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ABSTRACT: In the Amazon basin, seasonal and interannual spectral
changes measured by satellites result from anthropogenic disturbance and from
the interaction between climate variation and the surface cover. Measurements
of spectral change, and the characterization of that change, provide information
concerning the physical processes evident at this mesoscale. A 17-yr sequence
of daily Advanced Very High Resolution Radiometer (AVHRR) global area
coverage (GAC) images were analyzed to produce a monthly record of surface
spectral change encompassing El Niño–Southern Oscillation (ENSO) cycles.
Monthly cloud-free composite images from daily AVHRR data were produced
by linear filters that minimized the finescale spatial variance and allowed for a
wide range analysis within a consistent mathematical framework. Here the use
of a minimized local variance (MLV) filter that produced spatially smooth
images in which major land-cover boundaries and spatial gradients are clearly
represented is discussed. Changes in the configuration of these boundaries and
the composition of the landscape elements they defined are described in terms
of quantitative changes in landscape pattern. The time series produced with the
MLV filter revealed a marked seasonal difference in the pattern of the land-
scape and structural differences over the length of the time series. Strikingly,
the response of the region to drier El Niño years appears to be delayed in the
MLV series, the maximum response being in the year following El Niño with
little or no change seen during El Niño.
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1. Introduction
Information on how the surface energy balance of the Amazon basin changes on
seasonal and interannual time scales is crucial to understanding how the basin
responds to climatic and, ultimately, anthropogenic forcing. The determination of
spectral changes and their translation into biophysical properties over time in the
Tropics, however, faces a number of difficulties. Daily remotely sensed data
cannot be used directly to determine physical aspects of surface changes due to
frequent cloud cover, smoke, and a variable atmosphere. However, these obfus-
cations of the surface can be filtered from a longer time series dataset of images.
The energy balance of the land surface is a product of changes in intercepted
radiation, vegetation cover, phenology, and surface water balance, all of which
may in turn affect the spectral signature of the surface. Thus, changes in the
surface spectral signature can be indicative of changes in the biogeochemical and
hydrological systems.

We address issues related to the observation and interpretation of surface change
by first creating a time series of monthly Advanced Very High Resolution Radi-
ometer (AVHRR) composite images using a finite impulse response (FIR) filter to
minimize local variation (MLV) in the spectral signature of pixels through both
space and time (Figure 1). We then calculate a series of simple spatial pattern
metrics that characterize the spatial composition and configuration of the general
land-cover change in the basin. This approach is applied to a 17-yr time series of
images of the northern half of the South American continent. The question we are
asking is, What is the spatial pattern of seasonal and interannual variability in the
spectral response of the land surface?
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Figure 1. AVHRR monthly cloud-free color composites using the MLV filter in the
spectral signature of channels 1 (red), 2 (green), and 3 (blue) for pixels of
daily images through both space and time. The yearly sequences with El
Niño condition are noted along with changes in the AVHRR instruments.
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In the landscape of the Amazon basin, the mature tropical forest and savannas
form a landscape matrix, or backdrop, upon which patches of distinct land-cover
types reside. The spatial pattern of these different landscape elements and their
changes through time are products of both cultural and natural processes.

AVHRR data have been used in a number of investigations of Amazon rain-
forest vegetation and deforestation. Setzer and Pereira (Setzer and Pereira 1991)
used 46 images to investigate biomass burning within the basin. Tucker et al.
(Tucker et al. 1984) and Malingreau and Tucker (Malingreau and Tucker 1988)
have monitored the extent of deforestation and forest clearing in the regions of
Rondonia, Acre, and Mato Grosso, Brazil. In general, these investigations have
suggested that the spatial resolutions of AVHRR data will underestimate small
areas of deforestation and create errors in land-cover classification; yet due to the
high temporal frequency of image acquisition, the data are well suited for moni-
toring vegetation responses at coarse spatial scales. Again, this emphasizes the
importance of an approach that explicitly addresses both the spatial and temporal
scale of the information contained in the remotely sensed dataset.

We recognize the Amazon basin as a landscape composed of ever-changing
elements. The spatial “scale” at which those elements are recognized or defined,
and the temporal scale that corresponds to measured changes, are central issues in
a line of research that now integrates remote sensing (RS) and geographic infor-
mation systems (GIS) analysis. A quantitative description of the basin’s changing
spatial structure is sometimes referred to as landscape physiognomy or landscape
pattern analysis (Dunning et al. 1992; Turner et al. 1989). In this type of analysis
it is useful to distinguish between measures of composition and configuration in
the description of either the variety and abundance of patches (composition), or the
shape and relative placement of those patches (configuration) for the landscape as
a whole. Together these indices describe the spatial structure of the landscape and
are not statistical inferences for spatial process (see Ripley 1988; Cressie 1991).
We have chosen descriptive measures of composition and configuration to com-
pare over time because of our interest in describing the pattern and fragmentation
of the homogeneous elements in the Amazon basin as a whole.

2. Methods
The MLV method that we used for this investigation selects pixels from daily
images that minimize the temporal average of local spatial variability over a
monthly time period. The rationale for this approach is that the largest physical
source of spatial and temporal variance is atmospheric variability, including clouds
that are resolved and unresolved (i.e., subpixel), and the effects of viewing or
illumination geometry. Although clouds cause variance at all spatial scales, it is the
variance at the local scale (less than 10 pixels or approximately 40 km) that is
exploited in our analysis in order to provide the best separation between atmo-
spheric variance and important mesoscale landscape variation. Minimized fine-
scale spatial variance is achieved by selecting pixels using a filter that is deter-
mined empirically by its effect on our ability to visually interpret the spatial and
temporal variance of a training dataset of mesoscale landscape units that included
recognizable reservoirs, savannas, long-term deforestation activity, the river main
steam, and the Pantanal (Figures 2 and 3).
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In quantifying changes in the spatial pattern at seasonal and interannual time
scales, we first recognize that the characterization of pattern of any landscape is a
function of scale. Ecological (or landscape) scale encompasses a description of
both extent and grain (Turner et al. 1989; Wiens 1989). Therefore, the spatial
extent (or range) of a process and the grain (resolution or size) of an individual
observation define the ecological scale of a process. Recording location and de-
scribing a spatial relationship defines its pattern and structure. The aim of quan-
tifying the spatial and temporal pattern of these basinwide datasets is to better
describe not only the variety in composition but also the configuration of the
changing elements within the basin. From this perspective we ensure that both the
spatial and temporal scales of local variability in the time series dataset capture the
anticipated heterogeneity of the mesoscale land forms. In addition, this approach
ensures that metrics quantifying changes in the spatial pattern characterize sea-
sonal and interannual responses of these landforms to functional changes.

AVHRR is a scanning radiometer instrument that records reflectance in five
bands of the electromagnetic spectrum: channels 1 (0.58–0.68 µm), 2 (0.72–1.1
µm), 3 (3.55–3.93 µm), 4 (10.3–11.3 µm), and 5 (11.3–12.5 µm). The local area

Figure 2. High contrast stretched color composite [channels 1 (red), 2 (green), and
3 (blue)] for visual interpretation of Feb 1985 training sites and reference
areas used for empirical selection of MLV filters and as a decision tool for
deletion of monthly images from the time series.
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coverage (LAC) of the instrument is 1.1-km resolution and the global area cov-
erage (GAC; the onboard averaged values of 16 LAC pixels) is about 4.4-km
resolution. Tucker et al. (Tucker et al. 1984) used the reflectance sensitivity of
channels 1 and 2 to monitor green leaf biomass. Channel 3 is at the border between
the optical and thermal ranges with sensitivity to a combination of emitted and
reflected radiation and surface temperatures.

The time series dataset used in this analysis comprises a 17-yr, daily sequence
of AVHRR GAC images covering a period from July 1981 to December 1998 and
spanning four satellites, NOAA-7, -9, -11, and -14 (Table 1). The multiple satellite
passes for each day were reduced to a single daily coverage by selecting the pass
with the smallest zenith angle. The embedded calibration coefficients provided for
each band were applied to the data. Satellites changed from NOAA-7 to NOAA-9

Figure 3. Same as in Fig. 2, but for Jul 1985.

Table 1. Satellites used in creating the time series dataset.
Satellite Start date End date

NOAA-7 25 Jun 1981 31 Jan 1985
NOAA-9 1 Feb 1985 7 Nov 1988
NOAA-11 8 Nov 1988 13 Sep 1994
NOAA-9 14 Sep 1994 22 Jan 1995
NOAA-14 23 Jan 1995 31 Dec 1998
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in February 1985 and from NOAA-9 to NOAA-11 in November 1988. The NOAA-9
satellite was used again beginning in September 1994 and changed to NOAA-14 in
January 1995. Pixels judged to be from spectrally constant targets exhibited sig-
nificant temporal drift in bands 1–3 for each of the satellites. In contrast, over a
9-yr calibrated image sequence from 1990 to 1998, channels 4 and 5 appeared to
be stable to within 5% over the same period. The drift in bands 1–3 is primarily
due to drift in the satellite orbit (equator crossing time), which causes the average
solar zenith angle for a given pixel location to increase with time for each satellite.
Smaller effects are due to instrument drift. A first-order correction was applied to
channels 1 and 2 to remove the drift associated with each satellite.

The daily image coverage is reduced to monthly cloud-free composite images.
In the rainy season, complete cloud-free images over the Amazon basin are ex-
tremely rare. The atmosphere problem is exacerbated in the dry season by smoke.
A common approach to making cloud-free monthly composite images is to select
pixels with the maximum value of the normalized difference vegetation index
(MNDVI) during each month (Goward et al. 1994; Justice et al. 1985; Sellers et
al. 1994). Monthly composite images constructed in this way have become the
database archive, and are assumed to represent the spectral and spatial signature of
land cover. However, this optimization may allow artifacts, arising from viewing/
illumination geometry, calibration, atmosphere, and surface mixtures to propagate
into the measurements of spectral change.

We applied a simple form of a FIR filter,

Ci = �
b=1

N

wbRb + C, (1)

where Rb are the reflectances in the spectral bands b, and wb are filter weights
applied to those values, and C is a constant. The filter is used to determine a cloud
index (Ci) from the first 3 AVHRR bands (or channels; ch1, ch2, and ch3) as
follows:

Ci = − �w1ch1 + w2ch2 + w3ch3�. (2)

The cloud index is the output of the FIR filter; and ch1, ch2, and ch3 are the
reflectances in the first three AVHRR channels. The method selects the pixel that
minimizes the cloud index in any given month. The weights (w) of the FIR filter
are determined using training data together with a criterion in which a desired
characteristic of the resulting composite images is evaluated. By cycling through
all possible combinations of filter weights, applying the resulting filters as a cloud
index for the training areas, and then evaluating the selection criteria for the
resulting composites, we empirically determined the filter that provided the best
visual interpretation of the mesoscale training area (Figures 2 and 3). For the
purpose of this project we used filter weights that consistently selected pixels that
minimized the temporal average of local spatial variability. Minimized finescale
spatial variance was achieved by selecting pixels using a filter that was determined
empirically, as described below, by its effect on the spatial and temporal variance
of a training dataset:

Ci = −�ch2 − 0.01ch2ch2�. (3)
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The final step in processing of the image sequence involved the application of
a one-dimensional median wavelet filter (Donoho 1994) to each pixel in each
channel separately in the temporal direction. This affected some of the fine detail
in the images that had short temporal duration. Even though each pixel was filtered
independently, a net visual effect on the images was a slightly smoother spatial
appearance. It should be emphasized that no spatial smoothing was applied at any
stage in the MLV approach.

The next step of our analysis began once the processing of the original AVHRR
daily images into a monthly cloud-free time series of multispectral pixel values
was completed. These pixel values were assigned to discrete spectral clusters using
a two-step self-organizing procedure. For the time series as a whole, the spectral
values were first assigned to spectral clusters using a standard Iterative Self Or-
ganizing Data Analysis Technique Algorithm (ISODATA) approach to determine
5 times the number of clusters of the desired final product. We sought to charac-
terize the pattern of broadscale (or coarse) landscape process and, therefore, gen-
erated 40 initial clusters. These clusters were reclassed into the final eight clusters
based upon two criteria: the ability to separate the spectral means of each cluster
and the combination of clusters, which consistently allowed for a confident visual
identification of the training or reference landscape units (Figures 2 and 3). This
step generalized (smoothed) the spatial heterogeneity of each monthly image.

A number of the monthly images were still well outside the acceptable range for
a visually consistent spatial comparison. These monthly images were removed
from further analysis. Deleting these images from the monthly time series dataset
was our primary means of quality control for comparing differences in the result-
ing spatial pattern metrics. In some observations, the spectral distances to the
cluster means for recognized persistent mesoscale landscape units exceeded the
threshold accounted for by anticipated spectral variation. In these observations, it
appeared that either the MLV filter had failed to select appropriate pixel values or
that instrument calibration errors, such as georegistration occurred. Since our goal
was to investigate the spatial changes over a long time period, we eliminated
monthly images where we could not, with confidence, identify the training or
reference landscape units (Figures 2 and 3).

The resulting spectral signature for the cluster means was used to classify each
monthly image using a nearest-neighbor algorithm. Regional groupings of simi-
larly classed pixels that formed a minimum landscape patch size of 100 continu-
ously connected pixels were preserved in the final landscape map, while smaller
discontinuous patches were assigned to the landscape cluster classes with which
they shared the longest border. The selection of the minimum patch size was based
upon the consistent minimum size of the reference landscape units. Because the
spectral range of each monthly image is potentially very different, the spectral
clusters (patches) were not named or assigned consistent identifier throughout the
time series. Each monthly landscape map was, therefore, a mosaic of unnamed
classified spectral clusters (patches) of surface responses within the range of
spectral responses throughout the complete time series (Figure 4).

In the final step, a suite of spatial pattern metrics were calculated for each
classified monthly mean image to characterize the spatial composition and con-
figuration of the individual months. These metrics and their ecological applications
and limitations are described by McGarigal and Marks (1994). We relied on the
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Figure 4. The regional groupings (patches) of similarly unnamed classed pixels that
formed a minimum-sized landscape patch.
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number of patches (NP) and the landscape patch index (LPI) to characterize
basinwide fragmentation. Changes in the shape and complexity of the average
landscape patch were described by changes in the landscape shape index (LSI) and
mean patch fractal dimension (MPFD). The interspersion and juxtaposition index
(IJI) was used to describe changes in the spatial configuration of patches by
recording the percent of all possible shared edges between patches of different
types. These metrics and associated coefficient of variance (the relative percent of
the mean represented by the standard deviation) illustrate the composition and
configuration complexity of the season and interannual change in the classified
images (Tables 2a, 2b).

3. Results
Visual inspection of the monthly cloud-free time series images revealed many
changes throughout the basin. Dry nonforest areas, including small savanna en-
claves, and open-water bodies were all easily and consistently detected. Wet
savannas were distinguishable from dry savannas and the primary forest. Seasonal

Table 2a. Average monthly landscape indices of NP, LPI, LSI, MPFD, and IJI.
Month NP LPI LSI MPFD IJI

Jan 21.00 28.46 7.79 1.35 66.89
Feb 98.00 25.08 9.64 1.27 65.57
Mar 92.25 21.61 9.65 1.29 67.23
Apr 93.73 18.99 8.43 1.26 70.12
May 84.00 25.45 9.04 1.29 68.67
Jun 103.33 15.00 9.39 1.27 71.96
Jul 82.86 25.03 9.38 1.29 70.63
Aug 24.10 26.23 7.96 1.33 72.40
Sep 20.78 26.78 7.96 1.34 70.18
Oct 22.08 25.78 7.97 1.35 65.60
Nov 20.80 29.94 7.95 1.37 67.21
Dec 21.43 32.32 7.57 1.34 67.23

Table 2b. Coefficient of variation in average monthly indices throughout the time
series.
Month NP LPI LSI MPFD IJI

Jan 17.0 8.6 10.3 2.6 10.1
Feb 19.1 6.4 11.9 1.8 6.5
Mar 76.9 29.8 13.9 3.9 8.6
Apr 22.2 25.7 12.3 1.7 5.7
May 53.1 9.4 11.2 4.2 9.0
Jun 13.2 15.6 8.2 2.0 3.4
Jul 51.8 10.2 11.8 4.1 7.4
Aug 11.8 25.8 14.3 1.1 6.0
Sep 12.0 28.9 9.7 1.9 8.1
Oct 12.7 19.8 13.0 2.0 7.2
Nov 17.4 19.3 13.8 1.8 8.0
Dec 22.8 24.6 16.3 3.2 8.2
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green-up and dryout of the central Brazilian cerrado was detected and observed to
change over time. Within the Amazon forest, large areas dominated by secondary
forest, a large eucalyptus/pine plantation, and part of the bamboo-dominated forest
were also detected. A seasonal leaf flush also seemed to be visible in the Roraima,
Guyana, piedmont, and plains transition forest. Agriculture, pastures, and second-
ary forests along the occupied portion of the Transamazon Highway contributed to
a consistent seasonal brightness in band 2 during the rainy seasons. The deforested
crescent of the southern and southeastern edges of the Amazon sometimes ap-
peared in the rainy season. Intensively deforested areas with only a small percent-
age of secondary forest were otherwise visible only in the dry season. Some
expected features, spectrally very distinct in Landsat Thematic Mapper (TM)
images, were not detected. The sandy-soil forests of the upper Rio Negro basin,
much of the bamboo-dominated forest, and forests in floodplains at the Japurá/
Solimões, Brazil, confluence were difficult to distinguish.

One observation particularly suitable for this time series was the dominant
climatic effect of ENSO conditions at the basin scale. The maximum observed
effect on surface vegetation was in the years following El Niño. This was seen as
a decrease in the albedo (inferred from AVHRR ch1 and ch2 reflectance) of the
terra firme and, for the large savannas, as a delay in the usual rise of ch3 at the start
of the dry season. Although calibration effects in the MLV-filtered data may have
affected the interpretation of the response to El Niño, there was little visible
vegetation response coincident with El Niño events until the following year. This
was most easily observed in the 1987/88 and 1991–94 sequences.

The seasonal and annual spatial changes in the clustered data demonstrated a
clear difference between the wet and dry seasons. The location of the edge between
patches of differing surface responses along the southern boundary of the basin
varied greatly during the onset of the dry season (February) and then again at the
beginning of the wet season, occurring approximately in June (Figure 5).

Through visual inspection alone, the patterns of the changing landscape were
difficult to understand. A review of relative change in pattern metrics designed to
characterize the seasonal and interannual variation in the spatial composition and
configuration of spectral clusters offered a quantitative tool for expressing change.
A general reduction in the patchiness of the landscape occurred throughout the
season as the average NP for each month ranged from a low of 21 in January to
a high of 103 in June (Table 2a). Likewise, the LPI demonstrated an average
dry season landscape more dominated by larger and fewer patches in December
(LPI � 32) than the more fragmented and smaller patch size of the average June
(LPI � 15; see Figures 6 and 7). The configuration of these patches revealed
relatively little change in the distribution of observed adjacency between cluster
types. The IJI revealed little change in the distribution of adjacencies among
unique patch types. As the number of landscape patches increased and decreased
over the seasons, the distribution of patches (or cluster types) adjacent to each
other remained relatively even (65.57 > IJI < 72.40; Table 2a; Figure 6).

These seasonal patterns remained evident as the analysis was extended to char-
acterize the whole time series. A total of 54 out of the 210 monthly images were
omitted from the pattern analysis due to poor georegistration or because the spec-
tral clusters means for some spatial cluster fell well outside the class limits. This
made a comparison of all months for all years throughout the time series unreli-
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able. Comparison of the variability in the landscape pattern metrics for those
months which were used in this analysis illustrates that some months are more
consistent in their landscape response than others (Table 2b). The interannual
variability in the complexity of the pattern for the months of May and June indicate
a very dynamic shift occurs at this time. The month of May is more variable in the
number of patches and their adjacency, yet more consistent in the size and com-
plexity of shape. We have illustrated the change in spatial patterns over the 17-yr
time series by comparing the months of January, April, June, August, and October
for the years 1982, 1983, 1986, 1987, 1989, 1990, 1991, 1992, and 1997 (Figures
6 and 7). The 1989 and 1990 images had the fewest number of patches during the
wet season while the dry season remained relatively unchanged. The remaining
landscape pattern metrics illustrate a varying landscape. The LPI reveals an in-
crease in the dominance of larger patches later in the time series for most months.

Figure 5. Seasonal locations of the edge between patches of differing surface re-
sponse along the southern boundary of the basin.
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4. Conclusions
All methods of producing cloud-free composite images introduce bias into the
resulting image sequences. Given the number of variables that can affect spectral
data measured at the satellite, there is always a trade-off between precision in
detection of surface change and immunity to effects from extrinsic (undesired)
factors. Decisions that are made with respect to this trade-off affect the extend-
ibility of image interpretation in space and time. Filters such as MLV, that are
sensitive to viewing/illumination geometry, produce images whose pixels are se-
lected from a less variable and nearer nadir set of geometries. These considerations
affect the magnitude of estimates of surface change observed in seasonal cycles.

We have characterized the visible and quantitatively descriptive changes in the
pattern of the Amazon basin over a 17-yr monthly time series. At this scale we
visually observed a delayed vegetation response to climatic changes associated
with El Niño as an indication of changes in the interannual pattern of the surface
response. These observations seemed inconsistent with biosphere model assump-
tions that suggested that changes in vegetation were coincident with climatic
change, yet may have been consistent with phonological states triggered by sea-
sonal and longer climatic events such as El Niño. While the landscape pattern
metrics indicate no clear trends in fragmentation at this spatial resolution, the
metrics do reveal interannual variation suggestive of responsiveness to mesoscale
events such as flooding or drought. Laurance and Williamson (Laurance and

Figure 6. Seasonal variation in landscape metrics for the average month. The com-
position metrics of the NP and LSI indicate seasonal differences in the
landscape’s fragmentation, while the configuration metrics of LPI and IJI
remain stable.
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Williamson 2001) observed that the fragmented forests of the Amazon basin are
more prone than intact forests to periodic damage from ENSO droughts and
“positive feedbacks among forest loss, fragmentation, fire, and regional climate
change appear increasingly likely.” Likewise, the 1979–99 land surface dataset
developed by Dirmeyer and Tan (Dirmeyer and Tan 2001) for specifying initial

Figure 7. Seasonal and interannual change in landscape pattern metrics of (a) NP
and (b) LPI.
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and/or boundary conditions for modeling applications of the Amazon basin pro-
duced realistic climatology while also indicating significant interannual variability.

This analysis characterized the seasonal and interannual variation in the Ama-
zon basin. The basin was shown to exhibit structural changes at the landscape scale
on both seasonal and interannual cycles. Our goal was to describe the spatial
pattern of seasonal and interannual variability in the spectral response of the land
surface. The phenological response by the vegetation of the land surface as mea-
sured by a spectral response at the satellite is indicative of both a spatial and
temporal response to changes in the seasonal and interannual climate cycles. From
this perspective, the spatial boundary between classes of phenological response by
vegetation in the southern basin varies greatest to the seasonal climate cycles
associated with the onset of the dry season (January or February) than to the
seasonal climate cycles of the wet season (June or July). Models that seek to link
phenological change of vegetation to biogeochemical responses observed in either
the timing or location of organic matter accumulation will need to link spatially
explicit phenological behavior with temporally explicit attributes of seasonal cli-
mate change.
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