Novos métodos de reconstrução de imagens tomográficas com ruído Poisson por pré-processamento das projeções

NELSON D.A. MASCARENHAS¹
SÉRGIO S. FURUIE²
ANGEL L.S. PORTAL³

¹Secretaria de Ciência e Tecnologia
Instituto Nacional de Pesquisas Espaciais
Divisão de Processamento Imagens
NELSON@OIP. INPE. BR

² Instituto do Coração / HCFMUSP
Divisão de Informática Médica

³ Universidade de São Paulo
Escola Politécnica
Departamento de Engenharia de Eletricidade - L.S.I.

Abstract. In a previous work [1,2], Furuie and Mascarenhas proposed a number of reconstruction techniques for emission computed tomography of the PET type (Positron Emission Tomography), based on filtering the Poisson noise of the one dimensional projections, followed by the use of conventional fast algorithms, like convolution-backprojection. The purpose of this work is to refine the one dimensional projections estimation techniques previously proposed, by taking into account the correlation between points in the non-noisy one dimensional projections, both on the filtering and on the parameter estimation procedures.

1. Introdução

Frequentemente, em equipamentos comerciais, utilizam-se métodos de reconstrução tomográfica como a filtragem-retroprojecção e a convolução-retroprojecção, pois além de serem técnicas rápidas, são de fácil implementação. Na convolução-retroprojecção, o ruído na região de alta frequência é amplificado. Na filtragem-retroprojecção empregam-se filtros para atenuar este efeito. Todavia, devido a estes filtros de reconstrução e também à resolução do colimador do tomógrafo utilizado, diminui-se a resolução da imagem final [3]. Quando se utiliza apenas a convolução-retroprojecção tem-se uma imagem final com melhor contraste, mas também com uma maior quantidade de ruído [3]. Quando se aplica a filtragem-retroprojecção (FRP), perde-se informação na região de alta frequência, diminuindo-se o contraste.

Uma proposta para a solução deste problema seria a filtragem do ruído Poisson existente em tomografia de emissão nas projeções, ou seja, a realização de um pré-processamento das projeções, seguida da convolução-retroprojecção. Devido ao fato da filtragem ser específica para o tipo de ruído que corrompe as projeções (do tipo Poisson), é de se esperar um melhor compromisso entre o aumento da relação sinal-ruído da imagem reconstruída e a perda da resolução.

Este trabalho propõe-se a refinar os métodos propostos por Furuie e Mascarenhas [1,2], levando em consideração a existência de correlação entre pontos nas projeções unidimensionais não ruidosas. Os

* Este trabalho teve o auxílio da FAPESP, através dos Processos Nós. 91/3538-2 e 90/3634-7.

Anais do SIBGRAPI V (1992) 55–61
resultados obtidos [4], em geral, evidenciam uma melhoria de desempenho, com um custo computacional que continua substancialmente menor (ainda de uma ou duas ordens de grandezas), quando comparado com métodos convencionais, como o algoritmo ML-EM [5].

2. Métodos de estimação das projeções

Dentre os diversos refinamentos dos métodos propostos para a filtração das projeções [4], serão representados neste trabalho os seguintes estimadores da projeção não ruidosa.

- MAP Linearizado.
- Estimativa por mediana com ponderação por Maeda.
- Wiener global com transformada de Anscome.

MAP LINEARIZADO: Será utilizado o estimador MAP para filtrar as projeções não ruidosas. Dada uma projeção ruidosa \(g \), para estimar-se a projeção ruidosa pelo método MAP, utiliza-se o modelo "a priori" Gaussiano multivariado para a projeção \(\bar{g} \). Tomando-se como hipótese que não haja borramento na formação da projeção, chega-se à seguinte solução MAP [6], [7]:

\[
(q - 1) - R_g^{-1}(q - \bar{g}) = Q
\]

onde:

\[
q_i = \frac{y_i}{g_i}
\]

\[
q = [q_1 q_2 \cdots q_M]^T
\]

\[
\bar{q} = [\bar{q}_1 \bar{q}_2 \cdots \bar{q}_M]^T
\]

\[
\bar{g}_i = \text{média não estacionária de } g_i
\]

\[
R_g = \sigma_g^2 \begin{bmatrix}
1 & \rho & \rho^2 & \cdots & \rho^{M-1} \\
\rho & 1 & \rho & \cdots & \rho^{M-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{M-1} & \rho^{M-2} & \rho^{M-3} & \cdots & 1
\end{bmatrix}
\]

onde: \(\rho \) é o coeficiente de correlação entre as variáveis aleatórias que representam os pontos contíguos.

\(|\rho| < 1 \).

\[\sigma_g^2 \] é a variação destes pontos.

Substituindo (2) e (3) em (1) vem:

\[
\begin{align*}
&\left(\frac{y_i}{g_i} - \frac{r}{1 + r^2}\right) \bar{g}_i + \beta r \bar{g}_1 \\
&= 1 - 2\frac{y_i}{g_i} - \frac{r}{1 + r^2} \bar{g}_i + \beta r \bar{g}_1 \\
&\left(\frac{y_i}{g_i} - \frac{r}{1 + r^2}\right) \bar{g}_i + \beta r \bar{g}_{i+1} \\
&= 1 - 2\frac{y_i}{g_i} + \beta r \bar{g}_{i-1} - \beta r \bar{g}_i + \beta r \bar{g}_{i+1}
\end{align*}
\]

\[i = 2, \ldots, M - 1 \]

\[
\begin{align*}
&\left(\frac{y_M}{g_M} - \frac{r}{1 + r^2}\right) \bar{g}_M + \beta r \bar{g}_{M-1} \\
&= 1 - 2\frac{y_M}{g_M} + \beta r \bar{g}_{M-1} - \frac{r}{1 + r^2} \bar{g}_M
\end{align*}
\]

onde:

\[
r = \frac{\sigma_g^2(1 + \rho^2)}{(1 - \rho^2)} \quad e \quad \beta = \frac{\rho}{(1 + \rho^2)}.
\]

Utilizando-se o método de eliminação de Gauss para resolver o sistema de equações acima e adotando-se a subdivisão da projeção em blocos que se sobrepõem segundo a técnica do "overlap and save" [4], [6], [7], chega-se a um estimador linear, onde foi adotado um bloco de 16 pontos com sobreposição de 50% e, para o cálculo da média móvel, uma janela de 3 pontos.

Como se supõe a existência de correlação entre os pontos que formam a projeção, aplica-se o modelo auto-regressivo de primeira ordem sobre a projeção obtida pela estimativa preliminar da projeção não ruidosa. A estimativa preliminar consiste basicamente em aplicar-se uma média móvel sobre a projeção ruidosa com uma janela de 5 pontos.

ESTIMADOR POR MEDIANA COM PONDEIRAÇÃO POR MAEDA: Maeda e Murata [8] propuseram um estimador não linear baseado numa combinação convexa da média e da mediana do sinal medido após a transformada de Anscome [9].

Este estimador pode ser formalizado da seguinte forma:

\[
s_i = \beta_i \bar{z}_i + (1 - \beta_i) \tilde{z}_i
\]

Anais do SBIGRAPI V, novembro de 1992
onde:
\[\hat{z}_i \] é a mediana local.
\[\bar{z}_i \] é a média local.
\[\beta_i = \frac{\sigma^2_{\hat{z}_i}}{\text{max}[\sigma^2_{\hat{z}_i}]} \]

\(\beta_i \) seria uma medida da "atividade do sinal". Se \(\beta_i \) está próximo de zero, isto é uma indicação de que se trata de uma região mais plana e então prevaleceria a média sobre a mediana.

Caso contrário, haveria indicação de que se trata de uma região com muita atividade do sinal e neste caso prevaleceria a mediana na tentativa de preservar as bordas da projeção.

A média local foi estimada pelo modelo auto-regressivo de primeira ordem, ou seja, considera-se a projeção formada por pontos correlacionados entre si.

WIENER GLOBAL COM TRANSFORMADA DE ANSCOMBE: Aplicando-se a transformada de Anscome [9] sobre a projeção ruidosa \(y \), obtém-se uma projeção com ruído aproximadamente Gaussiano com média zero e variância unitária e independente da projeção.

A função de transferência para o filtro de Wiener com ruído aditivo e independente do sinal é:

\[W_G = \frac{H^* \phi_y}{|H|^2 \phi_y + \phi_u} \quad (6) \]

Após a transformada de Anscome podemos afirmar que a densidade espectral do ruído é unitária (ruído branco de variância unitária). Adotando-se a matriz Markoviana de primeira ordem como matriz de covariância para a projeção não ruidosa, e inexistência de borramento na formação das projeções podemos afirmar [10], [11]:

\[\phi_u(w) = 1 \quad -\pi \leq u \leq \pi \]
\[\phi_y(w) = \sigma^2_y \frac{1 - \rho^2}{1 + \rho^2 - 2\rho \cos(w)} \quad -\pi \leq u \leq \pi \quad (7) \]
\[H(w) = 1 \quad -\pi \leq u \leq \pi \]

Assim a função de transferência será dada por:

\[W_G = \frac{1}{1 + \beta} \quad (8) \]

onde: \(\beta = \frac{\phi_y}{\phi_u} = \sigma^2_y \)

As médias locais foram estimadas pelo modelo auto-regressivo de primeira ordem, assim como o coeficiente de correlação e a variância estacionárias.

A projeção foi dividida em blocos e o coeficiente de correlação e a variância são estimados para cada bloco. Foi adotada a sobreposição entre os blocos e utilizado o método de "overlap and save", que se mostrou adequado para implementar aproximadamente a convolução linear dada pelo filtro pela convolução circular implementada no domínio da frequência.

Para os três estimadores apresentados acima, utilizou-se uma projeção simulada em computador (Fig. 1) e calculou-se a raiz quadrada do erro médio quadrático normalizado (REMQN) (vide Tab. 1).

Nesta tabela, o tamanho da janela (3,5 ou adaptativa) indica o número de pontos utilizado para calcular médias e variâncias locais. No caso adaptativo, foi usado o método proposto por Rabbani [12] de detecção de bordas sob ruído Poisson, numa versão modificada para uma dimensão. Na tabela 1, o item melhoria, expresso em dB, foi calculado da seguinte maneira:

\[\text{Melhoria} = 10 \log \frac{\sum_{j=1}^{M} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{M} (\hat{y}_j - \hat{y}_j)^2} = 20 \log \frac{\text{REMQN sem estimador}}{\text{REMQN com estimador}} \]

onde \(\text{REMQN com estimador} = \sqrt{\frac{\sum_{j=1}^{M} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{M} y_j^2}} \)

Para o caso de \(\text{REMQN sem estimador} \cdot \hat{y}_i = y_i \), e resulta:

\[\text{REMQN sem estimador} = 0.1713 \]

Foi incluído também na Tabela 1 o resultado obtido com estimador MAP pontual (sem levar em conta a correlação das projeções não ruidosas) [1] e [2], para comparação. Observa-se o melhor desempenho dos estimadores globais em relação ao estimador pontual, embora com um tempo de processamento maior. Isso, no entanto, tem relativamente pouca importância pois o maior esforço computacional de reconstrução de imagens reais é residir no algoritmo de convolução-retroprojeção.

Tab. 1 Resultados comparativos para cada estimador: o tempo de processamento é para um PC286 6MHz com co-processador aritmético.

<table>
<thead>
<tr>
<th>Estim. tipo</th>
<th>Melhoria tempo</th>
<th>Jan. de 3 elementos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(dB)</td>
<td>(s)</td>
</tr>
<tr>
<td>MAP Linear</td>
<td>6.06</td>
<td>23.73</td>
</tr>
<tr>
<td>heur. Maeda</td>
<td>7.00</td>
<td>3.95</td>
</tr>
<tr>
<td>Wiener com</td>
<td>5.75</td>
<td>10.76</td>
</tr>
<tr>
<td>Ascombe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP Pontual</td>
<td>3.67</td>
<td>1.10</td>
</tr>
</tbody>
</table>
3. Estudo comparativo

Para cada um dos três estimadores acima, filtraram-se as projeções ruídosas de uma figura de Tanaka previamente obtida por simulação (Fig.1 e Fig.2) e aplicou-se a convolução-retroprojeção (CRP).

<table>
<thead>
<tr>
<th>Estim. tipo</th>
<th>Janela adaptativa</th>
<th>Melhoria tempo (dB)</th>
<th>Melhoria tempo (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP Linear</td>
<td>6.20</td>
<td>27.63</td>
<td></td>
</tr>
<tr>
<td>heur. Maeda</td>
<td>7.84</td>
<td>12.47</td>
<td></td>
</tr>
<tr>
<td>Wiener com</td>
<td>5.73</td>
<td>14.66</td>
<td></td>
</tr>
<tr>
<td>Ascombe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP Pontual</td>
<td>5.22</td>
<td>2.53</td>
<td></td>
</tr>
</tbody>
</table>

Fig.2: Sinograma ruidoso para Figura de Tanaka (100 projeções; 64 pontos cada).

Sobre as projeções ruidosas também se aplicou a técnica de reconstrução estatística da máxima verossimilhança implementada utilizando-se "expectation-maximization" (ML-EM) com 10 iterações.

As figuras obtidas com este método e as propostas neste trabalho estão representadas abaixo.

Fig.3: Figura de Tanaka ML-EM para 10 iterações.
Fig. 4: CRP + MAP Linearizado.

Fig. 5: CRP + Wiener.

Fig. 6: CRP + Maeda.

Para cada uma das imagens obtidas acima, calculou-se a Melhoria (expressa em dB), dada por:

\[
\text{Melhoria} = 20 \log \frac{\text{REMQN}_{\text{rampa}}}{\text{REMQN}_{\text{estimador}}}
\]

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Melhoria (dB)</th>
<th>TREC (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP + MAP</td>
<td>4.12</td>
<td>125.9</td>
</tr>
<tr>
<td>CRP + Wiener</td>
<td>3.90</td>
<td>90.4</td>
</tr>
<tr>
<td>CRP + Marda</td>
<td>3.76</td>
<td>79.7</td>
</tr>
<tr>
<td>ML – EM</td>
<td>4.20</td>
<td>6157.92</td>
</tr>
<tr>
<td>CRP + Maeda pontual</td>
<td>1.37</td>
<td>385*</td>
</tr>
</tbody>
</table>

* tempo obtido com PC286, 6MHz, com processador aritmético.

Tab. 2: Melhoria e tempo de reconstrução (com PC386SX, 16MHz com co-processador aritmético) para Figura de Tanaka.

Anais do SIBGRAPI V, novembro de 1992
Observa-se um melhor desempenho dos estimadores globais em relação ao estimador pontual, e um pequeno decréscimo de desempenho em relação ao ML-EM, mas a um custo computacional de 60 a 80 vezes menor.

4. Reconstrução de uma imagem PET real

Apresentam-se a seguir exemplos de resultados de reconstrução de uma fatia do cérebro humano, obtida por dados PET com 128 projeções de 128 pontos cada, por meio de um PC386SX, 16MHz, com co-processador aritmético.

Fig. 7: Reconstrução PET – convolução-retroprojeção, sem pré-processamento das projeções TREC = 319,06s.

Fig. 8: Reconstrução PET – convolução-retroprojeção com filtragem por MAP linearizado (janela = 3) TREC = 465,44s.

5. Conclusões

Foram propostos refinamentos nos métodos de reconstrução de imagens sob ruído Poisson pela filtragem das projeções, levando em conta principalmente a correlação das projeções não ruidosas, tanto na filtragem como na estimativa dos parâmetros. Os resultados evidenciam uma melhoria do erro médio quadrático, com um pequeno aumento no tempo de reconstrução, comparado com estimadores pontuais. Isso se deve ao fato do maior esforço computacional residir na etapa de convolução-retroprojeção. As reconstruções, tanto de imagens simuladas como reais evidenciam uma melhoria em relação à simples convolução-retroprojeção sem filtragem das projeções, com um esforço comparável de reconstrução e um resultado ligeiramente inferior em termos de resolução ao algoritmo EM, mas com um tempo computacional em arquiteturas convencionais que continua de uma a duas ordens de grandeza inferior, como nos estimadores pontuais.

Bibliografia

1) FURUIE, S.S.; MASCARENHAS, N.D.A. Tomographic Reconstruction of Images with Poisson Noise: Projection Estimation. IV Simpósio

7) LO, C.M. Estimation of Image Signals with Poisson Noise. Los Angeles, June 1979, 185p. Tese (Doutorado) - Image Processing Institute, University of Southern California.

