when t
number of 1 pixels increases the complexity of the alg
rithm increases. The time spent by the algorithm for t
Euclidean distance is almost twice the time spent by
city block and chessboard distances. For a square of
256, the time spent for computing the city block or che
board distance function of a 1 constant image through thi
algorithm was about 2 s on aSPARC station IPX.

5.4.2 Inf- and sup-reconstruction

The reconstruction algorithms implemented for gray-sc
images were the ones proposed by Vincent.13 These algo-
rithms have a hybrid nature, because they are based on
a sequential or recursive algorithm and an algorithm t
uses a queue of pixels.

The recursive algorithm is based on the following pri
ciples: the image pixels are scanned in a predefined or

Table 3 Performance of dilations and erosions.

Structural
Element

Binary Image
(ms)

Gray-scale Image
(ms) Speed-up

1 1 1

1 1 1 8.5 71.2 8.4

1 1 1

0 1 0

1 1 1 9.1 90.0 9.9

0 1 0

0 0 0

1 1 1 5.5 48.0 8.7

0 0 0
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generally raster or antiraster; and the new value of the
rent pixel, determined from the value of the pixel in th
neighborhood, is written directly in the same image, so t
it is taken into account when determining the new values
the as yet unconsidered pixels.

The algorithms which use a queue of pixels are based
the following principles:

• consider only the pixels which may be modified

• initializes by a first scanning that detects the pix
that may be modified

• information is propagated only in the relevant ima
parts.

The hybrid algorithm initiates with two scans of the r
cursive algorithm, then the algorithm that uses a queue
pixels is applied on the resulting image. The complexity
this algorithm depends strongly on the input images,
experimental results show it has been up to 15 times fa
than the algorithm built just from the gray-scale element
operators and operations.

5.4.3 Labeling

The labeling transforms a binary BYTE image into a gra
scale SHORT image, where each pixel of same conne
component of the binary image has the same value in
gray-scale image. The algorithm implemented was the
beling algorithm proposed by Serra~Ref. 3, p. 405!; that is,
the iteration~from the original binary image until this im
age is empty! of the following steps:

• identification of the first point of the input imag
~counting from left to right and from top to bottom!

• inf-reconstruction of the input image from the fir
point image

• labeling of the identified connected component

• subtraction of the identified connected compon
from the input image.

The inf-reconstruction step was implemented based
the representation of the objects by their contours and
dilation algorithm for this data structure.24 The subtraction
step has been eliminated by writing, during the reconstr
tion of the connected component, directly in the input i
age the label of the pixel.

The performance of this algorithm depends mainly
the number of 1 pixels in the input image, when this nu
ber decreases the algorithm performance increases. F
squareE of side 256, the time for labeling the one consta
image through this algorithm was about 2 s on aSPARC
station IPX.

5.4.4 Watershed

The watershed algorithm implemented was the one p
posed by Soille and Vincent.25 This algorithm simulates the
progressive flooding of the picture and is based on the
lowing principles: pixels are sorted in the increasing ord
of their gray values; and successive gray levels are p
cessed in order to simulate the flooding propagation.

A distributive sort technique combined with a bread
first scanning of each gray level allows an extremely f
208 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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performance of this algorithm. For example, the compu
tion of the watershed of a 2563256 gray-scale image by
this algorithm was about 4 s on aSPARC station IPX.

6 Comparison with Other Freely Available
Software for Mathematical Morphology

Based on the ‘‘Mathematical Morphology Digest,’’ main
tained since 1993 by H. Heijmans at web site http
www.cwi.nl/projects/morphology/, there is only one oth
freely available software for mathematical morphology,
R. A. Peters II, available at ftp:image.vuse.vanderbilt.e
pub/morph.tar.Z since 1993. The major advantages of
software are: operator polymorphism, consistent definit
of dilation and erosion, and compatibility with Khoros sof
ware platform. We use extensively the concept of opera
polymorphism. It means, for instance, we have just a sin
operator called dilation that deals with binary and gra
level images~8 and 16 bit! of one and two dimensions
using flat and nonflat structuring functions. This simplifi
the user interface to the software by reducing the numbe
available functions and by increasing the flexibility an
power of the operators without losing its overall cons
tency. Most of the time, a solution for a binary image pro
lem can also be used as a solution for gray-scale ima
without changing the name of the operators being used.
binary general case of erosion in Peters’ software is a
miss transform, which can be confusing for the mathem
cal morphology user.

The completeness of the set of operators and the sp
enhancements of MMach such as the 32 bit processing
binary images and queue based algorithms for labeling,
tance transform, watershed, and image reconstruction
features only available in high quality commercial so
wares.

7 Conclusion

This paper presents MMach, a KHOROS toolbox for ima
processing by mathematical morphology and several ap
cations of this system in image analysis. MMach increa
KHOROS potential by adding a set of high performan
tools for multiple purpose use.

The main characteristics of MMach are its hierarchic
decomposition structure and the polymorphism associa
to its operators. The first property gives high modular
and portability to the software, while the second one p
mits the representation of abstract concepts~operators de-
fined on general domains! keeping the efficiency of their
use.

The implemented elementary operations of mathem
cal morphology~running on a SPARC station 2! perform a
dilation or an erosion on a 2563256 image in about 8 ms
in the binary case, and 0.1 s in the gray-scale case.

For each main program of the toolbox there is an onl
help, which gives the definition of the operator and a se
well-known parameters useful for extracting image info
mation.

Since a high level operator can be built either as a
program or a CANTATA workspace, the toolbox is usef
for two main purposes: to solve real image process
problems and didactic applications.

At the moment, we are implementing a new version
MMach that will have an extension of the present set
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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operators for 3-D images and 2-D neighborhood graphs
well as a complementary set of morphological algorith
~granulometries, measures, geodesic distance transf
etc.!. An important advancement of the new version
MMach is that it will be an independent library that cou
have several different interfaces for Khoros, Matlab, Ma
ematica, etc.

Additionally, this paper has introduced the elementa
operators that perform expansion or shrinking of imag
and that are useful, for example, in the synthesis of arti
images.
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