CONSTRUCTIVE DECOMPOSITION OF FUZZY MEASURES IN TERMS OF POSSIBILITY OR NECESSITY MEASURES

Gerald Jean Francis Banon

Instituto Nacional de Pesquisas Espaciais – INPE Divisão de Processamento de Imagens – DPI CP 515 12 201–970, São José dos Campos, SP, Brazil

São José dos Campos, July, 1995

Content

INTRODUCTION

AXIOMATIC DEFINITION OF POSSIBILITY AND NECESSITY MEASURES

EXAMPLES OF POSSIBILITY AND NECESSITY MEASURES

CHARACTERIZATION OF POSSIBILITY MEASURES

CHARACTERIZATION OF NECESSITY MEASURES

FUZZY MEASURE DECOMPOSITION

MINIMAL FUZZY MEASURE DECOMPOSITION

EXAMPLE OF A PROBABILITY MEASURE DECOMPOSITION IN TERMS OF POSSIBILITY MEASURES

INTRODUCTION

The search for uncertainty models culminates at the end of the seventies with the paper by Zadeh on the *Theory of Possibility*.

Among the popular models are the one based on *probability measures*, *possibility measures* and its dual version based on *necessity measures*.

These models are interesting because, as pointed out by Nguyen, they can be characterized by *distributions*.

In this paper, it is shown that one can *decompose* **any** fuzzy measure as a conjunctive combination of possibility measures *or* as a disjunctive combination of necessity measures.

These decompositions are a *special case* of the decompositions of mappings between complete lattices presented by Banon & Barrera in the framework of *Mathematical Morphology*.

The combination of weak sources of information modeled by possibility measures may represent *exactly* a stronger source of information modeled by a probability. This is interesting as part of the debate between probability and fuzzy sets.

AXIOMATIC DEFINITION OF POSSIBILITY AND NECESSITY MEASURES

Let Ω be a nonempty set and I the interval [0,1] of real numbers.

A fuzzy measure
$$\mu$$
 on $\mathfrak{P}(\Omega)$ is an increasing mapping from (\mathfrak{P}, \subset) to (I, \leq) such that $\mu(\emptyset) = 0$ and $\mu(\Omega) = 1$

A fuzzy measure μ on $\mathfrak{P}(\Omega)$ is an *possiblity measure* (or a *dilation*) iff

$$\max \mu(\mathfrak{B}) = \mu(\bigcup \mathfrak{B}) \quad (\mathfrak{B} \subset \mathfrak{P})$$

A fuzzy measure μ on $\mathfrak{P}(\Omega)$ is an *necessity measure* (or an erosion) iff

$$\mu(\bigcap \mathfrak{B}) = \min \mu(\mathfrak{B}) \quad (\mathfrak{B} \subset \mathfrak{P})$$

where $\mu(\mathfrak{B})$ denotes the image of \mathfrak{B} through μ .

We denote by Π the set of possibility measures and by N the set of necessity measures.

EXAMPLES OF POSSIBILITY AND NECESSITY MEASURES

$$\pi_{U,v}(X) = \begin{cases} 0 \text{ if } X = \emptyset \\ v \text{ if } X \subset U \text{ and } X \neq \emptyset & (X \in \mathfrak{P}) \\ 1 \text{ otherwise} \end{cases}$$

and

$$\nu_{U,v}(X) = \begin{cases} 1 & \text{if } X = \Omega \\ v & \text{if } U \subset X \text{ and } X \neq \Omega \\ 0 & \text{otherwise,} \end{cases} (X \in \mathfrak{P})$$

the latter is called simple support function by Shafer.

CHARACTERIZATION OF POSSIBILITY MEASURES

Proposition 1 (characterization of possibilities) – The mapping $f \mapsto (\pi, \beta)$ from the complete lattice I^{Ω} of possibility distributions on Ω to the complete lattice of G.c. between (\mathfrak{P}, \subset) and (I, \geq) , defined by

$$\pi(X) = \max f(X) \quad (X \in \mathfrak{P})$$

$$\beta(t) = \{ \omega \in \Omega : f(\omega) \le t \} \quad (t \in I),$$

is a dual lattice–isomorphism. Its inverse $(\pi,\beta) \mapsto f$ is given by

$$f(\omega) = \pi(\{\omega\}) \ (\omega \in \Omega)$$

or equivalently

$$f(\omega) = f_{\beta}(\omega) \triangleq \min\{t \in I : \omega \in \beta(t)\} \ (\omega \in \Omega).$$

Using the fact that (π, β) is a G.c.; then, for any $X \in \mathcal{P}$,

$$\pi(X) = \pi_{\beta}(X) \triangleq \min\{t \in I : X \subset \beta(t)\},\$$

that is, any π can be expressed in terms of an erosion in $E(I, \mathcal{P})$.

CHARACTERIZATION OF NECESSITY MEASURES

Proposition 2 (characterization of necessities) – The mapping $f \mapsto (\nu, \alpha)$ from the complete lattice I^{Ω} of necessity distributions on Ω to the complete lattice of G.c. between (\mathfrak{P}, \supset) and (I, \leq) , defined by

$$\nu(X) = \min f(X) \quad (X \in \mathcal{P})$$

$$\alpha(t) = \{ \omega \in \Omega : t \le f(\omega) \}^{c} \quad (t \in I),$$

is a lattice–isomorphism. Its inverse $(\nu, \alpha) \mapsto f$ is given by

$$f(\omega) = \nu(\{\omega\}^{c}) \quad (\omega \in \Omega)$$

or equivalently

$$f(\omega) = f_{\alpha}(\omega) \triangleq \max\{t \in I : \omega \notin \alpha(t)\} \ (\omega \in \Omega).$$

Using the fact that (ν, α) is a G.c.; then, for any $X \in \mathcal{P}$,

$$\nu(X) = \nu_{\alpha}(X) \triangleq \max\{t \in I : \alpha(t) \subset X\}$$
).

that is, any ν can be expressed in terms of a dilation in $\Delta(I, \mathcal{P})$.

FUZZY MEASURE DECOMPOSITION

(1/2)

Special case of Banon & Barrera's lemma:

Lemma 3 (fuzzy measure decomposition) – Any fuzzy measure μ on $\mathfrak{P}(\Omega)$ can be written

$$\mu = \inf\{\pi \in \Pi : \mu \le \pi\}$$
$$= \sup\{\nu \in \mathbb{N} : \nu \le \mu\}.$$

Due to Serra:

Theorem 4 (constructive decomposition of fuzzy measures) – Any fuzzy measure μ on $\mathfrak{P}(\Omega)$ can be written

$$\mu = \wedge (\pi_{U, \mu(U)} \colon U \in \mathfrak{P})$$
$$= \vee (\nu_{U, \mu(U)} \colon U \in \mathfrak{P}).$$

FUZZY MEASURE DECOMPOSITION

(2/2)

Special case of Banon & Barrera's theorem:

Theorem 5 (general constructive decomposition of fuzzy measures) – Any fuzzy measure μ on $\mathfrak{P}(\Omega)$ can be written

$$\mu = \wedge (\pi_{\beta} \colon \beta \in E(I, \mathfrak{P}) \text{ and } \mu\beta \leq \iota)$$
$$= \vee (\nu_{\alpha} \colon \alpha \in \Delta(I, \mathfrak{P}) \text{ and } \iota \leq \mu\alpha),$$

where ι is the identity mapping from I to I.

In terms of possibility and necessity distributions, we have, for any $X \in \mathcal{P}$,

$$\mu(X) = \wedge \left(\max f_{\beta}(X) \colon \beta \in \mathrm{E}(I, \mathfrak{P}) \text{ and } \mu\beta \leq \iota \right)$$
$$= \vee \left(\min f_{\alpha}(X) \colon \alpha \in \Delta(I, \mathfrak{P}) \text{ and } \iota \leq \mu\alpha \right).$$

MINIMAL FUZZY MEASURE DECOMPOSITION

If a subset E' of E, such that, for any $\beta' \in E'$, $\mu\beta' \leq \iota$ is such that for any $\beta \in E$ such that $\mu\beta \leq \iota$, there exists $\beta' \in E'$ such that $\beta \leq \beta'$, then

$$\mu = \wedge (\pi_{\beta} : \beta \in E').$$

If a subset Δ' of Δ , such that, for any $\alpha' \in \Delta'$, $\iota \leq \mu \alpha'$, is such that for any $\alpha \in \Delta$ such that $\iota \leq \mu \alpha$, there exists $\alpha' \in \Delta'$ such that $\alpha' \leq \alpha$, then

$$\mu = \vee (\nu_{\alpha} : \alpha \in \Delta').$$

When the elements of E' (resp., Δ') are all *maximal* (resp., *minimal*) then the above decompositions are said to be *minimal*.

EXAMPLE OF A PROBABILITY MEASURE DECOMPOSITION IN TERMS OF POSSIBILITY MEASURES

(1/3)

We now assume that Ω is finite and $n = \#\Omega$.

Let μ be the probability on $\mathfrak{P}(\Omega)$ given by

$$\mu(X) = (\#X)/n \quad (X \in \mathfrak{P}(\Omega)).$$

The decomposition derived from Th. 4 has 2^n terms.

$$\Omega = \{a, b, c, d\}$$

 $\{a, b, c, d\}$

EXAMPLE OF A PROBABILITY MEASURE DECOMPOSITION IN TERMS OF POSSIBILITY MEASURES

(2/3)

The minimal decomposition derived from Th. 5 has n! terms.

$$\Omega = \{a, b, c, d\}$$

 $\{a,b,c,d\}$

EXAMPLE OF A PROBABILITY MEASURE DECOMPOSITION IN TERMS OF POSSIBILITY MEASURES

(3/3)

There are *simpler* decompositions.

For example, for n = 4 we can use 6 distributions.

$$\Omega = \{a, b, c, d\}$$
 $\{a, b, c, d\}$ $\{a, b, c, d\}$

$$\{a,b,c,d\}$$

$$\{a,b,c,d\}$$

$$\Omega = \{a, b, c, d\} \qquad \{a, b, c, d\}$$

$$\{a,b,c,d\}$$

