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Abstract. Using geometric shadow and linear mixture models we develop and evaluate 
an algorithm to infer several important structural parameters of stands of black spruce (Picea 
mariana), the most common boreal forest dominant. We show, first, that stand reflectances for 
this species can be represented as linear combinations of the reflectances of more elemental 
radiometric components: sunlit crowns, sunlit background, and shadow. Secondly, using a 
geometric model, we calculate how the fractions of these radiometric elements covary with 
each other. Then, using hand-held measurements of the reflectances of the sunlit background, 
sphagnum moss (Sphagnum spp.), and assuming shadow reflectance to be that of deep, clear 
lakes, we infer the reflectance of sunlit crowns from the geometric shadow model and low- 
altitude reflectance measurements acquired by a helicopter-mounted radiometer. Next, we as- 
sume that the reflectance for all black spruce stands is simply a linear combination of shadow, 
sunlit crown, and sunlit background reflectance, weighted in proportion to the relative areal 
fractions of these pixel elements. We then solve a set of linear equations for the areal fractions 
of these elements using as input helicopter observations of total stand reflectance. 

Using this algorithm, we infer the values for the areal proportions of sunlit canopy, sunlit 
background, and shadow for 31 black spruce stands of varying biomass density, net primary 
productivity, etc. We show empirically and theoretically that the areal proportions of these 
radiometric elements are related to a number of stand biophysical characteristics. Specifically, 
the shadow fraction is increasing with increasing biomass density, average diameter at breast 
height, leaf area index (LAI), and aboveground net primary productivity (NPP), while sunlit 
background fraction is decreasing. We show that the end member fractions can be used to 
estimate biomass with a standard error of -2 kg/M2, LAI with a standard error of 0.58, dbh 
with a standard error of -2 cm, and aboveground NPP with a standard error of 0.07 kg . m-2. yr- I. 

We, also show that the fraction of sunlit canopy is only weakly correlated with the biophysical 
variables and are thus able to show why a popular vegetation index, Normalized Difference 
Vegetation Index (NDVI), does not provide a useful measure of these biophysical characteristics. 
We do show, however, that NDVI should be related to the fraction of photosynthetically active 
radiation incident upon and absorbed by the canopy. 

This work has convinced us that a paradigm shift in the remote sensing of biophysical 
characteristics is in order-a shift away from direct inference of biophysical characteristics 
from vegetation indices and toward a two-step process, in which (1) stand-level reflectance is 
approximated in terrns of linear combinations of reflectance-invariant, spectrally distinct com- 
ponents (spectral end members) and mixture decomposition used to infer the areal fractions of 
these components, e.g., shadow, sunlit crown, and sunlit background, followed by (2) the use 
of radiative transfer models to compute biophysical characteristic values as a function of the 
end member fractions. 

Key words: biomass; biophysical characteristics; boreal conifers; geometric reflectance models; leaf 
area index; mixture decomposition; photosynthetically active radiation; Picea mariana; remote sensing. 

INTRODUCTION 

Ecosystem process, biosphere-atmosphere transfer, 
and carbon exchange models all require the parame- 

trization of the land surface using vegetation structural 
characteristics (Bolle 1991, Rasool 1992, Skole 1992, 
Sellers and Schimel 1993). The required parameters 
include leaf area index (LAI), biomass areal density, 
fraction of incident photosynthetically active radiation 
absorbed by the canopy (Fpar), and canopy roughness, 
ZO. Evaporation, gas flux, sensible heat transfer, mo- 

1 Manuscript received 29 March 1994; revised 31 August 
1994; accepted 31 August 1994; final version received 23 
November 1994. 
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mentum transfer, and precipitation interception are 
some of the more important quantities that require a 
knowledge of the above coefficients for their calcula- 
tion. Although not yet a demonstrated capability, the 
most feasible method for obtaining these parameters 
globally, and updating them periodically, is through the 
use of satellite remote sensing. 

A number of studies, beginning in the late 1950s, 
have explored, both empirically and theoretically, the 
relationship between pixel-level reflected, absorbed 
and transmitted radiation, and the associated canopy 
biophysical characteristics. Measurements at the leaf 
level (Gates et al. 1965, Gausman and Allen 1973, 
Gausman 1984), showed that leaf chlorophyll is a 
strong absorber of light of wavelength -0.69 pLm and 
that leaf cell structures are strong scatterers of light in 
the near-infrared region of wavelength ~0.8-1.0 ,um. 
Early investigations (Allen and Richardson 1968) at- 
tempted to scale these leaf-level optical properties to 
the canopy level to explain the reflectance measure- 
ments of whole plants. They were able to explain the 
observed reflectance decrease in the 0.69 pLm band and 
the increase in near-infrared reflectance with canopy 
leaf area by treating the canopy simply as horizontal 
layers of stacked leaves. Such models predict that leaf- 
level light absorption by chlorophyll will cause the 
visible reflectance to decrease exponentially with the 
number of leaf layers, while the near-infrared reflec- 
tance, where scattering predominates, will increase 
with the number of leaf layers. Such observations and 
model predictions suggested that remote sensing mea- 
sures of reflectance in these spectral regions should be 
useful for inferring canopy-level leaf area index over 
regional and larger regions. 

The central problem in using remotely sensed mea- 
sures of surface reflectance to infer canopy level struc- 
tural and biophysical characteristics is the scaling of 
optical properties from the leaf level, where they can 
be easily measured and related to leaf composition and 
structure, to the pixel level, where leaf optics interact 
with canopy structure, understory characteristics, view, 
and illumination geometry to produce a complicated 
relationship among pixel-level reflectance, stand struc- 
tural, biophysical, and leaf optical properties. In gen- 
eral, when extrapolating leaf-level optical properties to 
the stand level, the physical assumptions used for hor- 
izontal layers of leaves do not hold, yielding unrealistic 
solutions. Modeling efforts that have addressed this 
problem are numerous, and can be placed into four 
general classes of models (Goel 1988): (1) turbid me- 
dium models, for examples Suits 1972 and Verhoef 
1983, (2) geometric models (Li and Strahler 1985), (3) 
hybrid combinations of (1) and (2) (Goel and Grier 
1988), and (4) complex computer simulation models, 
for example Goel et al. 1990. These models compute 
canopy and pixel-level reflectance in terms of not only 
leaf optical properties, but other biophysical parame- 
ters such as overstory and understory leaf area index, 

leaf angle distribution, bark area index, crown shape, 
and spacing, etc. The models have been used to infer 
biophysical characteristics, from pixel-level measures 
of reflectance of numerical iteration and convergence, 
i.e., matching reflectance values to parameter sets, a 
process referred to as "inversion" (Goel and Thomp- 
son 1984). The problems with inversion are that (1) 
the dimensionality of the remote sensing measurement 
space must equal or exceed the number of parameters 
being estimated and (2) in the more complex models, 
the number of parameters that must be estimated is 
large, and the dimensionality requirements for their 
"inversion" often exceeds the intrinsic dimensionality 
of the remotely sensed data. The intrinsic dimension- 
ality of the remotely sensed data for a single viewing 
angle and date is determined by the number of phys- 
ically independent (uncorrelated) wave bands, gener- 
ally no more than three to four. The visible wave band 
reflectances all respond to the same physical absorption 
and scattering process by plant pigments, thus these 
reflectances are highly correlated and do not form a 
linearly independent set. The near-infrared bands are 
generally uncorrelated with the visible wavelengths, 
but near infrared reflectance is largely driven by leaf 
cell structure and thus different near infrared bands are 
correlated with each other. Exceptions are the near- and 
middle-infrared regions where protein, lignin, and 
starch molecules absorb strongly at certain frequencies. 
These regions have been the subject of investigation 
for their ability to provide information on canopy 
chemical composition (Wessman et al. 1988a, b). Ther- 
mal infrared bands are sensitive primarily to canopy 
radiative temperature, which is indirectly related to 
canopy structure, and thus are independent of both vis- 
ible and reflective infrared; however, their use adds 
additional parameters to be estimated, parameters re- 
lated to turbulent heat and long-wave radiative transfer 
within the canopy. Finally, mid-infrared reflective 
bands that respond to plant water content are, in live 
vegetation, highly correlated to plant chlorophyll (Hall 
1994). Thus, at most, three to four independent bands 
are available to estimate the many biophysical param- 
eters that populate complex canopy reflectance models, 
and two of these, the visible and near-infrared, provide 
most of the information about canopy structure. 

These complications have necessitated the investi- 
gation of approaches that hold some of the unknown 
parameters fixed-estimating them from non-remote 
sensing data, or approaches that attempt to reduce the 
influence on reflectance of canopy biophysical param- 
eters that are of little interest to a particular application, 
for example leaf angle distribution. An alternate ap- 
proach is to employ vegetation indices that are insen- 
sitive to unknown and unwanted variables, while being 
sensitive to desired parameters. Three frequently cited 
indices in this vein are in Normalized Difference Veg- 
etation Index (NDVI), or its closely related index, Sim- 
ple Ratio (SR), and the Kauth-Thomas (KT) greenness 
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index (Kauth and Thomas 1976). A number of studies 
have shown that these indices are sensitive to biomass, 
LAI, and Fpar (Tucker et al. 1983, Asrar et al. 1984, 
Sellers 1985), but relatively insensitive to shadowing 
effects, view, and illumination angles. However, they 
are also sensitive to understory reflectance (Huete et 
al. 1985, Goward and Huemmrich 1992), canopy struc- 
ture, and atmospheric absorption and scattering. 

It is known that stand-level reflectance for canopies 
exhibiting distinct geometric features, such as conifers, 
is strongly related to shadow fraction, sunlit canopy 
fraction, sunlit background fraction, and their reflec- 
tance (Li and Strahler 1985, Jasinski 1990). Li and 
Strahler performed Monte Carlo simulations, randomly 
placing cones within a pixel over a snow background, 
to examine the relationships between pixel-level KT 
greenness and brightness and the fraction of illumi- 
nated cone area, fraction of illuminated background 
area, and shadow area. They showed that as canopies 
were randomly added to the pixel field of view, the KT 
greenness-brightness followed a two-dimensional tra- 
jectory, originating in the illuminated bare snow point 
and terminating at a different point in the KT space, 
greenness-brightness value of which was defined by- 
the average reflectance of sunlit and shadowed canopy. 
The shape of this trajectory and the position along it 
were uniquely determined by the height: width ratio of 
the canopy, the number of canopies, and the reflectance 
of the sunlit canopy, shadows, and the sunlit back- 
ground. Thus, they were able to "invert" or solve their 
geometric model using, as input, multispectral mea- 
sures of KT greenness and brightness for (1) the num- 
ber of canopies within a pixel, (2) the average height 
of the canopies, and (3) the average cone angle for the 
canopies. They applied this inversion technique to KT 
greenness and brightness data collected from red fir 
canopies, but found that the errors in determining the 
canopy parameters were large, ranging up to ?100%. 

The dependence of NDVI on canopy fraction has 
been investigated (Jasinski 1990) using a simple geo- 
metric shadowing model consisting of randomly placed 
opaque blocks within a pixel. He assigned arbitrary 
reflectance values to the blocks, the background, and 
the shadows and showed that NDVI is a monotonically 
increasing function of the fraction of sunlit canopy cov- 
er within the pixel, and is strongly sensitive to back- 
ground reflectance. He compared the NDVI predictions 
from this model to actual NDVI measurements taken 
over a pecan orchard and juniper forests, and showed 
that indeed, the predicted NDVI increase with canopy 
cover was observed. 

Finally, Rosema et al. (1992) have extended the work 
of Li and Strahler (1985) and Jasinski and Eagleson 
(1989) to develop a forest canopy-light interaction 
model in which the forest is viewed as a discontinuous 
canopy layer with crowns and gaps, and apply this 
model to estimate forest biophysical parameters for 
Scotch pine in the Netherlands. They modeled forest 

stand reflectance as linear combinations of the areal 
fractions of four radiometrically active elements: (1) 
shadowed and (2) sunlit background as viewed through 
a canopy; (3) shadowed and (4) sunlit background 
viewed directly, unobscured by canopy. The fractions 
of these four elements viewed by the sensor were in 
turn modeled as functions of biophysical parameters: 
tree density and crown horizontal area as well as can- 
opy LAI, view and illumination angle, crown height 
and crown geometry, and leaf angle distribution. These 
biophysical parameters were then in turn estimated by 
inversion of the model using satellite-measured reflec- 
tances in a two-step process: first, the proportions of 
the radiometrically active elements were estimated 
from measured reflectance in the Landsat Thematic 
Mapper (TM) near-infrared band 4 and the TM mid- 
infrared band 5. This is accomplished by simultaneous 
solution of two linear equations (given estimates of 
reflectances of an infinitely deep canopy and back- 
ground) that express the stand-level reflectances in 
these bands as functions of (1) the fraction of infinitely 
deep canopy and (2) the fraction of shadowed and sunlit 
background within a stand. Infinitely deep canopy re- 
flectance values are obtained from TM observations of 
the densest canopies within the scene, and "ground" 
reflectance values from TM observations of clear-cut 
areas. Using this approach, the authors did not find very 
high correlations with existing ground data, and spec- 
ulate that the poor correlations are ". . . partly caused 
by the low accuracy of the ground data." 

The initial developments of our approach were done 
independently of the work of Rosema et al. (1992); 
however, we became aware of their paper as we were 
preparing our own for submission, and recognized that 
the biophysical parameter estimation we had devel- 
oped, and report herein, is similar in some respects to 
theirs. We use a simpler canopy reflectance model with 
fewer parameters and somewhat different radiometri- 
cally active fractions. Further, we do not attempt a di- 
rect inversion to obtain the biophysical parameters. We 
do obtain significant and useful correlations between 
TM reflectance in two bands and biophysical param- 
eters. We are also able to show directly why NDVI is 
not well correlated with forest structural parameters, 
but is useful for estimating photosynthetically active 
radiation absorbed by the canopy. 

In our work, we were interested in taking a somewhat 
difference route to biophysical parameter estimation 
than using vegetation indices to infer biophysical pa- 
rameters. Our evaluations of vegetation indices, such 
as NDVI and KT greenness to estimate biophysical 
parameters for boreal coniferous forests, had not been 
fruitful. Biomass or LAI showed very little correlation 
with these remote sensing indices. As an alternative, 
we decided to utilize the individual band reflectances 
in the red and near-infrared to first infer the proportion 
of a pixel occupied by sunlit crown, shadows, and sunlit 
background, then relate these intermediate variables to 
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TABLE 1. Overstory composition of black spruce sites in 
the Superior National Forest based on fractional stem count 
of trees >2 m in height. See Table 4 for key to species' 
abbreviations. 

Species 

Site PIMA LALA PIBA PIST 

Relative composition 
2 1.00 0.00 0.00 0.00 

12 0.88 0.12 0.00 0.00 
14 1.00 0.00 0.00 0.00 
15 1.00 0.00 0.00 0.00 
18 0.94 0.06 0.00 0.00 
19 0.98 0.02 0.00 0.00 
38 0.95 0.01 0.04 0.00 
39 0.97 0.01 0.01 0.00 
41 1.00 0.00 0.00 0.00 
42 0.97 0.00 0.00 0.00 
43 0.99 0.00 0.00 0.01 
49 0.91 0.00 0.08 0.00 
50 1.00 0.00 0.00 0.00 
51 0.95 0.05 0.00 0.00 
52 1.00 0.00 0.00 0.00 
55 1.00 0.00 0.00 0.00 
63 0.87 0.12 0.00 0.00 

Average 0.96 0.02 0.01 0.00 

the canopy biophysical parameters of interest. The mo- 
tivation was twofold. First, we believed that mixture 
decomposition techniques in the vein of Horowitz et 
al. (1971) might be capable of decomposing boreal co- 
nifer scenes into corresponding proportions of shadow, 
sunlit background, and sunlit canopy, i.e., the "end 
member" reflectances. Our reflectance measurements 
for boreal coniferous species (Hall et al. 1992) dem- 
onstrated that the visible and near-infrared spectral con- 
trast among these end members is quite large, a nec- 
essary condition to robust mixture decomposition. Sec- 
ondly, the results from other geometric optics models 

(Li and Strahler 1985) suggested that the biophysical 
characteristics might be strongly related to canopy cov- 
er and shadow fraction. If true, these two factors would 
provide an alternate approach to estimating canopy bio- 
physical characteristics for an overwhelming portion 
of the boreal ecosystem. 

We report in this paper, the development and eval- 
uation of such an approach. We begin by describing 
the data set used, then proceed to outline the analysis 
approach for mixture decomposition, and the approach 
for estimation of the "end member" reflectances. Fi- 
nally, we present the results of this analysis and draw 
a number of conclusions regarding future directions. 

THE DATA SET 

During the summers of 1983 and 1984 a multispec- 
tral and biophysical characteristics data set was ac- 
quired over an -40 X 120 km study site in the Superior 
National Forest (SNF) near Ely, Minnesota. During this 
field experiment, called COVER (Characterization of 
Vegetation with Remote Sensing, described in Hall et 
al. 1992), more than 80 -80 x 80 m plots containing 
the boreal dominants black spruce (Picea mariana), 
jack pine (Pinus banksiana), and trembling aspen (Pop- 
ulus tremuloides), were ground-visited throughout the 
area. The overstory and understory vegetation was in- 
ventoried and relevant biophysical characteristics es- 
timated, such as community composition and structure, 
biomass density, stem density, diameter at breast 
height, net primary productivity, etc. Table 1 lists, for 
the sites used in this present study, the relative com- 
position of the overstory based on fractional stem count 
for trees >2 m in height. Table 2 contains similar in- 
formation for the understory on each site. 

The approach to obtaining quantitative estimates of 

TABLE 2. Understory composition of black spruce sites in the Superior National Forest. Percentages are the average of five 
2 m diameter subsamples in each site. Species with less than an average of 1% cover over all sites are not shown. 

Spe- Site 
cies* 2 12 14 15 18 19 38 39 41 42 43 45 47 48 49 50 51 52 54 55 56 57 

Ground cover (%) 
SPHA 68 60 16 68 62 62 82 60 72 34 32 55 64 64 48 38 74 86 62 38 68 72 
LEGR 33 5 14 27 6 6 24 24 6 15 28 7 9 6 1 11 34 36 22 4 34 17 
MOSS 3 0 72 30 3 0 10 34 4 36 34 8 5 13 6 38 2 5 0 18 6 4 
BLIT 14 1 14 7 7 5 10 3 17 14 13 25 8 12 5 18 3 3 16 30 13 5 
CHCA 5 9 1 8 12 28 12 0 0 1 3 4 8 0 0 0 17 9 10 2 5 20 
SEDG 0 1 0 0 0 0 0 0 0 5 0 10 32 2 14 6 0 1 0 2 5 14 
SMTR 14 14 13 12 0 0 6 9 5 6 6 4 20 10 5 4 2 0 7 6 2 0 
GAHI 28 2 7 13 0 0 2 4 6 8 5 3 4 1 2 3 0 4 3 6 3 4 
GRAS 5 12 2 4 4 1 8 5 3 0 0 0 1 10 5 2 1 17 5 0 0 0 
PIMA 1 3 2 3 13 15 2 6 1 4 2 0 2 1 0 0 6 1 1 4 6 3 
VAOX 6 4 1 3 5 5 1 4 0 2 1 2 5 0 1 1 3 2 2 2 4 4 
VAAN 4 0 5 5 0 0 4 5 5 9 5 5 5 0 2 0 0 0 4 5 2 0 
ERIO 0 3 0 0 11 10 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 
FUNG 1 4 0 4 1 0 1 0 0 0 0 0 3 3 0 0 0 1 0 0 4 3 
KAPO 0 3 1 0 2 5 1 1 0 0 0 1 1 0 0 0 5 0 0 0 2 2 
GLIT 2 0 0 0 0 0 3 1 3 8 2 5 3 4 0 0 0 1 4 0 0 0 

* See Table 4 for key to abbreviations. 
t Average for all sites. 
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the overstory biophysical characteristics, shown in Ta- 
ble 3, involved allometric analysis of sacrificed trees 
(31 black spruce and 32 aspen) to relate convenience 
measurements such as diameter at breast height and 
branch diameter to the biophysical characteristics of 
interest such as bole and branch biomass. Relationships 
between these variables developed for the sacrificed 
trees were then applied to the convenience measure- 
ments at the individual tree level within the sample 
plots, then aggregated over all trees in the plots to 
compute site biophysical characteristics. Net primary 
productivity (NPP) was estimated from allometry, re- 
lating bole NPP to the average radial growth over 5 
years as determined from bole segments. Terminal 
growth was estimated from observed increases in tree 
height over those same years. The allometric equations 
were used to back-project bole biomass five years and 
determine biomass at the earlier period. The change in 
total bole biomass and terminal growth over the 5-yr 
interval was used as an estimate of aboveground pro- 
ductivity. The details of the dimension analysis method 
can be found elsewhere (Woods et al. 1985, 1991). Table 
4 provides abbreviation names used in Tables 1-3. 

Using a helicopter-mounted Barnes Modular Multi-- 
band Radiometer (MMR) from an altitude of from 120 
to 180 m above ground, spectral reflectance measure- 
ments were acquired over each of the ground-visited 
plots at several times during the 1983 and 1984 growing 
seasons. The field of view of the MMR was adjusted 
with flight altitude to maintain an -30 x 30 m pixel 
on the ground. The spectral reflectance data were cal- 
ibrated but not corrected for atmospheric effects, which 
are relatively small at this altitude. This data set, as 
well as other data collected during COVER, has been 
archived in electronic form and documented in detail 
(Hall et al. 1992). 

As can be seen in Table 1, the sites used in this study 
are >90% black spruce, with the exception of sites 12 
and 63 which have significant fractions of larch (Larix 
laricina). Stands ranged from very sparse on wet, nu- 
trient-poor bogs, to dense, closed stands on drier, more 
productive peat lands. As can be seen in Table 2, a 
common feature to the stands was dominant mats of 
sphagnum moss (Sphagnum spp.), populated by Lab- 
rador tea (Ledum groenlandicum), other shrubs, and 
miscellaneous grasses and sedges common to wet, 
poorly drained soils. 

DATA ANALYSIS 

The data analysis consists of three main computa- 
tions: (1) modeling pixel-level reflectance in terms of 
the reflectance of fundamental scene elements, or end 
members, i.e., shadow, sunlit canopy, and sunlit back- 
ground; (2) measurement and estimation of the end 
member's reflectances, and (3) mixture decomposition 
for inference of the areal proportions of these scene 
elements from measured pixel-level reflectance values. 

Modeled pixel-level reflectance values 

Fig. 1 shows the red (of wavelength 0.63 0.69 [Lm) 
versus the infrared (of wavelength 0.75-0.88 [im) 
stand-level reflectance for the SNF black spruce stands 
acquired at nadir by the helicopter-mounted MMR. The 
data were acquired over a 2-yr period for a range of 
solar illumination angles (27?-75?), as described in the 
previous section. Plotted also in Fig. 1 are the measured 
reflectances of the sphagnum background of the black 
spruce stands, the reflectance for a deep, clear lake- 
a surrogate for shadow reflectance, and inferred sunlit 
canopy reflectance. The inference of sunlit canopy re- 
flectance will be discussed in the section to follow. 

To model the shape of the scatter gram in Fig. 1, we 
assume that radiative transfer among the various veg- 
etative components in the overstory and understory 
(needles, twigs, branches, shrubs, etc.) can be greatly 
simplified and represented by a linear process where 
pixel-level reflectance can be computed as a linear 
combination of bulk component reflectances: sunlit 
canopy, sunlit background (or understory), and shadow 
reflectance. More precisely, 

Pt = CPC + Sp, + BPb (1) 

where 

Pt pixel-level reflectance, 
pc = sunlit canopy reflectance, 
Ps = shadowed canopy and shadowed background 

reflectance, 
Pb= background reflectance, 
C = sunlit canopy fraction, 
S = fraction of shadow (canopy plus background), 

and 
B = fraction of sunlit background. 

To achieve this linearization of the radiative transfer 

TABLE 2. Continued. 

Site 

62 63 64 68 100 101 102 103 105 Avg* 

Ground cover (%) 
66 56 56 62 60 36 50 60 70 58 
7 12 6 4 0 0 8 10 6 14 

12 1 6 9 10 10 10 9 16 13 
1 8 0 8 17 35 8 2 9 11 

20 12 24 5 0 0 4 15 0 7.5 
6 0 34 10 20 1 6 26 11 6.6 
0 0 0 1 2 0 2 1 3 5 
0 0 0 5 2 1 4 1 3 4 

17 6 0 1 0 0 6 0 2 3.8 
4 8 7 1 0 0 3 8 3 3.5 
4 3 4 5 1 2 4 5 5 2.9 
0 0 0 0 1 0 0 0 0 2.1 
0 24 0 0 1.8 
0 0 0 2 5 2 3 3 5 1.5 
1 8 4 2 0 0 1 5 0 1.5 
0 0 0 0 1.2 
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TABLE 3. Site-averaged overstory biophysical characteristics for the Superior National Forest. Data represent average of 
five 16 m diameter subplots in 80 X 80 m sites. 

Biophysical characteristic 

Stem density Biomass density NPP 
Site dbh (cm) (no./M2) Basal fraction* (kg/M2) (kg/M2) LAIt 

2 14.52 0.175 0.00317 12.38 0.325 2.88 
12 4.54 0.164 0.00032 0.68 0.039 0.48 
14 13.22 0.247 0.00372 13.64 0.432 3.27 
15 12.21 0.224 0.00288 10.68 0.348 2.69 
18 4.24 0.261 0.00046 1.09 0.063 0.74 
19 4.05 0.256 0.00041 1.03 0.058 0.69 
38 7.33 0.470 0.00240 6.79 0.295 2.69 
39 5.15 0.377 0.00097 2.37 0.118 1.32 
41 13.49 0.183 0.00308 11.14 0.349 2.84 
42 8.60 0.259 0.00218 7.31 0.258 2.28 
43 8.44 0.363 0.00268 8.70 0.330 2.79 
45 7.28 0.534 0.00278 8.45 0.358 3.09 
47 5.29 0.582 0.00156 3.53 0.180 2.00 
48 9.83 0.340 0.00285 9.15 0.404 2.70 
49 7.38 0.712 0.00360 10.09 0.410 3.74 
50 7.61 0.676 0.00369 10.36 0.432 3.73 
51 5.92 0.378 0.00131 3.62 0.174 1.69 
52 9.92 0.356 0.00318 10.04 0.375 3.03 
54 5.71 0.552 0.00193 5.57 0.267 2.44 
55 7.56 0.529 0.00287 8.58 0.360 3.09 
56 8.09 0.256 0.00168 5.28 0.215 1.83 
57 9.52 0.315 0.00262 8.29 0.319 2.60 
62 4.52 0.196 0.00039 0.89 0.051 0.59 
63 3.94 0.319 0.00051 1.27 0.071 0.84 
64 5.09 0.148 0.00035 0.88 0.049 0.52 
68 7.40 0.660 0.00325 8.72 0.382 3.48 

100 10.98 0.455 0.00455 15.05 0.538 4.00 
101 7.22 1.074 0.00487 13.50 0.572 5.42 
102 5.92 0.917 0.00292 7.25 0.346 3.67 
103 4.86 0.200 0.00050 1.35 0.066 0.71 
105 10.48 0.459 0.00447 15.14 0.538 4.26 

* Basal fraction is the ratio of bole area to surface area. 
t LAI is the projected leaf area index. 

equations requires that the aggregate component re- 
flectances are constant, and thus do not depend on their 
relative areal abundances. This assumes, for example, 
that sunlit canopy reflectance does not depend on sunlit 
canopy fraction; hence the canopy and stand density. 

These assumptions of course do not hold exactly, but 
if they do hold approximately, they permit a very useful 
simplification of an enormous problem. Furthermore, 
we have in the data set of Fig. 1 the ability to evaluate 
this simplifying assumption. 

TABLE 4. Abbreviation names used in Tables 1-3. 

Abbreviation Common name Scientific name 

BLIT Brown litter 
CHCA Leatherleaf Chamaedaphne calyculata 
ERIO Cotton grass Eriophorum spp. 
FUNG Fungi 
GAHI Creeping strawberry Gaultheria hispidula 
GLIT Green litter 
GRAS Grasses 
KAPO Bog laurel Kalmia polifolia 
LALA Tamarack (larch) Larix laricina 
LEGR Labrador tea Ledum groenlandicum 
MOSS Mosses (non-sphagnum) 
PIBA Jack pine Pinus banksiana 
PIMA Black spruce Picea mariana 
PIST White pine Pinus strobus 
SEDG Sedges 
SMTR Bog false Solomon seal Smilacina trifoliata 
SPHA Sphagnum moss Sphagnum spp. 
VAAN Lowbush blueberry Vaccinium angustifolium 
VAOX Small cranberry Vaccinium oxycoccus 
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We do assume that the bulk component fractions in- 
teract with each other. To compute these interactions, 
we use the approximation of Jasinski and Eagleson 
(1989) and Jasinski and Eagleson (1990), who repre- 
sent canopies as randomly spaced vertical cylinders. 
The fraction of background that is shadowed by the 
cylinders is given by them as: 

S = I - C - (I - Q(N+. (2) 

-q is calculated using the height to width ratio of the 
cylinder, R, and the solar zenith angle, 0: 

- = R tan(0). (3) 

Thus, S will vary with cylinder diameter and height 
and the solar zenith angle. C is the sum of the cross- 
sectional areas of the non-overlapping cylinders divid- 
ed by the pixel area and B is: 

B = 1 -C-S. (4) 

Thus, using Eqs. 2-4 we may compute how shadow 
and sunlit background fraction depend on sunlit canopy 
fraction and solar zenith angle (SZA). Fig. 2 shows the 
predicted values of S from Eq. 2 for an R of 7. This R 
value is based on observations of spruce trees in the 
SNF and does not seem to vary greatly among stands. 
The calculations of C, B, and S are for a nadir view 
only, although they can be extended to off-nadir view 
angles for other sensors such as the Advanced Very 
High Resolution Radiometer (AVHRR) aboard the Na- 
tional Oceanic and Atmospheric Administration 
(NOAA) series of satellites or the High Resolution Vis- 
ible (HRV) instruments aboard Systeme Probatoire 
pour "Observation de la Terre" (SPOT). As can be 
observed from Fig. 2, shadow fraction increases with 
sunlit canopy fraction until a critical value for sunlit 
canopy fraction is reached, then shadow fraction begins 
to decrease. The sunlit background fraction decreases 

monotonically with sunlit canopy fraction. The rates at 
which S and B vary with C depend on SZA as a function 
of the geometry of shadowing. As can be seen from 
Eq. 1, the relative rate of change of S with respect to 
B is pivotal to understanding the shape of the Fig. 1 
scatter gram. We will explore this more fully after we 
have obtained values for the end member reflectances 
in Eq. 1. 

End member reflectances 

The assumption that each of the bulk canopy com- 
ponents have constant reflectance permits us to define 
the concept of "end member" reflectance. The concept 
of end member reflectance derives from the location of 
the red and near-infrared reflectances of the canopy 
components as displayed in Figs. 1 and 3. All other 
pixel values lie within a triangle whose vertices are 
defined by the end member reflectance values. Except 
for sphagnum moss, we did not have direct measures 
of the end member reflectances. 

Obtaining values for shadow and sunlit canopy re- 
flectances required both measurement and inference 
from measurement. We had hand-held measurements 
of the sunlit sphagnum background reflectance Pb- The 
assumption that Pb iS constant across all sites is rea- 
sonable since the understories of the black spruce 
stands were predominantly sphagnum moss (see Table 
2). To obtain a value for p, the shadowed background 
and shadowed canopy reflectance, we assumed that 
they are roughly equal to the reflectance of deep lakes 
in the area, for which we also had measurements. p5 
could also have been calculated using radiative transfer 
calculations to estimate the amount of light transmitted 
through the canopy or scattered onto the background 
from the atmosphere or adjacent canopies. p5 would be 
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FIG. 1. Near-infrared versus red reflectance for 31 black 
spruce stands as acquired by the helicopter-mounted MMR. 
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FIG. 3. Comparison of measured and modeled red and 
near-infrared reflectances for 31 black spruce stands. Mea- 
surements were acquired by a helicopter-mounted MMR dur- 
ing the summers of 1983 and 1984 in the Superior National 
Forest. Modeled reflectances are as described in the text. 
Numbered points are site identifiers in Table 1. 

the amount of light transmitted or scattered onto the 
background, multiplied by the illuminated background 
reflectance. Sensitivity studies indicate that small vari- 
ations in the shadowed background reflectance are not 
critical to the overall calculations because the shadows 
are quite dark relative to the canopy and background 
reflectances. We will take this up in more detail in the 
discussion section. To estimate pc, the sunlit canopy 
reflectance, we solved Eq. 1 for p, at the maximum 
shadow point, assuming that the minimum values of 
red and near-infrared (NIR) reflectance in Fig. 1 occur 
at maximum shadow, using the values for p, and Pb 
discussed directly above. We solved Eq. 1 for several 
ranges of SZA: 27?-33?, 42?-48?, 49?-55? and 61?- 
670. The value for p, varied among different SZAs. 
However, by solving this over determined system of 
equations for the four different SZA ranges using a 
least squares approach as described in Shimabukuro 
(1987), we obtained a "best estimate" of p, The values 
for end member reflectances so obtained are given in 
Table 5. 

Pixel-level reflectance calculations 

To predict the pixel-level value of reflectance as end 
member proportions vary, we combine Eqs. 1-4, using 
the end member reflectances as computed as described 
immediately above. We assume that the end member 
reflectances do not vary with end member proportions. 
This assumption is a linear approximation, which ig- 
nores interactions among end member proportions and 
their reflectances. For example, multiple scattering be- 
tween the canopy and the understory can affect shadow 
reflectance, which will in turn depend on C and S in 

Eq. 1. p, certainly depends to some degree on C. In- 
troducing such interactions will likely improve model 
accuracy to some degree; however, it will complicate 
the mixture decomposition algorithm since Eq. 1 will 
no longer be linear. 

We will refer to our linear approximation as the cy- 
lindrical canopy model. Fig. 3 shows the predicted re- 
flectance of the spruce stands using the cylindrical can- 
opy model in comparison to the measured values. Here 
we see both the visible and NIR reflectance decreasing 
from the bright sphagnum end member value as canopy 
density begins to increase, increasing both the fraction 
of sunlit crown and shadow. The visible and near-in- 
frared reflectances continue to decrease, colinearly, un- 
til a critical value of crown closure is reached. This is 
the point of maximum shadow shown in Fig. 2. At this 
point, the crown closure of the canopy becomes suf- 
ficiently large so that background shadows themselves 
are obscured by sunlit canopy, driving the reflectance 
values toward the sunlit canopy end member reflec- 
tance value as sunlit canopy density increasingly ob- 
scures the shadowed background. We will refer to the 
crown closure value at which both red and near-infrared 
reflectance begins to increase with crown closure as 
the critical density. The critical density value, a func- 
tion of SZA, will play an important role in using re- 
flectance to infer biophysical characteristics. 

Five of the data points are significantly different than 
the model predictions. A check of the data reveals that 
three of the data points are measurements of site 12 
with an unusual amount of larch (Larix laricina), as 
shown in Table 1, and two are from a low density site 
with an unusual amount of sedge cover in the back- 
ground, as shown in Table 2. Larch has a different 
spectral signature than black spruce, and sedges are 
spectrally different from sphagnum; thus, the end mem- 
ber reflectances are different. We believe these differ- 
ences explain the lack of fit between the model and the 
measured reflectance for these points. 

Mixture decomposition 

The idea that pixel reflectance is a linear combination 
of the reflectances of end member components such as 
vegetation, soil, etc. was introduced over two decades 
ago (Horowitz et al. 1971). This approach was initially 
applied to resolve pixel mixtures of cultural vegetation 
such as corn and soybeans, but was only marginally 
successful because the reflectance differences between 
one vegetation type and the next is not sufficient to 

TABLE 5. End member reflectances as derived from mea- 
surement and modeling. 

Sunlit Sunlit 
Reflectance background vegetation Shadow 

(spectral region) (%) (%) (%) 
Red 7.45 1.26 0.74 
Near-Infrared 32.1 29.22 2.2 
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FIG. 4. Fraction of shadow versus fraction of sunlit 
vegetation as estimated by the mixture decomposition 
algorithm when applied to the helicopter-mounted 
MMR reflectance measurements over bfack spruce 
stands in the Superior National Forest. MMR data were 
acquired for solar zenith angle ranges of 27?-33?, 42?- 
480, and 57?-63?. Plotted for comparison are the cy- 
lindrical canopy model predicted values of the end 
member fractions. 

reliably estimate mixture fractions. In the early 1990s, 
the concept was revived and used to estimate the 
mixtures of vegetation, soil, and shadow over desert 
ecosystems (Smith et al. 1990a, b, Ustin et al. 1993). 
In vector notation, pixel reflectance is given by 

r=Ax+e (5) 

Where: 

r = an n-dimensional reflectance vector for a pixel 
whose components are the measured reflec- 
tances in n spectral bands, 

A = spectral response matrix - the ith andjth row- 
column element is the reflectance in band i of 
end member j, 

x = areal fraction of pixel occupied by end mem- 
ber j, and 

e = error. 

Given that r is known for at least n independent spectral 
bands, and the elements of A are known (equivalent to 
knowing the reflectances of all end members), Eq. 5 
can be inverted for x, minimizing the error eet. Because 
the areal fraction of the sum of the end member frac- 
tions must be unity, an additional constraint is imposed, 
namely: 

IXI=1 O?Xi?1. (6) 

RESULTS 

Mixture decomposition of helicopter MMR data 

Figs. 4 and 5 show the shadow fraction and the sunlit 
background fraction plotted against the estimated sunlit 
vegetation fraction for several different solar illumi- 
nation angles. These fractions have been estimated 
from the helicopter MMR data using the mixture de- 
composition algorithm. Plotted for comparison are the 
fractions as predicted by the cylindrical canopy model. 
The computed fractions correspond, with some scatter, 
to the extracted mixture fractions. 

In Fig. 4, for example, the empirical estimates of 
shadow fraction increase with empirical estimates of 
sunlit crown fraction until about a quarter to a third of 
the pixel is sunlit canopy. Then the shadow fraction 
begins to decrease as shadows are increasingly ob- 
scured by sunlit canopy. This behavior is observed at 
all solar zenith angles. As can be seen from Fig. 4, the 
critical density value progressively decreases with solar 
zenith angle increase. This is a result of the fact that 
larger SZAs lead to higher values of shadow fraction 
and therefore, a more rapid obscuration of shadows by 
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FIG. 5. Fraction of sunlit background versus frac- 
tion of sunlit vegetation as estimated by-the mixture 
decomposition algorithm when applied to the helicop- 
ter-mounted MMR reflectance measurements over 
black spruce stands in the Superior National Forest. 
MMR data were acquired for solar zenith angle ranges 
of 27?-33?, 42?-48?, and 57?-63?. Plotted for compar- 
ison are the cylindrical canopy model predicted values 
of the end member fractions. 

sunlit canopy. At a 300 SZA, the critical density is 
-40%, while at 600 it is -25%. 

In Fig. 5 is plotted mixture model extracted sunlit 
background versus sunlit canopy fraction, corroborat- 
ing the cylindrical canopy model predictions that sunlit 
background fraction will decrease as sunlit vegetation 
fraction increases and progressively obscures the sunlit 
background with sunlit canopy and shadow. Once 
again, as the solar zenith angle increases, the obscur- 
ation of the sunlit background becomes more rapid as 
a result of enhanced shadowing. 

Relationship of the end member fractions to stand 
biophysical parameters 

The work in the previous section demonstrates that 
remote sensing data can be used to extract shadow frac- 
tion, sunlit canopy fraction, and sunlit background frac- 
tion. However, these parameters, in and of themselves, 
are not used directly in earth system process models. 

Our results show that these end member fractions 
are strongly related to stand structural parameters that 
are of interest to such process models. Note in Fig. 6 
that the shadow fraction of the black spruce stands as 
estimated from the helicopter MMR data is strongly 

related to biomass density. Fig. 6a-c show the depen- 
dence of the relationship on SZA. There is not a sig- 
nificant difference in the relationship between SZA 
ranges of 27?-33? and that of 42?-48?, as shown in Fig. 
6d, which combines the data from these ranges. As 
shown in Fig. 7, sunlit background fraction is also 
strongly related to these biophysical parameters. The 
relationship however, is strongest below the critical 
density, corresponding to a biomass density of =6 kg/ 
mi2. 

At the same time biomass density measurements 
were acquired for the black spruce stands, other bio- 
metric measurements were taken as shown in Table 3. 
In Fig. 8, these parameters are also significantly cor- 
related to biomass density, so that the mixture fractions 
can provide useful estimates of these additional param- 
eters. All of these parameters: leaf area index (LAI), 
diameter at breast height (dbh), aboveground net pri- 
mary productivity (NPP), and basal fraction are useful 
inputs to ecosystem process models. 

Table 6 shows the standard error of regression (for 
a linear fit) for the various end member fractions as 
estimators of biomass density, LAI, dbh, and NPP for 
SZAs of 300, 450, and 600. Overall, shadow fraction 
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FIG. 6. Relationship between shadow fraction and biomass density for Superior National Forest black spruce stands. 
MMR data were acquired for solar zenith angle ranges of (a) 270-330, (b) 420-480, (c) 570-630, and (d) combined data from 
(a) and (b). 

appears to be the best estimator of these variables, 
showing the largest r2 and the smallest standard errors 
with all the biophysical variables; a SZA of 300 is 
"best" in the same sense. These results show that bio- 
mass can be estimated with a standard error of -2 kg/ 
mi2, LAI with a standard error of 0.58, dbh with a stan- 
dard error of -2 cm, and aboveground NPP with a 
standard error of 0.07 kg m-2. yr-'. 

Note that in Fig. 9, the fraction of sunlit canopy also 
bears a functional relationship to biomass density, al- 
beit much weaker than sunlit background or shadow 
fraction to the point of being not useful. This is re- 
flected in Table 6, where the r2 with the biophysical 
parameters is small. This can be explained in part by 
the fact that the range in sunlit canopy fraction is not 
as great as that of shadow or sunlit background. As 
canopy density becomes large, self-shadowing by 
crowns will define a limiting value for sunlit canopy 
fraction, seen in Fig. 9 at =0.3-0.4. This limit does 
not show up in our cylindrical canopy model, but it is 
a reality with conical tree crowns. 

While the correlations demonstrated here have been 
purely empirical ones, they suggest the existence of a 
less heuristic connection between the end member frac- 
tions and biophysical characteristics through the rela- 
tionship of canopy biomass to canopy spatial dimen- 
sions and thus shadowing. We will address these pos- 
sibilities more fully in the Discussion. 

Why NDVI fails as a surrogate for stand 
biophysical parameters 

A large number of regional and global studies have 
relied on NDVI to construct vegetation density maps. 
Our results show, in Fig. 10a, that NDVI is not a re- 
liable predictor of biophysical parameters for the dom- 
inant coniferous species of the boreal forest. Fig. 10b 
shows why! NDVI is linear in sunlit canopy fraction 
(r2 = 0.96) and, as we have already seen, sunlit canopy 
fraction is not strongly related to biomass density. 
However, NDVI is still a useful index for two calcu- 
lations: 

1) It can be used to estimate sunlit canopy fraction, 
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FIG. 7. Relationship between sunlit background fraction and biomass density for Superior National Forest black spruce 
stands. MMR data were acquired for solar zenith angle ranges of (a) 27o-33o, (b) 42o-48o, (c) 57o-63o, and (d) combined 
data from (a) and (b). 

which is in turn directly related to the canopy inter- 
cepted fraction of photosynthetically active radiation 
(Fipar). From Fipar we can compute Fpar, the canopy frac- 
tion of absorbed photosynthetically active radiation, 
given the reflectance and transmission of the canopy 
and the background reflectance (from either measure- 
ment or radiative transfer models). 

2) Using NDVI to obtain an estimate of sunlit canopy 
fraction can yield estimates of the sunlit canopy re- 
flectance, the shadow fraction S, and the sunlit back- 
ground fraction, from simultaneous solutions to Eqs. 1 
and 4, given values for shadow reflectance and sunlit 
background reflectance. 

DISCUSSION 

In the proposal of a new procedure that relies on 
spectral information similar or identical to that used in 
earlier attempts to estimate vegetation parameters, it is 
reasonable to ask how the new approach differs from 
the old. We have attempted to do that to some degree 
in the Introduction, and will attempt to further that aim 
in this section. 

In this discussion we will address five fundamental 
questions: (1) What are the effects of varying illumi- 
nation angle on our results? (2) What is the effect of 
atmospheric transmission and scattering loss on these 
results? (3) Why is NDVI so highly correlated to sunlit 
canopy fraction? (4) How does the mixture decom- 
position approach to estimating biophysical parameters 
relate to approaches relying on vegetation index? (5) 
How does the allometry used to establish relationships 
among individual tree morphology and biophysical 
characteristics influence the observed empirical cor- 
relations with end member fractions? 

Illumination angle effects on red vs. NIR reflectance 
As we saw from the theoretical and measured values 

of end member fractions in Figs. 2, 4, and 6, the SZA 
affects the relationships between these fractions. This 
in turn propagates into the reflectance scatter plot in 
Fig. 3. The structure of this scatter plot can be better 
appreciated in Fig. 11, where we have used Eq. 1 to 
compute reflectance as it varies with C. S, in turn, is 
computed from Eqs. 2 and 3 for a range of SZA. Each 
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FIG. 8. Relationship between biomass density, LAI, basal fraction, dbh, and NPR 

point on the plot represents equal increments of sunlit 
canopy fraction, varying from 0-1 in 0.025 increments. 
The outer envelope of the red-NIR scatter gram is de- 
termined by larger SZAs. At the other extreme, where 
the illumination is from nadir (not possible in practice 

at higher latitudes), the variation in red-near infrared 
reflectance will be along a line joining the background 
and sunlit canopy reflectance values. All other red-NIR 
values will fall within the triangle formed by the max- 
imum solar illumination angle, which has vertices at 

TABLE 6. Standard error of regression and correlation coefficients among biomass density, LAI, dbh, and NPP (columns) 
and shadow fraction and sunlit background fraction at 300, 450, and 600 SZA (rows). 

Biomass LAI dbh NPP 

r2 SE r2 SE r2 SE r2 SE 

SZA = 300 
Canopy 0.21 3.65 0.42 0.84 0.04 2.86 0.39 0.11 
Background 0.60 2.60 0.74 0.56 0.31 2.43 0.73 0.07 
Shadow 0.76 2.00 0.72 0.58 0.54 1.97 0.74 0.07 

SZA = 450 
Canopy 0.09 4.25 0.10 0.07 0.08 3.34 0.10 0.14 
Background 0.77 2.11 0.79 0.51 0.62 2.14 0.82 0.06 
Shadow 0.71 2.41 0.70 0.62 0.54 2.35 0.73 0.07 

SZA = 600 
Canopy 0.00 4.80 0.20 1.23 0.04 3.47 0.17 0.16 
Background 0.14 4.46 0.62 0.85 0.12 3.31 0.54 0.12 
Shadow 0.25 4.16 0.49 0.99 0.40 2.74 0.43 0.13 
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FIG. 11. Cylinder model predictions of red versus near- 
infrared reflectance for SZA of 00, 150, 300, 450, and 600. 
Each point, starting from sunlit background, represents an 
equal increment of sunlit canopy fraction of 0.025 increasing 
from 0 ("sunlit background" point on the graph) to 1 ("sunlit- 
canopy" point on the graph). The graph illustrates the effects 
of solar illumination angle on observed reflectance. End mem- 
ber reflectances are as derived in Methods. 

the critical density point on the vertex, and the sunlit 
sphagnum and sunlit canopy reflectance values. Thus 
the triangle of measured reflectance values in Figs. 1 
and 3 is explained by the fact that the reflectance mea- 
surements came from an assortment of stands of vary- 
ing density with acquired at SZAs varying from 270- 
750. It is this structure that gives rise to the ability to 
relate shadow and sunlit canopy fraction to biophysical 
parameters. 

Graphical interpretation of mixture fractions 

While Eqs. 5 and 6 rigorously describe the mixture 
decomposition algorithm, a graphical representation of 
their solutions adds intuitive understanding and insight 
into how the mixture decomposition approach will be 
affected by variability in the end member signatures 
and other error sources such as atmospheric attenuation 
and scattering. Fig. 12 provides such a representation, 
since the lines inside the end member simplex (triangle 
whose vertices are the end member locations in reflec- 
tance space) represent lines of constant end member 
fractions as the SZA varies. The proof of this is derived 
in the Appendix. The end member values are the ones 
used in our black spruce study. Plotted is a hypothetical 
data point represented by the open circle. For such a 
data point, S would equal 0.6, and B and C would each 
equal 0.2. 

Thus the graphical mixture decomposition algorithm 
for computing the proportions for three mixtures con- 

tained in a pixel from its reflectance in two bands is 
quite simple: 

1) Draw a simplex containing the end member reflec- 
tance values as vertices. 

2) Draw three lines through the pixel location within 
the simplex such that each line is parallel to a side 
of the simplex. The reflectance line of constant pro- 
portion for an end member is parallel to the simplex 
side opposite the end member vertex. 

3) The end member proportion for the pixel is the ratio 
of: (a) the perpendicular distance from the pixel to 
the simplex side opposite the end member, and (b) 
the perpendicular distance from the side opposite 
the end member vertex to a parallel line passing 
through the end member vertex. 

NDVI and sunlit canopy fraction 

Fig. lOb shows a remarkable correlation between 
NDVI and sunlit canopy fraction. Fig. 13, an overlay 
of lines of constant NDVI on Fig. 11, shows why. When 
NDVI is constant, 

NDVI = (Pt -Pt2)l(Ptl + P12) = K, (7) 

which can be solved for Pt2 in terms of Pt,: 

Ptl = Pt2(0 + K)I(l - K) (8) 

Fig. 13 shows the constant lines of NDVI = 0, NDVI 
= sunlit background = 0.63, NDVI = 0.71, NDVI- 
maximum shadow = 0.79, and NDVI = sunlit canopy 
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FIG. 12. Graphical approach to inferring mixture propor- 
tions given red and NIR reflectance. Each side of the trian- 
gular simplex is a solution for an end member proportion of 
zero, for the end member opposite that side. Lines within the 
end member simplex are solutions to Eqs. 1 and 4 assuming 
constant end member proportions (see Appendix for deriva- 
tion). Annotated values on lines represent values of constant 
end members. Open circle represents value of red-NIR re- 
flectance. End member proportions for that pixel given by 
values for lines intersecting that reflectance value; S = 0.6, 
and B =, ,0.2, and C = 0.2. 
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FIG. 13. Constant lines of NDVI for NDVI = 0, NDVI 
-canopy background = 0.63, NDVI = 0.71, NDVI = max- 

imum shadow = 0.79, and NDVI = sunlit canopy = 0.91. 
As canopy fraction increases, NDVI increases almost linearly 
from its sunlit background value of 0.63. NDVI increases at 
the same rate for all SZA, rendering the relationship between 
NDVI and sunlit canopy fraction independent of SZA. 

= 0.91. Since the plotted points in Fig. 13 are calcu- 
lated for constant increments of sunlit canopy fraction, 
we see that as canopy fraction increases, NDVI in- 
creases almost linearly from its sunlit background value 
of 0.63, and at similar rates for all SZA. This inde- 
pendence of the NDVI-sunlit canopy fraction relation- 
ship to SZA can also be seen in Fig. lOb. In Fig. 12, 
note that lines of constant sunlit canopy fraction in the 
simplex are nearly parallel to lines of constant NDVI 
for low sunlit canopy fraction, but become increasingly 
divergent at high sunlit canopy fraction. Note in Fig. 
lOb that we do see a saturation of NDVI sensitivity at 
an NDVI of -0.79, the NDVI at maximum shadow. 
As can also be appreciated from Figs. 12 and 13, the 
sensitivity of NDVI to sunlit canopy fraction depends 
on the difference between sunlit background and sunlit 
canopy reflectance, particularly in the visible part of 
the spectrum. As the sunlit canopy reflectance ap- 
proaches the sunlit background reflectance, the rate of 
change of NDVI with sunlit canopy decreases. When 
the NDVI of the sunlit canopy is exactly that of the 
NDVI of maximum shadow, NDVI actually begins to 
decrease with sunlit canopy fractions beyond the crit- 
ical density. Note that this value is almost independent 
of SZA and equal to =0.79. For vegetated communities 
where the NDVI of the sunlit canopy is equal to that 
of the sunlit background, NDVI will be totally insen- 
sitive to sunlit canopy fraction. 

Atmospheric effects on the mixture 
decomposition algorithm 

A problem of concern in any remote sensing appli- 
cation, particularly in regional to global ones, is the 

effect of atmospheric conditions on the surface reflec- 
tance. In the mixture modeling application, variations 
in atmospheric conditions from one date to the next, 
or in one region to the next, would modify the values 
of the end member reflectances with the potential for 
creating error in the estimates of end member mixing 
proportions within a pixel. In this section, we will ex- 
amine such effects. 

Over a region in which the atmosphere can be con- 
sidered horizontally homogeneous (aerosols, water va- 
por, and molecular scattering and absorption), the at- 
mospherically transformed reflectance in the ith band 
and can be expressed approximately as 

Pti = Si + Tip, (9) 

where S, is the path scattering contribution and T, rep- 
resents path transmission. Fig. 14 shows the effect on 
the simplex of Fig. 12 and its vertices when a trans- 
formation of the type shown in Eq. 9 is applied. In this 
example, the magnitude of path scattering is assumed 
to be 2% reflectance for red and 0.1% for NIR; trans- 
mission is assumed to be 0.8 for red and 0.95 for NIR. 
Note that the mixture proportions remain invariant to 
linear transformations since the end member reflec- 
tances and the mixture pixel reflectances are affected 
identically. Thus, if a procedure can be developed to 
select end members based on their relative positions in 
spectral space (opposed to absolute reflectance values), 
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FIG. 14. Effect of atmospheric scattering and absorption 
on the end member simplex. The simplex with solid lines is 
the black spruce canopy-sphagnum background used in this 
study. The simplex formed with dotted lines would result from 
the same reflectance data being acquired under atmospheric 
conditions corresponding to a path scattering of 2% reflec- 
tance for red and 0.1% for NIR with an atmospheric trans- 
mission of 0.8 for red and 0.95 for NIR. Note that the end 
member proportions of the open circle are inv4riant under 
this transformation; this results from the fact that the end 
member and pixel reflectance undergo identical, linear trans- 
formations. 
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FIG. 15. Vertical helicopter photography of Superior National Forest black spruce stands with end member fractions as 
estimated from the mixture decomposition algorithm. 

the mixture decomposition algorithm will be invariant 
to atmospheric differences between scenes, eliminating 
the need for atmospherically corrected data. As we will 
discuss in the Discussion: Developing an end member- 
based regional or global procedure, it may be possible 
to select end members based on their relative positions 
or satellite digital count values, and thus avoid the need 
for both calibration and atmospheric correction. 

Errors arising from noise in end 
member reflectances 

From the positions of sites 12 and 103 in Fig. 3, one 
would estimate that they are high biomass density black 
spruce sites. In fact, if we look at Table 3, we see that 

both sites are relatively low biomass density sites. Both 
sites have large proportions of larch (Larix laricina) 
in comparison to the other, nearly pure black spruce 
sites. Larch is a deciduous canopy, and the data from 
the "outlier" sites in Fig. 3 were acquired in July and 
August 1983 and June 1984, when larch is much more 
reflective than black spruce, particularly in the NIR. 
Thus, at the same biomass density, larch is more re- 
flective than black spruce. Without adjusting the sunlit 
canopy end member reflectance for this difference, the 
use of pure black spruce end members in the mixture 
decomposition of stands containing larch creates sub- 
stantial error in the estimate of end member proportions 
and corresponding errors in biophysical parameters 
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FIG. 16. Modeled values of sunlit background and shadow fraction as a function of biomass density. Model is as shown 
in Eqs. 11 and 12. 

such as biomass density. The effects of this can be seen 
in Fig. 4b for site 12, and in Fig. 5b for site 63; both 
sites contain 12% larch. Thus errors in either sunlit 
canopy or sunlit end member reflectances can create 
large errors in the estimation of background end mem- 
ber proportions because of the relatively small differ- 
ence between sunlit background and sunlit canopy re- 
flectance. On the other hand, proportion estimation er- 
rors are relatively insensitive to errors in the shadow 
reflectance because it is quite different from either sun- 
lit canopy or sunlit background. To mitigate the op- 
erational effects of these errors, one approach would 
be to stratify the region into community composition 
classes with significantly different end member reflec- 
tances (e.g., conifer, deciduous, etc.) using image clas- 
sification approaches, and apply the mixture decom- 
position algorithms using different end members within 
the different strata. 

End member fractions and biophysical 
characteristics 

Fig. 15 shows helicopter-acquired vertical color 
photography from 9 of the 31 black spruce stands used 
in this study. What can be seen in this array of pho- 
tographs is visual proof of the empirical correlations 
observed earlier between the various end member 
fractions and biomass density. Shown beneath each 
of the photographs are the estimates of mixture frac- 
tions derived from the red-NIR reflectance of these 
stands. As the stands get denser and biomass density 
increases, sunlit canopy and shadows increase, while 
sunlit background decreases. The lowest density 
stands are nutrient and oxygen-deprived bogs with 
very low aboveground net primary productivity. The 
nine stands span a gradient of productivity, increasing 
as soils become better drained and thus more sup- 
portive of growth. 

Using the cylinder model employed here to represent 
tree canopy geometry, we can partially quantify the 

relationship between shadow, sunlit background, and 
biomass density by assuming that biomass density is 
proportional to C. With this assumption we may define 
a new variable, biomass density fraction (BMDf), as 
the ratio of the biomass density BMD at a sunlit canopy 
fraction of C to the biomass density at complete canopy 
cover, i.e., 

BMDf =BMD/BMDmax (10) 

where BMD = BMDmax when C = 1. Then the shadow 
fraction as given in Eq. 2 could be written as: 

S = 1 - BMDf- (1 - BMDJ)(n+'), (11) 

and, from Eqs. 4 and 2, sunlit background fraction is 
proportional to 

B = (1 - BMDf)(n+'). (12) 

A crude estimate of BMDmax is simply the largest value 
of BMD observed on any of the SNF sites, which was 
15.04 kg/M2. Using this value, we compute and plot 
Eqs. 11 and 12, overlayed in Fig. 16 with the empirical 
values of end member fractions versus biomass den- 
sity. Two problems with the cylinder model are im- 
mediately obvious. In Fig. 16a, we see that for high 
values of biomass density, Eq. 11 does not correctly 
predict the empirically obtained values of shadow 
fraction versus biomass. This is a result of the fact 
that in the simple cylinder model, shadow fraction 
goes to zero as sunlit canopy approaches unity. In the 
densest of real SNF black spruce canopies of Fig. 15, 
the sunlit canopy fraction cannot be unity, because 
the canopy is rough and will produce shadows. 

While this simple analysis is approximate, it does 
point the way toward a more sophisticated analysis to 
relate shadow and sunlit background fraction to can- 
opy biophysical parameters, using more realistic mod- 
els between canopy geometry and biophysical param- 
eters. 

That sunlit canopy fraction does not correlate with 
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FIG. 17. (a) Individual tree biomass versus tree height and (b) individual tree leaf area versus biomass as determined 
from sacrificed black spruce trees in the Superior National Forest study. 

the biophysical parameters (Fig. 9) is somewhat of a 
curiosity since the cylinder model predicts that it 
should. Note that in Fig. 9, at all three sun angles, sunlit 
canopy fraction does increase initially with biomass 
density until the critical density is reached, then it be- 
gins to decrease (although these correlations are very 
noisy). That the range of sunlit canopy is much smaller 
than that of shadow or sunlit background explains part 
of the lack of correlation. However, it may also be the 
case that non-linear effects, such as the dependence of 
sunlit canopy or shadow reflectance with crown depth, 
or morphological differences with tree size, may lead 
to this behavior. This is a question requiring further 
investigation. 

Correlation among the biophysical parameters 

A brief discussion is in order regarding the remark- 
able correlation among the many stand-level biophys- 
ical characteristics observed in Fig. 8. None of the 
stand-level characteristics shown in Fig. 8 are measured 
directly; rather, allometric relations are used to com- 
pute these characteristics, primarily from dbh at the 
individual tree level. Tree-level values of biomass and 
leaf area are estimated from values of dbh for the in- 
dividual trees, then aggregated to estimate average bio- 
mass density and leaf area index at the plot and stand 
level. Fig. 17 shows why the stand-level biophysical 
variables shown in Fig. 8 are all correlated with each 
other, and thus with end member fractions. These tree- 
level biophysical parameters were measured from 30 
sacrificed black spruce trees in the SNF Because tree 
height is so highly correlated to biomass and leaf area, 
and because the height to width ratios for black spruce 
canopies in the SNF are relatively constant, a high 
correlation between canopy volume, canopy biomass, 
and canopy leaf area is introduced. As we have seen 
from the cylindrical canopy model, canopy volume is 

in turn related to sunlit background and shadow frac- 
tion. 

Developing an end member-based 
regional or global procedure 

As we have seen from our evaluation, the following 
conditions are essential for the implementation of mix- 
ture decomposition to estimate scene proportions: (1) 
accurate estimates of at least the relative position of 
the end members in spectral space, (2) the differences 
in the end member reflectances must be large in com- 
parison to the reflectance variability in the scene, and 
(3) if absolute values are to be used for end member 
reflectance, satellite images must be calibrated and at- 
mospherically corrected. 

Sunlit canopy and background end member reflec- 
tances vary with species composition and background; 
thus, mixture decomposition must be applied to areas 
consisting of a single community type. The first re- 
quirement of a regional or global mixture decompo- 
sition procedure, therefore, is a reliable community and 
composition classification. In our particular case, we 
would need a reliable map identifying the black spruce 
stands. Fortunately, there has been a large amount of 
research focusing on image classification and this task 
is quite achievable. 

Even with species composition given, satellite data 
must be corrected for calibration drift and atmospheric 
effects if preset values of sunlit canopy, shadow, and 
sunlit background reflectances are to be used in mixture 
decomposition. When atmospheric optical depth or cal- 
ibration data are not available to correct the satellite 
images, relative digital count values for end members 
must be determined directly from, and applied to, each 
image. One possible approach to this relative method 
is as follows. If treeless fens can be located from clas- 
sification or photo interpretation, the uncorrected dig- 
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ital count values for those areas could serve as end 
member values for the sphagnum background; treeless 
bogs are often covered with sphagnum as are the treed 
fens and bogs. Shadow digital count values could be 
estimated from clear lakes if available. This leaves sun- 
lit canopy reflectance as the only undetermined value. 
However, assuming the cylindrical canopy model 
holds, Eqs. 1, 2, and 4 may be combined to yield 

Pt,C=Cp + [1 - C - (1 -(n+,)]P,i 
+ (1 - C)( )Pbi, (13) 

which can be solved for p,, and C, using the satellite 
digital count value pi, and the digital count values for 
psi and Pbi as just discussed. This approach thus provides 
a means to execute mixture decomposition without the 
need for atmospherically corrected, calibrated data. As 
long as the end member digital count values are de- 
termined and applied within a region where atmospher- 
ic opacity is homogeneous, digital count values should 
work. As we saw from Fig. 14, the end member pro- 
portions will not be altered by a change in the end 
member reflectances introduced by linear transforma- 
tions such as calibration changes and atmospheric dif- 
ferences. 

CONCLUSIONS 

We believe we have demonstrated that mixture de- 
composition techniques, using red and NIR reflectance, 
can provide useful estimates of fraction of sunlit can- 
opy, fraction of sunlit background, and fraction of shad- 
ow in pure conifer stands. The empirical and theoretical 
considerations herein suggest that these results should 
generalize beyond black spruce and jack pine stands 
to other conifers, and perhaps even to deciduous can- 
opies. Secondly, we find that these radiometric frac- 
tions are highly correlated to biophysical parameters 
of interest; specifically, shadow and sunlit background 
fraction to biomass density, dbh, LAI, and aboveground 
NPP. The linear regression statistics are shown in Table 
6. The sensitivity of the biophysical variables to the 
various radiometric fractions show only a mild depen- 
dence on solar zenith angle for such angles <500; thus 
corrections for this effect, while theoretically practical, 
may not be necessary. We have also shown why a pop- 
ular vegetation index, NDVI, does not provide reliable 
estimates of stand biophysical characteristics directly; 
NDVI is shown to be highly correlated to the fraction 
of sunlit canopy, which itself is relatively insensitive 
to both biomass and LAI. However, because NDVI is 
correlated to sunlit canopy fraction, we would expect 
it to be a reliable measure of the fraction of photosyn- 
thetically active radiation incident upon the canopy, 
and thus the fraction of photosynthetically active ra- 
diation absorbed by the canopy. Finally, we have ex- 
plored the issues involved in using mixture decom- 
position operationally in a regional or global context 
to estimate surface biophysical characteristics. We have 
investigated the effects of atmosphere on the mixture 

decomposition approach and have shown that when end 
member samples for background and shadow can be 
directly identified in the satellite data, no corrections 
for atmospheric interference are necessary to decom- 
pose the image pixels into their end member fractions; 
however, if absolute values for end member reflec- 
tances are used, the satellite data must be accurately 
calibrated and atmospherically corrected. To use mix- 
ture decomposition and geometric canopy models to 
estimate biophysical characteristics on a regional or 
global basis, however, the land surface must first be 
stratified into regions of homogeneous ground cover 
with respect to background and crown reflectance as 
well as crown geometry; the mixture decomposition 
algorithm must then be applied to each stratum, using 
stratum-unique values for crown and background re- 
flectance. In addition, the relationship between the end 
member fractions and biophysical characteristics will 
depend on crown geometry. This will require the use 
of image processing to develop land cover maps prior 
to application of mixture decomposition algorithms. 
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APPENDIX 
Eqs. l and 4 can be rewritten as Pt1 = a, + ejS and 

Ptl = CP11 + Sp51 + (1 - S - C)pbl and Pt2 = a2 + e2S; (A.3) 

Po2 = CPt2 + SPs2 + (1 - S - C)Pb2; (Al) 
which can be solved for Pt2 in terms of ptl: 

Pt2 = d21 + allelptl, (A.4) 
which can be rewritten as which is, of course, the equation for a straight line with slope 

Pti = C(P1 Pbl) + S(PA - Pbl) + Pbl and al/e, and intercept, where: 

d2l = C(Pt2 - Pb2) - { C(Ptl - Pbl) + Pbl } 
Pt2 = C(Pt2 Pb2) + S(P,2 - Pb2) + Pb2 (A.2) I(P-2 Pb2)/(P,l - Pbl) + (Ps2 - Pb2)/(P,l - Pbl)Ptl} (A. 5) 

Now, for C = a constant, Eqs. 2 are of the form: Similar proofs hold for S = a constant and B = a constant. 
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