CAPÍTULO 7

BALANÇO DE RADIAÇÃO COM DADOS AVHRR/NOAA-14

BERNARDO BARBOSA DA SILVA

DEPARTAMENTO DE CIÊNCIAS ATMOSFÉRICAS
DO CENTRO DE CIÊNCIAS E TECNOLOGIA
DA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

7.1 Introdução

Neste capítulo, será apresentando um método de cálculo do Balanço de Radiação à Superfície, usando dados do sensor AVHRR do satélite NOAA-14 (ver Cap. 1), baseado num algoritmo denominado: SEBAL (Surface Energy Balance Algorithm for Land), desenvolvido por Bastiaanssen (1995) e amplamente empregado em várias áreas irrigadas do globo. Mais recentemente, o SEBAL está sendo aplicado na bacia hidrográfica do Bear River, envolvendo os estados americanos de Wyoming, Idaho e Utah (Morse et al., 2000).

O Balanço de Radiação, como o termo sugere, numa superfície plana, horizontal e situada na superfície terrestre, representado aqui por R_{up}, consiste
no cômputo dos ganhos (fluxos descendentes) e perdas (fluxos ascendentes) radiativas. Os ganhos correspondem à radiação solar global \(R_s \) e radiação termal atmosférica \(R_{am} \); as perdas, por sua vez, compreendem a radiação solar refletida pela superfície \(R_{ref} \), a radiação termal emitida pela superfície \(R_{emit} \) e a radiação termal atmosférica refletida pela superfície \(R_{atm,ref} \). Dessa forma, o Balanço de Radiação Instantâneo, é dado por:

\[
R_n = (R_s - R_{ref}) + (R_{am} - R_{emit} - R_{atm,ref})
\]

onde:

todos os termos já foram introduzidos;

\(R_n \) corresponde à energia que será utilizada nos processos de aquecimento do ar e do solo, na fotossíntese e como calor latente.

Para situações instantâneas, como a sugerida acima, sua unidade é \(\text{Wm}^2 \); já para um intervalo de tempo de uma hora, ou até mesmo de um dia, utiliza-se comumente \(\text{KJ.m}^2 \) ou \(\text{MJ.m}^2 \). Observe-se que a integração de valores instantâneos de \(R_n \), com relação ao tempo, resulta em energia (joule) por unidade de área (m²), embora em inúmeros artigos e textos didáticos seja comum encontrar o uso inadequado de unidades do tipo \(\text{MJ.m}^2 \).dia, quando o correto seria apenas especificar o intervalo de tempo da integração e as unidades corretas, ou seja, radiação global diária em \(\text{MJ.m}^2 \), ou saldo horário de radiação em \(\text{MJ.m}^2 \).

A radiação solar refletida, presente na Eq. 7.1, pode ser obtida através do produto da refletância \(\alpha \) pela radiação solar incidente, enquanto a radiação termal atmosférica refletida, pelo produto \((1-\alpha) \). R_{atm}, o que possibilita exprimir a referida equação na seguinte forma:

\[
R_{n} = R_s (1-\alpha) + R_{atm} - R_{emit} - (1-\varepsilon_{o}) R_{atm}
\]

onde:

\(\varepsilon_{o} \) é a emissividade da superfície.

Os dois primeiros termos do lado direito da Eq. 7.2 representam o Balanço de Radiação de Ondas Curtas, com abrangência espectral de 0,3 a 3,0 \(\mu \text{m} \), podendo variar um pouco, dependendo da sensibilidade do instrumento de medida de \(R_s \).
Será reservado o termo *albedo*, para a reflectividade de uma superfície no domínio da radiação eletromagnética de 0,3 a 3,0 \(\mu \text{m} \), enquanto *refletância spectral* estará sendo usada para representar a reflectividade de uma superfície, ou de um pixel (elemento de imagem), nas bandas 1 (0,58 a 0,68 \(\mu \text{m} \)) e 2 (0,725 a 1,10 \(\mu \text{m} \)) do AVHRR/NOAA-14. Similarmente, o *Balânco de Radiação de Ondas Longas* está representado na Eq. 7.2, pelos seus últimos termos, e geralmente compreende o intervalo de 3,0 a 50,0 \(\mu \text{m} \).

Uma questão que poderia ser levantada, agora, é: como obter \(R_s \) a partir de medições realizadas pelo satélite NOAA-14, mais particularmente, com o seu radiômetro AVHRR?

7.2 Processamento

Através do SEBAL, podemos estimar \(R_s \) com base na refletância dos canais 1 e 2, nas temperaturas de brilho dos canais 4 e 5 do AVHRR, e algumas informações coletadas em dois pontos à superfície. Isso permite efetivar a correção atmosférica no cálculo do albedo superficial e a radiação de ondas longas emitida pela atmosfera, como será visto adiante.

No Quadro 7.1, estão representados os principais procedimentos utilizados no cálculo de \(R_s \), que envolvem diferentes algoritmos baseados em medições das bandas 1, 2, 4 e 5, do AVHRR/NOAA-14, e alguns dados de superfície.

Quadro 7.1 Fluxograma com as principais etapas de cálculo do Balânco de Radiação à Superfície.
O processamento de arquivos NOAA-AVHRR, disponíveis na internet e em instituições nacionais de pesquisas, ensinos ou operacionais, é uma tarefa que requer um conhecimento computacional mais apurado, uma vez que os arquivos em sua forma original (dados brutos) são apresentados no formato denominado Level 1b. Ademais, o usuário precisa estar familiarizado com parâmetros orbitais e conhecer a disposição e tipo de informação contida nos arquivos em formato HRPT, SHARP-1 e Level 1B. Esses arquivos se encontram em formato binário e contêm vários tipos de informações, tais como: o dia em que foi obtida a imagem, a hora de início da varredura da imagem, as coordenadas de posição de alguns pixels da área imageada etc. Além disso, são necessárias rotinas computacionais que possibilitem a separação das bandas espectrais contidas no arquivo, outras para efetuar a calibração radiométrica e outras para visualização das imagens. Atualmente, há um software disponível no mercado, o ENVI (Environment for Visualizing Images) (ENVI, 2003), que facilita sobremaneira o manuseio dos arquivos brutos nos formatos HRPT, SHARP-1 e Level 1B (ESA, 1989), pois executa a separação de todos os canais do AVHRR, tem recursos para correção geométrica e calibração radiométrica entre outros. De outro modo, o leitor teria de desenvolver suas rotinas computacionais com diferentes finalidades, como conversão binária para decimal, separação dos canais, correção geométrica, calibração radiométrica e visualização, o que constituiria, portanto, uma tarefa um tanto árdua para quem não estivesse muito familiarizado com linguagem de programação (Fortran, IDL, Pascal etc).

Neste capítulo, serão considerados apenas os aspectos teóricos associados aos algoritmos de cálculo dos diferentes componentes do Balanço de Radiação à Superfície, sem a preocupação com os aspectos computacionais inerentes ao processamento e visualização dos campos de albedo, temperatura de brilho etc.

7.2.1 Detalhamento das etapas

Etapa 1 - Determinação da refletância nas bandas 1 e 2 do AVHRR

A refletância de um pixel nas bandas 1 (0,58 a 0,68 μm) e 2 (0,725 a 1,10 μm) do AVHRR pode ser obtida diretamente através dos coeficientes de calibração (inclusão S e intercepto I) contidos em arquivos brutos nos formatos acima mencionados, obtidos diretamente da NOAA, além da intensidade no pixel de interesse (ou de cada um dos pixels de uma área específica de estudo). Mensalmente, a NOAA disponibiliza os valores
atualizados ([site: noaaasis.noaa.gov/NOAAS/ML/14update.html]) dos coeficientes S e I, que possibilitam obter a refletância segundo a expressão:

\[\alpha_i = \rho^2 (S_i C_{10,j} + I_i) \]

(7.3)

onde:

- \(\alpha_i \) é a refletância (%) do pixel correspondente à banda \(i \) (1 ou 2);
- \(\rho \), a distância Terra-Sol no dia em questão (em unidade astronômica);
- \(C_{10,j} \), a intensidade no pixel (em 10 bits);
- \(S_i \) e \(I_i \), os coeficientes de calibração da banda \(i \).

Os valores de \(\alpha_i \) obtidos através da Equação 7.3 representam a refletância medida no topo da atmosfera, isto é, baseada na radiância refletida por um pixel, mas medida no nível da órbita do AVHRR.

Para o cálculo de \(\rho \) existem várias opções em textos didáticos de meteorologia, astronomia e radiação atmosférica. No entanto sugere-se a utilização de uma expressão usada por Rao e Chen (1996), extraída de Paltridge e Platt (1976), que tem a seguinte forma:

\[\rho = 1/[1,00011 + 0,034221 \cos(\theta) + 0,001280 \sen(\theta) + \\
0,000719 \cos^2(\theta) + 0,000077 \sen^2(\theta)] \]

(7.4)

onde:

- \(\theta = 0,9863n \)
- \(n \) é o dia Juliano, sendo arbitrado \(n = 0 \) e \(n = 364 \), para os dias 1º/01 e 31/12, respectivamente.

A título de exemplo, em 14 de agosto de 2002, os valores dos coeficientes de calibração foram: \(S_1 = 0,1486 \) e \(I_1 = -6,0914 \) para a banda 1; \(S_2 = 0,1710 \) e \(I_2 = -7,0116 \), para a banda 2 do AVHRR/NOAA-14, conforme valores extraídos no site anteriormente mencionado.

Caso seja necessário determinar a radiância \(L_i \) correspondente a cada um dos pixels de uma área de interesse e não apenas a refletância \(\alpha_i \) das bandas 1 e 2 do AVHRR, pode-se obtê-la através da seguinte expressão:
\[
L_i = \frac{\alpha_i \cdot F_{\alpha_i} \cdot \cos(z)}{100 \pi \alpha_i}
\]

onde:

- \(L_i\) é a radiação (\(\text{mWm}^{-2}\cdot\text{sr}^{-1}\cdot\mu\text{m}^{-1}\));
- \(\pi\) (sr) número irracional (3,14159...);
- \(\omega_i\) é a largura efetiva (\(\mu\text{m}\)) da banda \(i\);
- \(F_{\alpha_i}\) é a radiação solar no topo da atmosfera, correspondente às bandas 1 e 2 do AVHRR.

Os valores de \(\omega_i\) são 0,129 \(\mu\text{m}\) e 0,244 \(\mu\text{m}\), para as bandas 1 e 2, respectivamente. Já os de \(F_{\alpha_i}\) são 207,1 \(\text{Wm}^{-2}\) para a banda 1 e 251,01 \(\text{Wm}^{-2}\) para a banda 2 (Rao e Chen, 1999).

Exemplo 1: Determinação da refletância espectral. Considere-se um pixel de uma cena, obtida em 14 de agosto de 2002, cuja intensidade nos canais 1 e 2 foram respectivamente iguais a 200 e 300. Para o referido pixel, obter: a) as correspondentes refletâncias, e b) as radiações associadas. Admitir que o ângulo zenital do Sol, no referido pixel, é de 30°.

Solução: Em 14 de agosto, \(n = 225\), o que implica termos \(\theta = 221,92°\). Logo, o valor de \(\rho\), segundo a Eq. 7.4, será igual a 1,02646. Nessa data, \(S_1 = 0,1486, S_2 = 0,1710, I_1 = -6,0914\) e \(I_2 = -7,0116\). Assim, teremos:

\[
\alpha_1 = \rho^2(S_1 + C_1 + I_1) = 1,02646^2(0,1486 + 0,1710 - 6,0914) = 24,90 \%, \quad \text{e} \\
\alpha_2 = \rho^2(S_2 + C_2 + I_2) = 1,02646^2(0,1710 + 0,1486 - 7,0116) = 46,66 \%
\]

Considerando-se que \(F_{o1}=207,1 \text{ Wm}^{-2}\), \(F_{o2}=251,01 \text{ Wm}^{-2}\), que \(\omega_1=0,129 \mu\text{m}\) e \(\omega_2=0,244 \mu\text{m}\), e os valores de \(\alpha_1\) e \(\alpha_2\) obtidos no item anterior, tem-se que:

\[
L_1 = \frac{24,90 \cdot 207,1 \cdot \cos 30°}{100 \pi \cdot 0,129} = 110,20 \text{ Wm}^{-2}\cdot\text{sr}^{-1}\cdot\mu\text{m}^{-1}
\]
Portanto, para o pixel em questão, as refletâncias correspondentes aos canais 1 e 2 do AVHRR, são iguais a 24,90 % e 46,66 %, respectivamente, e as correspondentes radiâncias são de 110,20 Wm$^{-2}$sr$^{-1}$μm$^{-1}$ e 132,32 Wm$^{-2}$sr$^{-1}$μm$^{-1}$.

Etapa 2 - Determinação do albedo planetário

Uma vez conhecidos os valores das refletâncias das bandas 1 e 2, que, como visto, foram baseados apenas nas observações realizadas pelo AVHRR no topo da atmosfera (na verdade no nível da órbita do NOAA-14, a cerca de 830 km de altura), procede-se ao cálculo do albedo planetário com base nos valores de α_1 e α_2. Para tanto, utiliza-se o algoritmo proposto por Hucek e Jacobowitz (1995), que é:

$$\alpha = 0,40 \alpha_1 + 0,43 \alpha_2 + 2,2$$ (7.6)

onde:

- α_1 (%) e α_2 (%) são as refletâncias das bandas 1 e 2 do AVHRR/NOAA-14;
- α (%) é o albedo planetário (broadband albedo, ou refletância na banda 0,3 a 3,0 μm, conforme terminologia da literatura científica).

Exemplo 2: Cálculo do albedo planetário. Para o pixel do Exemplo 1, pede-se que seja calculado o albedo planetário.

Solução: Uma vez que $\alpha = 0,40 \alpha_1 + 0,43 \alpha_2 + 2,20$, e que $\alpha_1 = 24,90\%$ e $\alpha_2 = 46,66\%$, tem-se que:

$$\alpha = 0,40 \alpha_1 + 0,43 \alpha_2 + 2,20 = 0,40 \times 24,90 + 0,43 \times 46,66 + 2,20 = 32,22\%$$

Assim, o albedo planetário no referido pixel é igual a 32,22%.
Etapa 3 - Determinação do albedo superficial

Existem vários algoritmos destinados ao cômputo do albedo superficial, a partir de medições realizadas nas bandas espetrais dos canais 1 e 2 do AVHRR. Um dos mais conhecidos é o proposto por Wydick et al. (1987), que relaciona as refletâncias espetrais do AVHRR, medidas no topo da atmosfera, com o albedo superficial. Um outro modelo muito utilizado é o proposto por Hucck e Jacobowitz (1995) que, como visto, possibilita estimar o albedo no espectro de 0,3 a 3,0 μm, com base nas refletâncias das bandas 1 e 2 do AVHRR, obtidas no topo da atmosfera. Mais recentemente, Liang (2002) obteve para vários sistemas (AVHRR, MODIS, ETM+ e outros) equações de transformação da refletância de diferentes bandas espetrais de cada um daqueles sistemas, em albedo superficial. Todas as parametrizações apresentadas se aplicam às refletâncias espetrais à superfície, quando feitas as devidas correções atmosféricas. Song e Gao (1999) também propuseram um método de conversão das refletâncias espetrais do AVHRR em albedo superficial, com resultados muito consistentes. Este seu modelo baseou-se em medições do albedo da superfície e refletâncias espetrais medidas no topo da atmosfera, corrigidas com o modelo de transferência radiativa LOWTRAN – 7 (Huffman et al., 1989).

Em virtude dos valores de \(\alpha_1 \) e de \(\alpha_2 \), obtidos com a Eq. 7.3, não terem sido submetidos a qualquer processo de correção atmosférica, utilizam-se os procedimentos propostos por Bastiaanssen (1995) na obtenção do albedo superficial corrigido, que é extremamente prático e tem sido aplicado em várias áreas irrigadas. Para utilizá-lo, consideraremos que o albedo corrigido de um dado pixel à superfície será dado por:

\[
\alpha_{CO} = \frac{\alpha - a}{b} \quad (7.7)
\]

onde:

\(\alpha \), neste caso em valor absoluto, é o albedo não-corrigido

os coeficientes \(a \) e \(b \) podem ser determinados a partir do conhecimento do \(\alpha_{CO} \), de dois diferentes pixels à superfície e dos seus correspondentes valores no topo da atmosfera.

Fisicamente, o coeficiente \(a \) corresponde à refletância atmosférica para a
radiação de ondas curtas, enquanto b corresponde ao quadrado da transmitância atmosférica de ondas curtas (Bastiaanssen, 1995).

A questão que passa a ser da maior importância é aquela relativa à escolha dos dois pixels. Primeiro, em virtude da necessidade do conhecimento de suas coordenadas geográficas e de um suporte de software que possibilite ao usuário identificá-los com precisão durante a visualização da imagem do albedo planetário. Segundo, como já mencionamos, há a necessidade do conhecimento do albedo superficial dos referidos alvos. Nesse sentido, recomenda-se que, sempre que possível, sejam utilizados corpos de água de grandes dimensões, como lagos, grandes represas etc., para a escolha de um dos pixels a serem selecionados.

Uma vez identificados os alvos e os pixels correspondentes, procede-se ao cálculo dos coeficientes, cujos valores são extensivos aos demais pixels da área de interesse.

Exemplo 3: Cômputo do albedo corrigido. Considere-se uma cena do Perímetro Irrigado Nilo Coelho, nas vizinhanças de Petrolina, PE, e dois pixels correspondentes 1) a um ponto sobre a represa de Sobradinho e b) o outro localizado sobre um pomar de mangueiras. Admita-se que os valores de a na água da represa e no pomar tenham sido iguais a 0,07 e 0,13, respectivamente. Sabendo-se que os valores corrigidos do albedo à superfície dos dois alvos são iguais a 0,06 e 0,18, respectivamente, obtenha os valores de a e b, e uma expressão para o α corrigido de todos os demais pixels da imagem.

Solução: Para a água, obtém-se a seguinte expressão, baseada na aplicação da Equação 7.7: a + 0,06.b = 0,07. Já para o pomar de mangueiras, obtém-se a expressão: a + 0,18.b = 0,13. Resolvendo-se o sistema formado por essas duas equações, conclui-se que a = 0,04 e b = 0,50. Dessa forma, a expressão geral de cálculo do albedo corrigido de cada pixel à superfície, baseado nos valores dos pixels obtidos no topo da atmosfera, será:

\[
\alpha_{co} = \frac{\alpha - 0,04}{0,50}
\]

Sugere-se que o leitor calcule o albedo corrigido de um pomar de videiras, sabendo que o seu albedo não-corrigido é igual a 0,14 e que são válidas as condições atmosféricas que resultaram na expressão acima (Resposta: \(\alpha_{co} = 0,20\)).
Etapa 4 - Obtenção da temperatura de brilho dos canais 4 e 5 do AVHRR

Para se obter a temperatura de brilho de um dado pixel, com base em medições realizadas com o AVHRR/NOAA-14, faz-se necessário quantificar a radiação emitida por esse pixel. Nesse sentido, denomina-se *Calibração Radiométrica* dos canais termais 4 (10,5 a 11,5 µm) e 5 (11,5 a 12,5 µm), do AVHRR/NOAA-14, ao processo de conversão da intensidade (C_{10}) de cada pixel, que como é sabido varia de 0 a 1023, em radiação monocromática média, L_{2p}, em unidades mW/\(m^2\cdot sr\cdot cm^{-1}\), em que i compreende as bandas 3, 4 e 5. Como o interesse é estimar a temperatura no pixel, utilizam-se apenas os canais 4 e 5, que são os mais utilizados nos algoritmos de cálculo da temperatura da superfície, T_0. Ademais, considera-se que o leitor dispõe de arquivos em formato *Level 1B*. Assim sendo, a obtenção de L_{2p} será dada pela expressão:

$$L_{2p} = S_i C_{10} + I_i$$ \(7.8\)

onde:

- S_i, é a inclinação da reta de calibração [mW/(m2·sr·cm$^{-1}$·count)];
- I_i, o intercepto [mW/(m2·sr·cm$^{-1}$)];
- C_{10}, a intensidade do pixel.

Os valores de S_i e I_i, extraídos de arquivos *Level 1B*, devem ser reescalonados, isto é, reduzidos à escala de valores das unidades constantes na Eq. 7.9 e, por essa razão, devem ser divididos por 2^{30} e 2^{25}, respectivamente.

Alguns detalhes do processo de calibração dos canais termais foram suprimidos, mas é importante registrar que, em operação, o AVHRR realiza medições da radiação de cada pixel à superfície e, ao mesmo tempo, do *espaço* e de um *alvo interno* de referência, este último tendo a sua temperatura medida por um conjunto de termômetros de resistência de platina. Com base nesses dois pontos, são obtidos os valores correspondentes de S_i e I_i, e esse procedimento possibilita uma calibração continuada dos canais termais AVHRR, o que não ocorre com os canais reflectivos (1 e 2), que têm suas calibrações efetivadas com base em dados de alvos à superfície (Rao e Chen, 1996; 1999).

Os dados de radiação obtidos no processo supramencionado devem ser ainda submetidos a um procedimento de correção que considera a não-linearidade
entre os sinais produzidos pelo AVHRR quando direcionado para o espaço e um alvo interno de referência, com radiância conhecida. Para obtenção da radiância corrigida, utiliza-se a expressão (Kidwell, 1998):

\[L_{\lambda,i,cor} = A_i L_{\lambda,i} + B_i L_{\lambda,i}^2 + C \] \hspace{1cm} (7.9)

onde:

A, B e C são coeficientes obtidos antes do lançamento do satélite, cujos valores para o NOAA-14 são mostrados na Tab. 7.1.

Tab. 7.1 Coeficientes de Calibração Não-Lineares da Radiância Termal dos Canais 4 e 5 do AVHRR-NOAA-14

<table>
<thead>
<tr>
<th>CANAIS TERMAIS</th>
<th>COEFICIENTES DE CALIBRAÇÃO NÃO-LINEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Canal 4</td>
<td>0,92378</td>
</tr>
<tr>
<td>Canal 5</td>
<td>0,96194</td>
</tr>
</tbody>
</table>

Fonte: Kidwell, 1998; Ouaidrari et al., 2002

De posse das radiâncias corrigidas, obtém-se a Temperatura de brilho, com base na seguinte expressão:

\[T_i = \frac{C_i \nu_i}{\ln(1 + \frac{C_2 \nu_i^2}{L_{\lambda,i,cor}})} \] \hspace{1cm} (7.10)

onde:

\[C_i = 1,1910659 \times 10^5 \text{ mW}/(m^2sr.cm^1) \]

\[C_2 = 1,438833 \text{ cm.K} \] são constantes

\[\nu_i \] é o número de onda correspondente à porção central do intervalo espectral da referida banda.
Para temperaturas na faixa de 270 a 310 K, os valores de \(v \) são iguais a 929,3323 cm\(^{-1}\) e 835,1647 cm\(^{-1}\), para os canais 4 e 5, respectivamente. Essa faixa de temperaturas é usada para extração de temperatura da superfície do mar. Para a faixa de 290 a 330 K, que é mais representativa dos valores obtidos para a região Nordeste do Brasil, tem-se \(v_4 = 929,5878\) cm\(^{-1}\) e \(v_5 = 835,374\) cm\(^{-1}\). É importante assinalar que a temperatura obtida através do procedimento acima ainda não corresponde à temperatura da superfície, uma vez que subsequentemente devem ser processadas a correção atmosférica e de emissividade de cada pixel.

Exemplo 4: Cálculo da temperatura de brilho. Considere-se que a intensidade de dado pixel do canal 4 é igual a 350 counts. De posse dessa informação, obtenha a temperatura de brilho correspondente.

Solução: Admita-se que os valores de \(S_4 \) e \(I_4 \), extraídos de arquivo em formato 1b, tenham sido iguais a -171.966,195 e 667,267,071, respectivamente. Ao serem reescalonados, seus valores tornam-se iguais a: \(S_4 = -0,160156 \text{ mW/} (\text{m}^2 \cdot \text{sr}^3 \cdot \text{cm} \cdot \text{counts}) \) e \(I_4 = 159,088867 \text{ mW/} (\text{m}^2 \cdot \text{sr}^3 \cdot \text{cm}^3) \). Assim, a radiância não-corrigida será igual a:

\[
I_{\lambda_4} = -0,160156 \times 350 + 159,088867 = 103,03427 \text{ mW/} (\text{m}^2 \cdot \text{sr}^3 \cdot \text{cm})
\]

Em seguida, deve-se proceder à correção devido à não-linearidade, ou seja:

\[
I_{\lambda_4,\text{corr}} = 0,92378 \times 103,03427 + 0,0003822 \times 103,03427^2 + 3,72 \text{ mW/} (\text{m}^2 \cdot \text{sr}^3 \cdot \text{cm}^3)
\]

\[
= 102,95846 \text{ mW/} (\text{m}^2 \cdot \text{sr}^3 \cdot \text{cm}^3)
\]

Em seguida, calcula-se a temperatura de brilho usando-se a Eq. 7.11, levando-se em consideração que \(v_4 = 929,5878 \text{ cm}^{-1} \), ou seja:

\[
T_4 = \frac{1,438833 \times 929,5878}{\ln(1 + \frac{1,1910659 \times 10^{-5} \times 929,5878^3}{102,95846})} = 294,44
\]
Portanto, a temperatura de brilho do canal 4 será igual a 294,44 K. O leitor deve estar atento ao fato de que os coeficientes de calibração dos canais termais mudam com o tempo e que, para cada dia, os valores podem sofrer pequenas alterações. Sugere-se que o leitor calcule a temperatura de brilho do canal 4, para a faixa de temperatura de 290-320 K, num pixel cuja intensidade é de 338 counts. (Resposta: T = 295,64 K).

Etapa 5 - Obtenção da temperatura da superfície

O conhecimento da temperatura da superfície, \(T_s \), é extremamente útil na deteção e monitoramento do estresse hídrico de culturas, no monitoramento de secas, na detecção de queimadas, no monitoramento da superfície do mar, em estudos de mudanças climáticas, dentre outras aplicações, particularmente através de imagens de satélites, que têm grande cobertura espacial e, no caso do AVHRR/NOAA-14, produzem duas imagens por dia de uma mesma área de interesse. Ademais, os valores de \(T_s \) são indispensáveis ao cômputo do Balanço de Radiação à Superfície, como será visto mais adiante.

Ao se utilizar o sensoramento remoto para obter \(T_s \), há que se considerar os problemas resultantes dos efeitos de absorção atmosférica e da emissividade da superfície, para cada pixel da imagem. Nesse sentido, têm sido propostos diferentes algoritmos visando à correção desses dois efeitos, de modo a proporcionar ao leitor valores de \(T_s \) mais confiáveis.

Muitos estudos têm sugerido que a emissividade da superfície pode vir a ser a maior fonte de erros no cálculo de \(T_s \) (Becker, 1987). O problema é que, rigorosamente falando, não existe ainda um método plenamente satisfatório.

Vázquez et al. (1997) empreenderam uma comparação entre diferentes algoritmos destinados ao cálculo de \(T_s \) e concluíram que o algoritmo de Ulivieri et al. (1994) foi o que apresentou maior precisão. O de Price (1984) foi o menos preciso, apresentando os maiores erros nas estimativas quando comparados com valores observados (medidos a partir de uma grande campanha experimental em que foram medidas temperaturas do solo, na profundidade de 0,05 m, o que, a depender do horário da passagem diurna do satélite, segundo Vásquez et al. (1997), oferece uma boa estimativa da temperatura da superfície). Constatou-se, também, que outro algoritmo, proposto por Kerr et al. (1992), que considera a determinação da emissividade em função do NDVI, produziu valores de \(T_s \) muito próximos daqueles obtidos com o algoritmo de Ulivieri et al. (1994).

Alguns pesquisadores comprovaram que a inclusão do conteúdo total de vapor de uma coluna de ar acima de cada pixel, no algoritmo adotado para o
cômputo de T_o, resulta em grande diminuição dos erros provocados pela interferência atmosférica no valor final de T_o (Harris e Mason, 1992).

Um dos métodos mais utilizados no cômputo da T_o é o denominado de *split-window*, que possibilita o cálculo de T_o com base nos valores da temperatura de brilho dos canais 4 e 5 do AVHRR (Uliviêri et al., 1994; Price, 1984; Vázquez et al., 1997). Uma das vantagens do *split-window* deve-se ao fato de que a atenuação atmosférica que ocorre na banda espectral centrada em 12,0 μm é maior do que aquela que ocorre na banda espectral centrada em 11,0 μm (Ouaindari et al., 2002). Assim, havendo um aumento da atenuação atmosférica (provocada pelo aumento da concentração de vapor d'água atmosférico, por exemplo), seria constatado um aumento na diferença entre as radiâncias espectrais das referidas bandas. Por outro lado, admitindo-se que as radiâncias emitidas pela superfície não teriam sofrido qualquer alteração, as diferenças nos valores das radiâncias no nível do satélite constituem a própria constatação do aumento da atenuação atmosférica e, por conseguinte, compreenderiam uma medida de tal efeito. É, por isso, que via de regra, são utilizadas as diferenças entre as temperaturas de brilho entre os canais 4 e 5 do AVHRR, nos modelos destinados à obtenção de T_o. Esse método tem como grande vantagem a simplicidade, e alguns algoritmos mais recentes já chegam a apresentar precisão de ± 1°C (Ouaindari et al., 2002).

A seguir, serão apresentados dois métodos de cômputo de T_o, propostos por Ouaindari et al. (2002), que empreenderam um grande esforço para avaliar a performance de dois métodos muito usados na determinação de T_o, os de Uliviêri et al. (1994) e Sobrino et al. (1997). Para tanto, foram consideradas simulações de diferentes condições atmosféricas (várias concentrações de vapor d'água e temperaturas atmosféricas), diferentes temperaturas e emissividades da superfície. O grande objetivo daquela pesquisa era obter um modelo linear e outro quadrático, com possibilidade de aplicação em diversos ambientes naturais, diferentemente do que ocorre com alguns algoritmos que se aplicam apenas a certos tipo de cobertura superficial. No estudo, foram obtidos coeficientes que podem ser usados amplamente em diferentes áreas do globo, apresentados abaixo. Sugere-se que o leitor consulte o referido artigo para que fique mais familiarizado com as técnicas e os problemas mais comuns associados ao cômputo da temperatura da superfície.

Algoritmo baseado no modelo de Uliviêri et al. (1994)

Neste modelo, a temperatura da superfície é obtida em função da combinação linear da diferença entre as temperaturas de brilho obtidas com os canais termais 4 e 5 do AVHRR/NOAA-14, além do conteúdo total de vapor de
uma coluna de ar que se estende da superfície ao topo da atmosfera (TV) e da emissividade ε de cada pixel. Sua forma é do tipo:

\[T_o = A.T_s + B(T_s - T_0) + (C.TV + D)(1 - \varepsilon) \] \hspace{1cm} (7.11)

onde:

T_s e T_0 são as temperaturas de brilho dos canais 4 e 5 do AVHRR/NOAA-14; para TV variando de 0 a 7 g.cm², tem-se A = 0,9947, B = 2,6212, C = 2,5551 e D = 52,1904 (Ouaidrari et al., 2002).

Algoritmo baseado no modelo de Sobrino et al. (1997)

Este modelo é resultado de modificações introduzidas por Ouaidrari et al. (2002) no algoritmo proposto por Sobrino et al. (1997) e se apresenta sob a seguinte expressão:

\[T_o = A + B.T_s + C(T_s - T_0) + D(T_s - T_0)^2 + (E.TV + F)(1 - \varepsilon) \] \hspace{1cm} (7.12)

onde:

AVHRR/NOAA-14 e TV variando de 0 a 7 g.cm², tem-se A = 12,3626, B = 0,9549, C = 1,8474, D = 0,2038, E = 2,0049 e F = 52,3183.

Os coeficientes de ambos os algoritmos apresentados acima sofrem ligeiras modificações quando são admitidos valores de TV na faixa de 0 a 4,0 g.cm² (Ouaidrari et al., 2002).

Exemplo 5: Obtenção da temperatura da superfície. Considere-se um dado pixel em que foram obtidas as refletâncias das bandas 1 e 2 do AVHRR/NOAA-14 iguais aos valores do Exemplo 1. Admitindo-se que as temperaturas de brilho desse mesmo pixel eram de T_s = 294,5 K e T_0 = 292,5 K e que o conteúdo total de vapor acima da área imagemada era de 5,0 g.cm², pede-se que seja calculada a temperatura da superfície.
Solução: Para o cálculo de T_o devem-se estimar, com imagens AVHRR, as emissividades incluídas nas Eqs. 11 e 12, que são obtidas segundo as seguintes expressões (Cihlar et al., 1994):

\[
\Delta \varepsilon = \varepsilon_4 - \varepsilon_5 = 0,01019 + 0,0134 \ln(NDVI) \tag{7.13}
\]

e

\[
\varepsilon_4 = 0,9897 + 0,039 \ln(NDVI) \tag{7.14}
\]

onde:

NDVI é obtido com base nas refletâncias das bandas 1 e 2 do AVHRR, segundo a expressão:

\[
NDVI = \frac{(\alpha_2 - \alpha_1)}{\alpha_2 + \alpha_1} \tag{7.15}
\]

Logo, o NDVI do referido pixel será igual a:

\[
NDVI = \frac{(46,66 - 24,90)}{(46,66 + 24,90)} = 0,30
\]

Com esse NDVI determinam-se, segundo as Eq. 13 e 14, $\Delta \varepsilon$ e ε_4, o que resulta nos seguintes valores: $\varepsilon_4 = 0,94275$, $\Delta \varepsilon = -0,00594$, $\varepsilon_5 = 0,94869$ e $\varepsilon = 0,94572$ (média aritmética de ε_4 e ε_5). Agora, podemos usar os modelos de Ulivieri et al.(1994) e Sobrino et al. (1997), modificados por Ouaidrari et al. (2002), quais sejam:

\[
T_o = 0,9947 \cdot 294,5 + 2,6212 \cdot (294,5 - 292,5) + (2,5551,5,00 + 52,1904 \cdot (1 - 0,94572)
\]

que resultam em $T_o = 301,71 \, K$ e
\[T_o = 12.3626 + 0.9549.294.5 + 1.8474(294.5 - 292.5) \]
\[+ 0.2038(294.5 - 292.5)^2 + (2.0049.5.0 + 52.3183)(1 - 0.94572) \]

ou seja, \(T_o = 301.47 \text{ K} \).

Como visto, os dois modelos proporcionam valores muito próximos. Sugere-se que seja determinada a \(T_o \) nas mesmas condições, segundo os mesmos algoritmos, mas com conteúdo de vapor igual a 2,5 g/cm\(^2\). O que ocorreu com os valores de \(T_o \) ?

Etapa 6 – Cômputo da radiação atmosférica

Uma componente importante do \(R_o \) é aquela relacionada à radiação de ondas longas emitida pela atmosfera na direção da superfície, \(R_{awn} \). Dependendo da extensão espacial e orografia da área imagemada sobre a qual está sendo realizado o *Balancio de radiação*, pode-se, sem perda de precisão, supor que medições de \(R_{awn} \) realizadas em alguns pontos à superfície com pirgeômetros ou saldo radiômetros especiais, são admitidas constantes em toda a área imagemada. É fundamental que tais medições sejam realizadas no momento da passagem do satélite, ou muito próximo desse evento.

Para condições de céu limpo, Bastiaansen et al. (1998) sugerem que a radiação termal da atmosfera, dirigida para a superfície, seja calculada segundo a expressão:

\[R_{awn} = 1.08.[-\ln(t_a)]^{0.265} \sigma \cdot T_o^{4} \tag{7.16} \]

onde:

- \(t_a \) é a transmissividade atmosférica à radiação de ondas curtas;
- \(\sigma \), a constante de Stefan-Boltzmann;
- \(T_{o,ref} \) é a temperatura da superfície, obtida em um pixel de referência (recomenda-se a sua escolha sobre uma área bem irrigada).

A transmissividade \(t_a \) pode ser obtida quando se obtém a correção atmosférica dada pela Eq. 7.7. No Exemplo 3, o valor da transmissividade seria igual a 0,71, já que o denominador da Eq. 7.7 corresponde ao quadrado de \(t_r \).
Diante da impossibilidade de medições de R_{atm}, pode-se recorrer a estimativas baseadas em medições da temperatura do ar e umidade relativa realizadas em abrigos meteorológicos de estações convencionais e/ou automátiças e a modelos clássicos, disponíveis na literatura científica.

Tendo em vista que o interesse é o Balanço de radiação à superfície, deve-se efetivá-lo em dias de "céu claro". Nesse sentido, um modelo que tem apresentado resultados muito confiáveis é aquele proposto por Brutsaert (1975), que foi calibrado e refinado em estudo conduzido por Sridhar e Elliott (2002). Com base nesse estudo recente, pode-se estimar R_{atm} (W/m2) segundo a expressão:

$$R_{\text{atm}} = 1,31 \left(\frac{10. e_a}{T_a} \right)^{1/7} \sigma T_a^4$$

onde:
- e_a é a pressão parcial de vapor d'água (KPa);
- T_a, a temperatura do ar (K), ambos medidos em abrigo meteorológico.

Em sua forma original, a Eq. 7.17 apresentava coeficiente 1,27 (Brutsaert, 1975), mas o referido modelo foi aprimorado e validado com base em medições independentes efetuadas com saldo radiométrico Kipp Zonnen, durante um ano de dados coletados em cinco diferentes localidades de Oklahoma, EUA. Em outro estudo, igualmente importante, Izionon e Mayer (2002) avaliaram os componentes da radiação de ondas longas e concluíram que R_{atm} diminuíra com a altitude, apontando a redução da temperatura do ar, do conteúdo de vapor d'água e do CO$_2$, como as principais causas de tal diminuição.

Exemplo 6: Determinação de R_{atm}. Admitindo-se que, durante a passagem do NOAA-14 em dada área, a temperatura do ar – T_a e a umidade relativa do ar – UR eram de 27°C e 50%, respectivamente, obter a radiação de onda longa atmosférica – R_{atm}, segundo o modelo de Brutsaert (1975), modificado por Sridhar & Elliott (2002).

Solução: Com base nos dados acima, pode-se obter a tensão de vapor d'água – e, sabendo-se que $UR = (e_a/e_s)\times100\%$. Logo, tem-se que $e_a = UR e_s / 100$. O cálculo da tensão de saturação do vapor d'água – e_s depende apenas da temperatura do ar e pode ser obtido segundo (Rosenberg et al., 1983):
\[e_s = 0.61078 \cdot \exp \left(\frac{17,269 \cdot T_a}{237,3 + T_a} \right) \] \hspace{1cm} (7.18)

Portanto:

\[e_s = 0.61078 \cdot \exp \left(\frac{17,269.27 \cdot 0}{237,3 + 27} \right) = 3.56 \text{ KPa} \]

Assim, \(e_s = 50 \times 3.56 / 100 = 1.78 \text{ KPa} \). Dessa forma, pode-se calcular \(R_{\text{sun}} \), segundo:

\[R_{\text{sun}} = 1.31 \left(\frac{10.1,78}{300,11} \right)^4 = 402,66 \text{ W.m}^{-2} \]

Logo, \(R_{\text{sun}} \) seria igual a 402,66 W.m\(^{-2}\).

Etapa 7 – Cômputo do Balanço de Radiação à Superfície

Como mencionado no início deste capítulo, os dois primeiros termos da Eq. 7.2 representam o *Balanço de Radiação de Ondas Curtas*, que pode ser obtido com base no albedo superficial \(\alpha \), tratado na Etapa 3, e na radiação solar incidente, \(R_s \). Esta, por sua vez, pode ser determinada segundo expressão proposta por Bastiaanssen et al. (1998), qual seja:

\[R_s = \frac{S_o \cdot \cos(z) \cdot T_a}{\rho^2} \] \hspace{1cm} (7.19)

onde:

- \(S_o \) é a constante solar \((1.367,0 \text{ W.m}^{-2})\);
- \(z \), o ângulo zenital do Sol;
- \(\rho \), a distância Terra – Sol em unidade astronômica;
- \(T_s \), a transmissividade atmosférica.
uma alternativa para a determinação de \(R_e \) consiste em sua obtenção em registros de uma estação meteorológica automática instalada no interior da área de estudo, que possa representar adequadamente a radiação solar incidente na cena estudada. Dessa forma, o Balanço de Ondas Curtas ficaria bem determinado.

Quanto aos termos do Balanço de Ondas Longas, incluídos na Eq. 7.2, falta apenas mostrar como calcular a radiação emitida por cada pixel, o que pode ser feito segundo a seguinte expressão:

\[
R_{em} = \varepsilon \sigma T^4
\]

onde:

\(\varepsilon \) é a emissividade de cada pixel;
\(\sigma \) é a constante de Stefan-Boltzmann \((5,67 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4})\);
\(T \) a temperatura do pixel (K).

A emissividade pode ser calculada com base nos valores do NDVI de cada pixel, que é função da reflectividade dos canais 1 e 2, já discutidos na Etapa 1, e algoritmo proposto por Van de Griend e Owe (1993), qual seja:

\[
\varepsilon = 1,009 + 0,047 \ln(NDVI)
\]

que deve ser aplicado aos pixels com NDVI maior que zero.

Assim, ficam determinados todos os termos constantes no Balanço de Radiação à Superfície. Como o leitor pode verificar, a realização do Balanço de Radiação à Superfície requer condições especiais de nebulosidade e pode ser obtida a partir de medições dos canais refletivos (1 e 2) e dos termais (4 e 5) do AVHRR/NOAA-14, complementadas com algumas informações de superfície e diversos algoritmos. Ademais, é imprescindível que sejam efetuadas correções atmosféricas às radiações que alcançam o AVHRR, seja usando algum código de transferência radiativa, seja através de modelos empíricos, geralmente aplicados a condições específicas de cobertura vegetal e atmosféricas.

Exemplo 7: Determinação do Balanço de Radiação. Considere-se um pixel imagemado pelo AVHRR/NOAA-14, em 14 de agosto de 2002, com albedo
\(\alpha_{co} = 0,20 \), \(NDVI = 0,30 \), \(T_c = 294,5 \, \text{K} \), e que a temperatura do ar \(T_a \) e a umidade relativa do ar \(UR \), em abrigo meteorológico localizado sobre este, sejam respectivamente iguais a \(27^\circ \text{C} \) e \(50 \% \). Admitindo-se que o ângulo zenital do Sol no instante da passagem do satélite era de \(30^\circ \) e as informações acima, obter o saldo de radiação \(R_o \) sobre o referido pixel.

Solução: Como apresentada anteriormente, a expressão de cômputo do Balanço de Radiação, é a seguinte:

\[
R_o = R_s(1 - \alpha) + R_{adm} - R_{emit} - (1 - \varepsilon_o)R_{adm}
\]

Precisamos, pois, determinar \(R_s \), \(R_{adm} \), \(R_{emit} \) e \(\varepsilon_o \). Considerando-se os dados do Exemplo 3, podemos deduzir que a transmissividade atmosférica de onda curta \(t_a \) é igual a 0,71. Logo, \(R_s \) pode ser obtido segundo a Eq. 7.19:

\[
R_s = S_o \cos(z) \cdot t_a / \rho^2
\]

\[
R_s = 1367 \cos(50^\circ) \cdot 0,71/1,0264^2 = 797,86 \, \text{W.m}^{-2}
\]

De acordo com o Exemplo 6, a \(R_{adm} \) será igual a \(402,66 \, \text{W.m}^{-2} \), uma vez que \(T_c \) e \(UR \) são iguais aos valores do referido exemplo. Para um \(NDVI = 0,30 \), tem-se que a emissividade do pixel será: \(\varepsilon_o = 1,009 + 0,047 \ln(0,3) = 0,9524 \) (de acordo com a Eq. 7.20). Assim, teremos:

\[
R_o = 797,86 (1 - 0,20) + 402,66 - 0,9524 \times 5,67 \times 10^8 \times 294,4^4 - 402,66 (1 - 0,9524) \, \text{W.m}^{-2}
\]

ou seja, \(R_o = 616,13 \, \text{W.m}^{-2} \).

7.3 Considerações Finais

Espera-se que as referências bibliográficas apresentadas possibilitem ao leitor, interessado em mais detalhes acerca dos procedimentos abordados e em fazer uso efetivo das técnicas aqui consideradas, o nível de conhecimento indispensável ao uso do sensoriamento remoto aplicado aos estudos que dependem do conhecimento do balanço de radiação e das variáveis aqui abordadas.
É importante destacar que a efetivação do Balanço de Radiação à Superfície requer a utilização de um software que disponha de recursos que possibilitem a utilização de operações matemáticas do tipo exponencial, logaritmo etc., entre duas ou mais imagens (diferentes canais) e propicie uma visualização adequada das diferentes variáveis integrantes no processo de obtenção do R. No Brasil, já há várias opções, inclusive uma desenvolvida por pesquisadores brasileiros (o SPRING), que o usuário certamente irá utilizar, caso queira efetivamente aplicar os algoritmos aqui abordados.