ESTIMATIVA DE VARIÁVEIS DENDROMÉTRICAS EM FLORESTAS HOMOGÊNEAS A PARTIR DE DADOS LANDSAT TM

Marcos Leandro Kazmierczak

INPE
São José dos Campos
Janeiro de 1992
Publicado por:

Coordenação de Ensino, Documentação e Programas Especiais - CEP

Instituto Nacional de Pesquisas Espaciais - INPE
Caixa Postal 515
12201-970 - São José dos Campos - SP - Brasil
Fone: (012) 345.6911
Fax: (012) 345.6919
E-Mail: marciana@sid.inpe.br

- Solicita-se intercâmbio
- Exchange welcome
- Si sollecita intercambio
- Echange souhaité
- Mann bittet un Austausch
- Solicitamos intercambio
- Продем обмену
- 促进交流
- 出版物免费印刷

Publicação Externa - É permitida sua reprodução para interessados.
ESTIMATIVA DE VARIÁVEIS DENDROMÉTRICAS EM FLORESTAS HOMOGÊNEAS A PARTIR DE DADOS LANDSAT TM

Marcos Leandro Kazmierczak

Dissertação de Mestrado em Sensoriamento Remoto, orientada pelo Dr. Yosio Edemir Shimabukuro, aprovada em dezembro de 1991.

INPE
São José dos Campos
Janeiro de 1992
KAZMIERCZAK, M. L.
Estimativa de variáveis dendrométricas em florestas homogêneas a partir de dados Landsat TM. / M.L. Kazmierczar. -- São José dos Campos: INPE, 1992. 201p. -- (INPE-5455-TDI/497)

1. Inventário florestal. 2. Landsat TM. 1. Título
Aprovada pela Banca Examinadora
em cumprimento a requisito exigido
para a obtenção do Título de Mestre
em Sensoriamento Remoto

Dr. Yosio Edemir Shimabukuro

Dr. João Roberto dos Santos

Dr. José Carlos Neves Epiphânio

Dr. Carlos Alberto Vettorazzi

Membro da Banca

Membro da Banca

Membro da Banca

Candidato: Marcos Leandro Kazmierczak

São José dos Campos, 20 de dezembro de 1991
RESUMO

A obtenção de informações inerentes ao crescimento e à produtividade é fundamental para o planejamento das atividades florestais, em função dos longos períodos de tempo envolvidos entre a implantação e o corte final. Considerando o fato de que a obtenção destas informações através do inventário florestal tradicional representa um custo muito elevado, foi desenvolvida uma metodologia para avaliar a possibilidade de se obter estimativas das variáveis dendrométricas em florestas homogêneas a partir de dados Landsat TM. A área de estudo definida para o trabalho foi a Floresta Nacional de Passo Fundo (RS), em áreas de Araucaria angustifolia e Pinus sp. O inventário dos sitios naturais em função do tipo de solo serviu como base para o inventário florestal, fornecendo informações estratificadas, que foram então correlacionadas com dados orbitais. A abordagem empregada apresentou alguns resultados promissores na estimativa de variáveis dendrométricas usuais, a partir de dados espectrais medidos pelo sensor TM (Thematic Mapper) à bordo do satélite Landsat-5. A função quadrática \(Y = a+bx+cx^2 \) mostrou-se como a função que melhor ajusta os dados nas duas espécies estudadas e a banda TM5 (1,55 a 1,75 \(\mu \)m) como a banda cuja resposta espectral se constitui na melhor variável independente. A quantificação de algumas variáveis de interesse pôde ser feita dentro de margens de erro aceitáveis, como no caso de área basal em Pinus (8,16%). As variáveis altura dominante e área basal de Araucaria e incremento médio anual em volume, altura média, área basal e idade de Pinus puderam ser estimadas com uma precisão entre 84 e 92%, permitindo a obtenção de informações preliminares com maior rapidez e menores custos.
À Karina, pela compreensão, estimulo e sobretudo pelo seu amor.
AGRADECIMENTOS

Aos meus pais, pelo apoio e por tudo o que sou.

Ao Dr. Yosio Edemir Shimabukuro, pela postura com que conduziu a orientação e pela segurança transmitida, todo o meu respeito.

Àqueles que me proporcionaram a alegria de tê-los como companheiros e tornaram-se grandes amigos.

Ao CNPq, Conselho Nacional de Desenvolvimento Tecnológico, pela bolsa de estudos, e à FAPESP, Fundação de Apoio à Pesquisa do Estado de São Paulo, pelo crédito dado à complementação deste trabalho.

Ao IBAMA, Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis, pela concessão dos dados e apoio prestado.
DENDROMETRIC VARIABLES ESTIMATION IN HOMOGENEOUS FORESTS
USING LANDSAT TM DATA

ABSTRACT

The obtainment of information inherent to growing and productivity is fundamental for forest activities planning, due to the long periods of time involved between implementation and final cut. Considering the fact that the obtainment of this information through traditional forest inventory represents a very high cost, a methodology associating field and orbital data was developed to generate prognosis equations. The study area defined for this work was the Passo Fundo National Forest (RS), in areas with Araucaria angustifolia and Pinus sp. The inventory of natural sites regarding types of soil rended as a base for the forest inventory, supplying stratified information, which were then correlated with orbital data. The approach applied presented some promising results on the estimate of general dendrometric variables from spectral data measured by the TM (Thematic Mapper) sensor, on board the Landsat-5 satellite. The quadratic function \(Y = a + bX + cX^2 \) seamed the function that best adjusts the data into two studied species and the TM5 spectral response \((1.55 \text{ to } 1.75 \text{ m})\) seamed the isolated band to constitute the best independent variable. The quantification of some variables of interest could be done within acceptable error levels, as in the case of basal area in Pinus \((8.16\%) \). The dominant height and the basal area variables for Araucaria and the annual medium increment in volume, medium height, basal area and age for Pinus could be estimated with an accuracy between 84 and 92\%, allowing the obtainment of preliminary information more rapidly and with lower costs.
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE FIGURAS</td>
<td>xv</td>
</tr>
<tr>
<td>LISTA DE TABELAS</td>
<td>xix</td>
</tr>
<tr>
<td>LISTA DE ABREVIATURAS</td>
<td>xxiii</td>
</tr>
<tr>
<td>CAPÍTULO 1 - INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>2.1 - Planejamento da produção florestal</td>
<td>7</td>
</tr>
<tr>
<td>2.2 - Potencial de sítio</td>
<td>8</td>
</tr>
<tr>
<td>2.3 - Relacionamento entre variáveis dendrométricas usuais e parâmetros arbóreos</td>
<td>12</td>
</tr>
<tr>
<td>2.4 - Interação da energia eletromagnética com a vegetação.</td>
<td>14</td>
</tr>
<tr>
<td>2.5 - Estimativa de variáveis florestais a partir da resposta espectral da cobertura florestal</td>
<td>20</td>
</tr>
<tr>
<td>CAPÍTULO 3 - MATERIAL E MÉTODOS</td>
<td>33</td>
</tr>
<tr>
<td>3.1 - Material</td>
<td>33</td>
</tr>
<tr>
<td>3.1.1 - Descrição da área de estudo</td>
<td>33</td>
</tr>
<tr>
<td>3.1.2 - Descrição do Satélite Landsat</td>
<td>37</td>
</tr>
<tr>
<td>3.1.3 - Infraestrutura operacional</td>
<td>39</td>
</tr>
<tr>
<td>3.2 - Métodos</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1 - Inventário de sítios naturais</td>
<td>40</td>
</tr>
<tr>
<td>3.2.2 - Inventário florestal</td>
<td>43</td>
</tr>
<tr>
<td>3.2.3 - Cubagem e cálculo dos volumes</td>
<td>49</td>
</tr>
<tr>
<td>3.2.4 - Reagrupamento dos dados dendrométricos</td>
<td>53</td>
</tr>
<tr>
<td>3.2.5 - Processamento digital</td>
<td>54</td>
</tr>
<tr>
<td>3.2.6 - Relação entre os dados espectrais e dendrométricos</td>
<td>61</td>
</tr>
<tr>
<td>3.2.7 - Critérios de seleção dos modelos de regressão</td>
<td>65</td>
</tr>
<tr>
<td>CAPÍTULO 4 - RESULTADOS E DISCUSSÃO</td>
<td>69</td>
</tr>
<tr>
<td>4.1 - Inventário de sítios naturais</td>
<td>69</td>
</tr>
<tr>
<td>4.2 - Equações selecionadas para o cálculo dos volumes</td>
<td>72</td>
</tr>
<tr>
<td>4.3 - Inventário florestal</td>
<td>73</td>
</tr>
<tr>
<td>4.4 - Processamento digital</td>
<td>81</td>
</tr>
<tr>
<td>4.5 - Correlação entre as variáveis</td>
<td>88</td>
</tr>
<tr>
<td>4.5.1 - Correlação das variáveis dependententes</td>
<td>88</td>
</tr>
<tr>
<td>4.5.2 - Correlação das variáveis independentes</td>
<td>92</td>
</tr>
<tr>
<td>4.5.3 - Correlação entre variáveis dependentes e independentes</td>
<td>98</td>
</tr>
<tr>
<td>4.6 - Seleção das equações</td>
<td>113</td>
</tr>
<tr>
<td>4.7 - Regressão múltipla</td>
<td>134</td>
</tr>
<tr>
<td>CAPÍTULO 5 - CONCLUSÕES E RECOMENDAÇÕES</td>
<td>147</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>153</td>
</tr>
<tr>
<td>APÊNDICE A - FICHA DE SONDAGEM (LADO A)</td>
<td>161</td>
</tr>
<tr>
<td>APÊNDICE B - FICHA DE SONDAGEM (LADO B)</td>
<td>163</td>
</tr>
<tr>
<td>APÊNDICE C - FICHA DE INVENTÁRIO FLORESTAL</td>
<td>165</td>
</tr>
<tr>
<td>APÊNDICE D - FICHA DE CUBAGEM</td>
<td>167</td>
</tr>
<tr>
<td>APÊNDICE E - MAPA DE SITIOS NATURAIS</td>
<td>169</td>
</tr>
<tr>
<td>APÊNDICE F - ESTATÍSTICAS DOS MODELOS DE RELAÇÃO HIPSOMÉTRICA E VOLUME PARA Araucaria angustifolia e Pinus sp</td>
<td>171</td>
</tr>
<tr>
<td>APÊNDICE G - ESTATÍSTICAS DAS EQUAÇÕES DE REGRESSÃO SIMPLES PARA Araucaria angustifolia</td>
<td>175</td>
</tr>
<tr>
<td>APÊNDICE H - ESTATÍSTICAS DAS EQUAÇÕES DE REGRESSÃO SIMPLES PARA Pinus sp</td>
<td>179</td>
</tr>
<tr>
<td>APÊNDICE I - ESTATÍSTICAS DAS EQUAÇÕES DE REGRESSÃO MÚLTIPLA PARA Araucaria angustifolia E Pinus sp</td>
<td>185</td>
</tr>
</tbody>
</table>
LISTA DE FIGURAS

2.1 - Relação entre o diâmetro de copa e o DAP para Araucaria angustifolia ... 14
2.2 - Esquema geral da estrutura foliar ... 16
2.3 - Comportamento espectral da vegetação, solo e água ... 17
2.4 - Esquema ilustrado sobre a modelagem ... 20
2.5 - Relação entre o logaritmo natural da banda TM5 e o volume de madeira de coníferas no Sul da Suécia ... 30
2.6 - Relação entre o índice de área foliar e a banda TM4 em florestas de coníferas no Oregon (EUA) ... 31
3.1 - Localização da área de estudo ... 35
3.2 - Esquema de amostragem para definição dos sitios ... 42
3.3 - Esquema de seccionamento do tronco para cubagem ... 50
3.4 - Relação entre os pontos no processo de reamostragem ... 57
4.1 - Distribuição espacial dos sitios florestais. (a) Sitio 1, (b) Sitio 2, (c) Sitio 3, (d) Sitio 4 e (e) Sitio 5. Escala 1:100.000 ... 70
4.2 - Área de estudo na composição 4R/5G/3B ... 81
4.3 - Distribuição dos pontos de controle utilizados no registro ... 83
4.4 - Distribuição dos pontos de AB em função da banda TM5 para Araucaria angustifolia ... 119
4.5 - Distribuição dos resíduos padronizados para a variável AB de Araucaria angustifolia ... 119
4.6 - Distribuição dos pontos de HDOM em função de DN43 para Araucaria angustifolia ... 120
4.7 - Distribuição dos resíduos padronizados para a variável HDOM de Araucaria angustifolia ... 120
4.8 - Distribuição dos pontos de VCC em função da banda TM5 para *Araucaria angustifolia*...... 121

4.9 - Distribuição dos resíduos padronizados para a variável VCC de *Araucaria angustifolia*.... 121

4.10 - Distribuição dos pontos de VSC em função da banda TM5 para *Araucaria angustifolia*...... 122

4.11 - Distribuição dos resíduos padronizados para a variável VSC de *Araucaria angustifolia*.... 122

4.12 - Distribuição dos pontos de VST em função da banda TM5 para *Araucaria angustifolia*...... 123

4.13 - Distribuição dos resíduos padronizados para a variável VST de *Araucaria angustifolia*.... 123

4.14 - Distribuição dos pontos de IMAV em função da banda TM5 para *Araucaria angustifolia*...... 124

4.15 - Distribuição dos resíduos padronizados para a variável IMAV de *Araucaria angustifolia*... 124

4.16 - Distribuição dos pontos de AB em função da banda TM5 para *Pinus* sp...................... 125

4.17 - Distribuição dos resíduos padronizados para a variável AB de *Pinus* sp.................... 125

4.18 - Distribuição dos pontos de IMAG em função da banda TM5 para *Pinus* sp................... 126

4.19 - Distribuição dos resíduos padronizados para a variável IMAG de *Pinus* sp................ 126

4.20 - Distribuição dos pontos de H em função de R43 para *Pinus* sp.............................. 127

4.21 - Distribuição dos resíduos padronizados para a variável H de *Pinus* sp.................... 127

4.22 - Distribuição dos pontos de IMAV em função da banda TM5 para *Pinus* sp................... 128

4.23 - Distribuição dos resíduos padronizados para a variável IMAV de *Pinus* sp................ 128

4.24 - Distribuição dos pontos de N em função de R43 para *Pinus* sp.............................. 129

4.25 - Distribuição dos resíduos padronizados para a variável N de *Pinus* sp.................... 129

xvi
4.26 - Distribuição dos pontos de IDA em função da banda TM5 para Pinus sp. 130
4.27 - Distribuição dos resíduos padronizados para a variável IDA de Pinus sp. 130
4.28 - Distribuição dos pontos de HDOM em função de TM5/TM7/TVI43 para Araucaria angustifolia... 138
4.29 - Distribuição dos resíduos padronizados de HDOM para Araucaria angustifolia 138
4.30 - Distribuição dos pontos de VCC em função de TM3/TM5/TM7/TVI43 para Araucaria angustifolia................................. 139
4.31 - Distribuição dos resíduos padronizados de VCC para Araucaria angustifolia 139
4.32 - Distribuição dos pontos de VSC em função de TM3/TM5/TM7/TVI43 para Araucaria angustifolia................................. 140
4.33 - Distribuição dos resíduos padronizados de VSC para Araucaria angustifolia 140
4.34 - Distribuição dos pontos de VST em função de TM3/TM5/TM7/TVI43 para Araucaria angustifolia................................. 141
4.35 - Distribuição dos resíduos padronizados de VST para Araucaria angustifolia 141
4.36 - Distribuição dos pontos de AB em função de TM5/DN43 para Pinus sp. 142
4.37 - Distribuição dos resíduos padronizados de AB em função de TM5/DN43 para Pinus sp. 142
4.38 - Distribuição dos pontos de AB em função de TM5/TVI43 para Pinus sp. 143
4.39 - Distribuição dos resíduos padronizados de AB em função de TM5/TVI43 para Pinus sp. 143
4.40 - Distribuição dos pontos de AB em função de TM5/DN43/TVI43 para Pinus sp. 144
4.41 - Distribuição dos resíduos padronizados de AB em função de TM5/DN43/TVI43 para Pinus sp... 144
<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 - Correlação entre dados digitais TM e variáveis florestais para Abies sp e Pinus sp...</td>
<td>24</td>
</tr>
<tr>
<td>2.2 - Correlação entre dados TMS e o grau de cobertura para San Juan National Forest, Colorado (EUA)</td>
<td>25</td>
</tr>
<tr>
<td>2.3 - Correlação entre dados digitais TM e variáveis florestais para Pinus sp e Eucalyptus spp...</td>
<td>28</td>
</tr>
<tr>
<td>2.4 - Relação entre dados TM Landsat e volume de madeira em povoamentos de coníferas no Sul da Suécia...</td>
<td>29</td>
</tr>
<tr>
<td>2.5 - Relação entre variáveis digitais e dados dendrométricos para Spruce sp...</td>
<td>31</td>
</tr>
<tr>
<td>3.1 - Discriminação das áreas estocadas e não estocadas da Floresta Nacional de Passo Fundo (RS), 1988</td>
<td>34</td>
</tr>
<tr>
<td>3.2 - Distribuição das unidades amostrais segundo os estratos definidos para o inventário florestal...</td>
<td>45</td>
</tr>
<tr>
<td>3.3 - Distribuição das unidades amostrais por talhão...</td>
<td>46</td>
</tr>
<tr>
<td>3.4 - Equações de relação hipsométrica testadas...</td>
<td>51</td>
</tr>
<tr>
<td>3.5 - Equações de volume testadas...</td>
<td>52</td>
</tr>
<tr>
<td>3.6 - Distribuição das unidades amostrais após o reagrupamento das amostras...</td>
<td>53</td>
</tr>
<tr>
<td>3.7 - Classificação dos sitios amostrados em função da resolução espacial do sensor TM (30 m)...</td>
<td>59</td>
</tr>
<tr>
<td>3.8 - Valores de F-limite para seleção de variáveis...</td>
<td>64</td>
</tr>
<tr>
<td>4.1 - Resultados do inventário florestal...</td>
<td>74</td>
</tr>
<tr>
<td>4.2 - Teste t para comparação das médias...</td>
<td>75</td>
</tr>
<tr>
<td>4.3 - Resultados finais de Araucaria angustifolia...</td>
<td>75</td>
</tr>
</tbody>
</table>
4.4 - Resultados finais de *Pinus* sp. 76
4.5 - Diferença percentual em volume total com casca entre os sitios naturais 77
4.6 - Estatísticas básicas das variáveis dependentes de *Araucaria angustifolia* -
4.7 - Estatísticas básicas das variáveis dependentes de *Pinus* sp. 80
4.8 - Estatísticas da Imagem TM da área de estudo. .. 82
4.9 - Resíduos observados para os pontos de controle utilizados no registro 84
4.10 - Estatísticas básicas das variáveis independentes de *Araucaria angustifolia* 86
4.11 - Estatísticas básicas das variáveis independentes de *Pinus* sp. 87
4.12 - Matriz de correlação das variáveis dependentes de *Araucaria angustifolia* 90
4.13 - Matriz de correlação das variáveis dependentes de *Pinus* sp. 91
4.14 - Matriz de correlação das variáveis independentes de *Araucaria angustifolia* 94
4.15 - Matriz de correlação das variáveis independentes de *Pinus* sp. 95
4.16 - Resposta espectral média em função da espécie ... 96
4.17 - Resposta espectral média por sitio para *Araucaria angustifolia* e *Pinus* sp. 97
4.18 - Matriz de correlação segundo a função linear para *Araucaria angustifolia* 99
4.19 - Matriz de correlação segundo a função multiplicativa para *Araucaria angustifolia* 100
4.20 - Matriz de correlação segundo a função exponencial para *Araucaria angustifolia* 101
4.21 - Matriz de correlação segundo a função recíproca para *Araucaria angustifolia* 102
4.22 - Matriz de correlação segundo a função quadrática para *Araucaria angustifolia* 103
4.23 - Matriz de correlação segundo a função linear para Pinus sp. 106
4.24 - Matriz de correlação segundo a função multiplicativa para Pinus sp. 107
4.25 - Matriz de correlação segundo a função exponencial para Pinus sp. 108
4.26 - Matriz de correlação segundo a função recíproca para Pinus sp. 109
4.27 - Matriz de correlação segundo a função quadrática para Pinus sp. 110
4.28 - Frequência e significância dos resultados obtidos 112
4.29 - Equações selecionadas para Araucaria angustifolia .. 115
4.30 - Equações selecionadas para Pinus sp. .. 116
4.31 - Frequência dos resíduos por classe e estatística de Durbin-Watson para Araucaria angustifolia ... 131
4.32 - Frequência dos resíduos por classe e estatística de Durbin-Watson para Pinus sp. ... 132
4.33 - Resultados da influência dos "outliers" nas equações de regressão selecionadas para Araucaria angustifolia ... 133
4.34 - Resultados da influência dos "outliers" nas equações de regressão selecionadas para Pinus sp. ... 134
4.35 - Equações de regressão múltipla selecionadas para Araucaria angustifolia e Pinus sp. ... 135
4.36 - Frequência dos resíduos por classe e estatística de Durbin-Watson para as equações de regressão múltipla ... 145
4.37 - Resultados da influência dos "outliers" nas equações de regressão múltipla 146
LISTA DE ABREVIATURAS

IDA - Idade do povoamento, em anos.

DAP - Diâmetro à altura do peito (1,30 metros), em centímetros.

DG - Diâmetro da árvore de área basal média, em centímetros.

DDOM - Diâmetro das árvores dominantes, em centímetros.

H - Altura, em metros.

HDOM - Altura das árvores dominantes, em metros.

G - Secção transversal do tronco, em metros quadrados.

AB - Área basal, em metros quadrados. Corresponde ao somatório das secções transversais por hectare.

IMAG - Incremento médio anual em área basal, em metros quadrados.

VCC - Volume total com casca, em metros cúbicos.

VSC - Volume total sem casca, em metros cúbicos.

VST - Volume em estéreos. 1 metro cúbico equivale a 1,49 estéreos.

IMAV - Incremento médio anual em volume, em metros cúbicos.

N - Densidade (números de árvores por hectare).
CAPÍTULO 1

INTRODUÇÃO

O setor florestal tem apresentado uma participação cada vez mais expressiva na economia, atuando nas mais diferentes áreas: celulose e papel, siderurgia e metalurgia, lenha, madeira serrada, aglomerados, laminados, móveis e esquadrias, postes e dormientes.

A política de incentivos fiscais para o setor, estabelecida nos anos 60, teve como objetivo principal incrementar a atividade florestal, uma vez que os plantios existentes eram insignificantes, considerando-se as necessidades de reposição florestal no país. Verificou-se então um grande desenvolvimento do parque florestal, com o aumento significativo das áreas plantadas (Pinus sp e Eucalyptus spp, principalmente) em diversos estados.

Tendo sido atingida a meta inicial de expansão da área plantada para suprimento de matéria-prima e energia, tornou-se necessário obter informações inerentes às florestas, como utilização mais adequada, crescimento, produtividade e rendimento. Estas informações podem ser obtidas através da pesquisa na área de planejamento da produção florestal, cujo objetivo é obter dados para um planejamento eficiente, visando maior produtividade e qualidade dos produtos associado à redução de custos.

O planejamento da produção apresenta-se como uma forma eficaz de controle para o Manejo Florestal. Entre os fatores básicos para a realização de um planejamento efetivo, estão o conhecimento do estoque de madeira dos povoamentos e o modo como se processa o crescimento. Pelos métodos convencionais, o planejador necessita de uma boa estrutura de informações precisas e atualizadas baseadas no
inventário florestal, no armazenamento e processamento de dados. A obtenção de informações periódicas com rapidez e precisão, empregando-se estes métodos, representa um custo muito elevado.

As técnicas de inventário florestal evoluíram consideravelmente nos últimos 50 anos. Antes dos anos 40, o inventário florestal tradicional consistia basicamente da coleta de dados à campo. Durante as décadas de 40 e 50, o uso operacional de fotografias aéreas foi introduzido com o objetivo de estratificar a floresta em áreas homogêneas, bem como para controlar a amostragem e reduzir custos. Ao mesmo tempo, as técnicas estatísticas para abordar a floresta foram recebendo uma atenção crescente (Hegyi e Walker, 1990).

Utilizado desde os anos 70, o sensoriamento remoto orbital começou a apresentar uma maior contribuição aos estudos florestais nos anos 80, em inventários florestais (Hegyi e Quenet, 1983; Lee et al., 1984; Kirkland, 1985; Novaes et al., 1988; Hernandez Filho et al., 1989), e em trabalhos envolvendo a análise de parâmetros da vegetação e a resposta espectral (Franklin, 1986; Peterson et al., 1986; Butera, 1986; Danson, 1987; Shimabukuro et al., 1989).

Desenvolvidos para o tratamento de informações espaciais, os sistemas de informação geográfica foram paulatinamente incorporando-se aos inventários florestais (Hegyi e Walker, 1990). A eficiência da utilização dos dados de sensoriamento remoto no monitoramento de áreas reforestadas tem sido relatada por diversos autores, com ênfase na classificação e quantificação destas áreas. O sucesso da aplicabilidade destes dados deve-se ao fato de que a sua utilização dinamizou o processo de avaliação da cobertura florestal,
devido às suas características de multiespectralidade, visão sinóptica e repetitividade. Com a crescente modernização dos sistemas sensores, a quantificação e a qualificação da cobertura vegetal sofreu um grande avanço no que diz respeito ao detalhamento e precisão.

Decorridos aproximadamente vinte anos desde a obtenção da primeira imagem com o Landsat-1, o atual estado da arte oferece condições para que se possa obter informações mais aprofundadas, além da identificação e quantificação de áreas. O avanço verificado nos últimos anos no campo do processamento digital de imagens e no tratamento de informações geográficas tem aberto novas perspectivas para a análise de povoamentos florestais, dando suporte para que a quantificação de aspectos relacionados com a vegetação, a partir de dados de sensoriamento remoto, possa ser feita através de modelos que descrevam as interações da radiação com a cobertura vegetal.

De acordo com Carneiro (1983), os dados de sensoriamento remoto só serão úteis para o manejo florestal se:

a) estiverem disponíveis tão logo sejam obtidos;
b) os custos forem relativamente baixos;
c) existirem processos simples de avaliação e interpretação dos dados;
d) atenderem um limite mínimo de precisão.

A produtividade do sitio natural tem efeito no volume e na rentabilidade do povoamento (Schneider e Silva, 1980; Philip, 1983; Schneider, 1986). Assim, a hipótese formulada é de que a associação do inventário de sitios naturais e variáveis dendrométricas com dados orbitais pode gerar um novo enfoque ao planejamento da
produção, permitindo a obtenção de informações com maior rapidez e menores custos.

O objetivo deste trabalho é avaliar a possibilidade de obter estimativas das variáveis dendrométricas mais usuais em florestas homogêneas a partir de dados TM Landsat, e a geração de equações de prognose. Este objetivo geral está dividido em quatro objetivos específicos, quais sejam:

a) avaliar a relação entre os valores digitais de imagens orbitais TM e as variáveis dendrométricas de florestas homogêneas;

b) investigar a melhor função para a relação, entre as funções linear simples, exponencial, multiplicativa, recíproca, quadrática e linear múltipla;

c) determinar quais as bandas ou índices de vegetação que melhor contribuem para a geração de um algoritmo de prognose da produção;

d) obter um algoritmo de prognose da produção, considerando os dois itens anteriores com um limite máximo de 10% de erro para as estimativas.

O trabalho está organizado em cinco capítulos, sendo o primeiro de introdução e apresentação dos objetivos. No Capítulo 2 é apresentada a fundamentação teórica dos itens correlatos à proposição do trabalho, abrangendo a importância do planejamento da produção e do potencial de sítio, o comportamento espectral da vegetação e a obtenção de modelos que estimem variáveis florestais a partir da resposta espectral captada por um sensor orbital.

O Capítulo 3 apresenta os materiais e as metodologias empregadas para o cumprimento dos objetivos,
considerando o levantamento de dados à campo, o processamento digital e o tratamento estatístico.

Os resultados são apresentados e discutidos no Capítulo 4, fornecendo a análise das relações encontradas entre as variáveis dendrométricas e os dados espectrais para as duas espécies estudadas. As conclusões obtidas e as recomendações para trabalhos futuros encontram-se no Capítulo 5.
CAPÍTULO 2
REVISÃO DE LITERATURA

Neste capítulo são abordados os principais aspectos relacionados ao trabalho, apresentando inicialmente uma breve noção da importância do planejamento da produção, do papel do sitio como base para estudos de prognose e da relação entre variáveis dendrométricas usuais e parâmetros arbóreos.

Segue-se os itens sobre a interação da energia eletromagnética com a vegetação, noções gerais sobre modelos para estimar parâmetros biofísicos e sobre a estimativa de variáveis florestais a partir da resposta espectral captada por um sensor orbital.

2.1 - PLANEJAMENTO DA PRODUÇÃO FLORESTAL

Para um manejo eficiente é necessário que se conheça detalhadamente a floresta a ser manejada (Brena, 1985). A falta de dados confiáveis referentes a mapeamentos de áreas florestais e, principalmente, de boas estatísticas da produtividade destes povoamentos constitui-se no maior problema do planejamento florestal. É preciso conhecer a área estocada, sua distribuição espacial, suas condições de fitossanidade e de manejo para que se possa desenvolver uma prognose segura da produção.

A crescente demanda de madeira tem levado os pesquisadores florestais a estudar e desenvolver novos métodos para qualificar e quantificar a produção florestal. A obtenção destas informações é fundamental para o Manejo Florestal, que é, basicamente, um planejamento contínuo da empresa, com as seguintes finalidades (Schneider, 1986):
a) levantamento do estado atual;
b) determinação da(s) meta(s) econômica(s); e
c) determinação dos meios para alcançar os objetivos definidos.

O planejamento é particularmente importante em função dos longos períodos envolvidos entre a implantação e o corte final e das dificuldades em se promover mudanças bruscas no manejo de uma floresta (Schneider, 1985). Atualmente os custos de implantação, manutenção, exploração e administração florestais oneram de forma crescente o capital investido, fazendo com que a atividade procure alternativas que venham a maximizar o retorno financeiro do investimento realizado.

O planejamento da produção florestal é uma dessas alternativas, pois como o setor florestal é uma atividade econômica que demanda um longo período de investimento, requer um planejamento eficiente (Hosokawa, 1980). Os estudos sobre produção florestal têm por finalidade examinar a extensão quantitativa dos processos de crescimento de povoamentos florestais em relação ao tempo, ao sitio e às medidas técnicas e econômicas disponíveis ao homem (Assman, 1970).

2.2 - POTENCIAL DE SITIO

A aparência de uma formação florestal constitui um momento dentro de um processo contínuo, e as atividades florestais como cortes e desbastes constituem um fator de influência sobre o ambiente, capazes de provocar modificações. Estas intervenções são necessárias para tornar as áreas florestais produtivas, segundo o conceito de avaliação humano (Andrae, 1978).
O ordenamento florestal fundamenta-se nos critérios silviculturais e ecológicos, razão pela qual o conhecimento prévio das unidades de produção (Sitios Florestais Naturais), suas características ambientais e espécies existentes, é fundamental.

O sitio pode ser definido como "a soma de condições efetivas sobre a qual uma planta ou comunidade vive" (Schneider e Silva, 1980). "O complexo de fatores como rochas, solo, topografia, clima e vegetação que caracterizam uma área é referenciado como sitio" (Philip, 1983). Em outras palavras, o sitio pode ser definido como sendo "a unidade espacial onde os fatores ambientais são semelhantes com uma produção semelhante".

A classificação de sitio é fundamental para a prognose de um determinado povoamento (Loetsh et al., 1973; Hammer, 1981; Husch et al., 1982; Schneider, 1986). Num determinado sitio, o povoamento alcança um nível máximo de ocupação, no qual utiliza plenamente o solo e o espaço aéreo até onde permite qualquer fator limitante. Este nível inclui a máxima biomassa fisicamente possível, e é expresso pelo potencial de sitio.

O potencial de sitio, considerado como o limite superior da capacidade produtiva, pode ser empregado como ponto de referência no manejo do povoamento, cujo desenvolvimento é uma função da idade mas que também depende da espécie e do potencial de sitio: à medida em que este aumenta, o povoamento alcança um estágio particular de desenvolvimento em uma idade menor (Schneider, 1986).

Entre as razões para estimar o potencial produtivo do sitio, Philip (1983) cita:
a) critério para definição do uso da terra e planejamento;
b) base para escolha de espécies a serem plantadas; e
c) base para prognose do crescimento e produção de florestas manejadas.

O conhecimento do potencial de sitio é importante, pois dele dependem a quantidade e a qualidade da produção e as possibilidades de manejo. A determinação do potencial produtivo do sitio é geralmente feita com referência à altura dominante em uma idade particular. Embora seja um método que apresenta uma alta precisão, não permite delimitar e quantificar a área de cada sitio em cada talhão. Já o inventário de sitios naturais refere-se à sondagem e mapeamento dos diversos habitats florestais, com o objetivo de determinar os limites de transição dos sitios, levando-se em consideração os fatores definidos para tal.

Existem basicamente dois enfoques na avaliação do potencial de sitio: com base em fatores do meio ambiente e em fatores dendrométricos. Considerando os fatores do meio ambiente, dois grupos concorrem para a definição de sitios florestais:

 a) fatores primários: formação geológica, relevo e clima geral;
 b) fatores secundários: clima do habitat, solo vegetação.

Os fatores primários podem ser considerados constantes e estáveis em uma região por um longo período de tempo, e por consequência, na região de estudo. Aos fatores secundários é dada uma caracterização especial, pela mutua correlação que exercem e pela possibilidade que apresentam de sofrerem modificações em períodos menores de tempo
(Andrae, 1978). Permitem também um maior detalhamento das condições ambientais que influenciam o crescimento da vegetação.

Schneider (1986) afirma que o solo pode ser considerado como o fator mais influente na produtividade de um povoamento florestal, uma vez que não só é responsável pelo tipo de formação florestal como também pela aparência e produtividade, importantes do ponto de vista econômico.

Cada espécie tem as suas exigências em água, ar e nutrientes, existindo sempre espécies que são mais aptas a se desenvolverem num determinado tipo de solo que outras. É necessário avaliar as propriedades do habitat em relação ao regime de aeração, água e nutrientes, bem como as exigências das espécies. Assim, opta-se por espécies que possam aproveitar mais rapidamente as possibilidades locais de produção de madeira e ao mesmo tempo sustentar a fertilidade natural do habitat.

Os fatores definidos (por exemplo, edáficos) são representados em mapas com a finalidade de facilitar os trabalhos de planejamento, definindo as unidades (sitios) que possuem propriedades semelhantes e produções semelhantes.

A sondagem é o pré-requisito para o mapeamento, levantando informações das unidades de cada área para relacioná-las com as exigências prático-econômicas. A área de sondagem limita-se à área estocada ou à área total, para seleção de espécies em futuros plantios (Andrae, 1978). Uma vez definidas as áreas de sondagem e mapeamento são estabelecidos os critérios que irão classificar os sitios, cuja caracterização deve ser feita com a análise do maior número possível de critérios, de tal
modo que se abranja o potencial produtivo do local proporcionando maior segurança ao planejamento florestal.

2.3 - RELACIONAMENTO ENTRE VARIÁVEIS DENDROMÉTRICAS USUAIS E PARÂMETROS ARBÓREOS

Cabe inicialmente diferenciar variável dendrométrica de parâmetro arbóreo, segundo os sentidos adotados neste trabalho. Variável dendrométrica é qualquer uma das variáveis usualmente medidas ou obtidas a partir de dados medidos à campo no inventário florestal tradicional, constituindo-se em informação básica para o planejamento. Os parâmetros arbóreos são entendidos como elementos não usuais, como o grau de cobertura, diâmetro de copa e índice de área foliar, assim referenciados na literatura consultada.

Na tentativa de melhor compreender os processos de crescimento de espécies florestais, diversos estudos foram desenvolvidos relacionando o diâmetro à altura do peito (DAP) com variáveis da copa da árvore.

Volkart (1963) encontrou uma relação linear consistente \((R = 0,978)\) entre o DAP e o diâmetro de copa para Araucaria angustifolia, segundo a expressão

\[
D_{\text{copa}} = 1,426 + 10,360 \text{ DAP} \quad (2.1)
\]

Entre as pesquisas desenvolvidas em ecossistemas florestais no Programa Biológico Internacional (IBP), Krapfenbauer e Andrae (1982) realizaram um inventário de biomassa em povoamentos de Araucaria angustifolia na Floresta Nacional de Passo Fundo (RS). Foi possível estabelecer relações entre a massa total e parcial de diversos elementos (biomassa total, subterrânea e aérea, biomassa do tronco) com o DAP.
Diversos estudos relacionaram variáveis dendrométricas com a biomassa aérea, concluindo que o DAP é a melhor variável independente para a determinação da biomassa de Pinus sp (Madgwick, 1971), de Pinus sp e Picea sp (Hakkila, 1971), de Abies sp (Honer, 1971) e de espécies variadas (Crown, 1971).

Outra variável passível de ser estimada a partir do DAP é o diâmetro de copa. Pinheiro et al. (1984) testaram sete modelos de equação visando estimar o diâmetro de copa de Eucalyptus grandis, obtendo uma equação com coeficiente de correlação 0,976.

Silva (1977) estabeleceu uma relação funcional entre o diâmetro de copa e o DAP para Araucaria angustifolia, com um erro padrão da estimativa de 0,814 metros e coeficiente de correlação 0,71. A expressão encontrada foi:

\[D_{\text{Copa}} = \frac{\text{DAP}}{2,2443 + 0,047601 \times \text{DAP}} \] (2.2)

A correlação entre o diâmetro de copa e o DAP assume uma característica prática, principalmente quando se trata de inventários florestais extensos que podem ser feitos com o emprego de fotografias aéreas.

Longhi (1980) verificou a existência de uma tendência linear entre o diâmetro de copa e o DAP para Araucaria angustifolia (Figura 2.1), obtendo um coeficiente de correlação de 0,92. No mesmo estudo, observou que não há
diferença significativa na relação entre a área basal e a área de projeção das copas.

Fig. 2.1 - Relação entre o diâmetro de copa e o DAP para Araucaria angustifolia.

2.4 - INTERAÇÃO DA ENERGIA ELETROMAGNÉTICA COM A VEGETAÇÃO

A estrutura celular das folhas é variável, dependendo da espécie e das condições ambientais durante o período de crescimento. A maioria das folhas apresenta na parte superior do mesófilo uma camada de células denominada parênquima paliçádico, e uma camada inferior denominada parênquima esponjoso.

As células do parênquima paliçádico apresentam dimensões médias de 15x15x60 μm (1 μm = 10^{-6})
m), e as do parênquima esponjoso 18×15×20 μm (Gates et al., 1965). As células da epiderme têm praticamente as mesmas dimensões do parênquima esponjoso, e os cloroplastos dentro do protoplasma celular apresentam de 5 a 8 μm de diâmetro e 1 μm de espessura, havendo em média 50 cloroplastos por célula parênquimática. Os pigmentos geralmente presentes nos cloroplastos são clorofila (65%), carotenos (6%) e xantofilas (29%), sendo que estas percentagens variam de espécie para espécie (Gates et al., 1965).

A Figura 2.2 apresenta a secção transversal de uma folha, onde os cloroplastos são facilmente visíveis ao longo das células do mesófilo. A energia eletromagnética interage com a estrutura da folha por absorção, reflexão e espalhamento. A energia é absorvida de forma seletiva em certos comprimentos de onda pela clorofila. Uma parte é convertida em calor ou fluorescência e em seguida convertida fotoquimicamente em energia armazenada na forma de compostos orgânicos, através da fotossíntese.

Outra parte é refletida internamente nas paredes celulares, devido a mudança no índice de refração (de 1,33 da água líquida para 1,00 do ar) nos espaços intercelulares. Este mecanismo cria uma reflexão interna em cada interface.

Trabalhos pioneiros sobre as propriedades ópticas das folhas foram desenvolvidos, estabelecendo a importância dos pigmentos, do conteúdo de água na folha e do espalhamento interno como base para as propriedades de reflectância e transmitância das folhas (Gates et al., 1965; Knipling, 1970; Goel, 1986).
Fig. 2.2 - Esquema geral da estrutura foliar.

Segundo Epiphânio (1988), para o entendimento do processo de reflectância de uma planta ou de uma cobertura vegetal, é fundamental compreender os princípios de reflectância de uma folha isolada. Deve-se considerar, porém, que embora seja similar, a reflectância da cobertura vegetal é modificada por diversos fatores, tais como a estrutura do dossel, índice de área foliar, sombra e reflectância de fundo (Colwell, 1974).

A folha de uma planta reflete e transmite a radiação incidente de uma maneira característica de células pigmentadas contendo soluções aquosas. A Figura 2.3 apresenta as curvas típicas de reflectância espectral para
as plantas em geral, solo e água, em relação à disposição das bandas do sensor TM no espectro refletido.

Uma pequena quantidade de energia é refletida pela cutícula, sendo a maior parte transmitida ao mesófilo, onde os raios são refletidos (Gates, 1970). Na região do visível (0,40 a 0,70 \(\mu m \)) a presença de pigmentos (clorofílias, carotenos e xantofilas) é responsável pela absorção da radiação nas porções azul e vermelho, sendo refletida a do verde.

![Fig. 2.3 - Comportamento espectral da vegetação, solo e água. FONTE: INPE (1989).](image)

Já na região do infravermelho próximo (0,70 a 1,30 \(\mu m \)) os pigmentos são transparentes a radiação. A alta reflectância nesta faixa deve-se à baixa absorção interna das folhas e ao espalhamento que a radiação sofre conforme ocorrem as reflexões e refrações no mesófilo (Knipling, 1970).
As folhas refletem e transmitem fortemente no infravermelho próximo, como resultado da separação dos processos físicos que governam a absorção de alta e baixa frequência. A baixa absorptância no infravermelho próximo reduz a quantidade de energia solar incidente absorvida pela folha. Como consequência, a temperatura das folhas iluminadas pelo Sol é aproximadamente 10 graus centígrados menor do que poderia ser se houvesse uma alta absorção no infravermelho próximo. Deste modo, os pigmentos das plantas são salvos da desnaturação nos dias muito quentes (Gates, 1970).

Na região do infravermelho médio (1,30 a 3,00 μm), a água absorve a energia em determinados comprimentos de onda, com picos em 1,5 - 1,9 - 2,7 μm. Devido ao fato das folhas apresentarem um elevado teor de umidade, estes picos de absorção dominam a resposta espectral nesta faixa do espectro.

Cabe observar que as bandas de absorção de pigmentos e água líquida são fisicamente muito diferentes. A absorção de pigmentos é causada por transições de elétrons dentro do complexo molecular do pigmento e a absorção de água líquida é causada pela transição dos estados vibracional e rotacional da molécula d'água. Transições de elétrons requerem maiores energias que a transição vibracional-rotacional: as bandas de absorção eletrônica estão na região do ultravioleta e do visível e as bandas de absorção vibracional-rotacional estão no infravermelho médio-distante (Gates, 1970).

O estágio de desenvolvimento da folha é um aspecto que influencia a resposta espectral. A reflectância da folha passa por fortes mudanças, no início e no fim da estação de crescimento. Nas folhas mais novas a reflectância no azul e no verde é baixa, aumentando no
amarelo e no vermelho e aumentando ainda mais no infravermelho. Isso se deve ao fato de que a folha juvenil apresenta uma densa cobertura de pêlos apurpurinados (Gates, 1970). Como as folhas crescem e se expandem rapidamente, os pêlos se espalham, expondo a folha. A reflectância no infravermelho próximo diminui e começa a absorção no vermelho, devido a presença de clorofila. A transmitância é, geralmente, maior que a reflectância para folhas finas, mas com o espessamento da folha, a transmitância passa a ser substancialmente menor que a reflectância.

Em relação ao conteúdo de água, na região do visível a massa foliar verde tem uma reflectância menor do que a massa foliar seca, ocorrendo o contrário no infravermelho próximo. Como a reflectância se relaciona com a biomassa, esta poderia ser obtida com o uso de dados orbitais (Santos, 1988b).

A radiação captada pelo sensor é um somatório da energia refletida/emitida por todos os alvos presentes na área compreendida pelo campo de visada. Alguns fatores, como a forma e a orientação da folha, distância e posição do sensor em relação ao alvo e, evidentemente, as condições atmosféricas, podem afetar a qualidade da informação (Knipping, 1970).

Com o domínio do comportamento espectral da vegetação e ciente das limitações impostas pelas técnicas de sensoriamento remoto à nível orbital, pode-se estudar a vegetação de modo rápido e não destrutivo (Gates, 1965).
2.5 - ESTIMATIVA DE VARIÁVEIS FLORESTAIS A PARTIR DA RESPOSTA ESPECTRAL DA COBERTURA FLORESTAL

O sensoriamento remoto baseia-se em duas premissas. A primeira é de que a radiação solar que interage com o alvo carrega, na resposta espectral, informações deste alvo. A segunda é de que esta resposta pode ser analisada para obter as características do alvo.

Uma das aplicações de maior sucesso do sensoriamento remoto no monitoramento da vegetação seria a capacidade de estimar determinadas características a partir de modelos (Oester, 1981). Para a vegetação, estas características incluiriam a identificação do tipo de vegetação, o estágio de desenvolvimento, a extensão de stress na vegetação, a estimativa de biomassa e a arquitetura da cobertura (Goel, 1989).

Há, basicamente, duas abordagens para estimar as características da vegetação: estatística e física. Na abordagem estatística (empírica), procura-se estabelecer uma correlação estatística entre os dados espectrais e os parâmetros da vegetação, segundo o esquema da Figura 2.4.

Fig. 2.4 - Esquema ilustrado sobre a abordagem.
Já na abordagem física (determinística), procura-se a compreensão da física da interação entre a radiação solar e os elementos da vegetação e então incorporá-la a um modelo que relacione os parâmetros da vegetação à sua resposta espectral.

Em geral, a resposta espectral da cobertura vegetal depende de um grupo de parâmetros (C) inerentes à vegetação, do comprimento de onda (\(\lambda \)), da direção da radiação solar incidente (\(\psi_i, \theta_i \)) e da direção de visada (\(\psi_o, \theta_o \)), mantendo-se fixa a altitude do sensor. Assim, se S é a resposta espectral de uma cobertura florestal, podemos representá-la simbolicamente através da seguinte expressão (Goel, 1989):

\[
S = f(\lambda, \psi_i, \theta_i, \psi_o, \theta_o; C)
\]

No caso deste trabalho de dissertação, a abordagem é estatística, mas o esquema é semelhante: a partir dos dados espectrais (S) medidos pelo sensor procura-se estabelecer um modelo que estime os parâmetros da cobertura florestal (C). Esta abordagem considera o problema inverso da modelagem.

\[
\begin{align*}
C &\quad \rightarrow S \quad \text{Problema direto} \\
S &\quad \rightarrow C \quad \text{Problema inverso}
\end{align*}
\]

Os métodos convencionais de abordagem da floresta envolvem tempo e recursos consideráveis na caracterização da área e na obtenção dos dados. Métodos utilizando dados orbitais para estimar variáveis florestais têm sido estudados em diversos países nos últimos anos: Finlândia, Estados Unidos, Japão, Suécia e Inglaterra.

Já no início dos anos 70, antes do lançamento da Série Landsat, Luney e Dill Jr. (1970), abordando os
usos específicos de sensores remotos no inventário florestal, afirmavam que eram necessários estudos que determinassem como o sensoriamento remoto poderia, direta ou indiretamente, auxiliar o manejo florestal, através da determinação da qualidade de sítio, o que contribuiria para o planejamento estratégico (parte inicial do planejamento da produção).

Tom e Miller (1979), empregando dados MSS (Multispectral Scanner System) e um total de 19 variáveis para estudar o mapeamento de sítios florestais, recomendam a inclusão de um mapa de solos detalhado como uma forma de aumentar ainda mais a precisão das estimativas. A hipótese levantada por estes autores foi a de que o sensoriamento remoto pode, através de técnicas de processamento digital, auxiliar na determinação das classes de produtividade com reduzido trabalho de campo.

McCloy (1980) apresenta algumas evidências do emprego de dados digitais MSS para estimar biomassa, ressaltando que a confiabilidade de um modelo só pode ser determinada com uma investigação minuciosa da significância dos vários parâmetros físicos envolvidos.

Hame e Saukkola (1982), citados por Jaakkola (1986), empregaram imagens MSS para avaliar o potencial de classificação de sítios florestais (através de análise digital) em áreas de coníferas e decíduas no norte da Finlândia. Na mesma linha, Hame (1984) concluiu que diversos fatores podem diminuir a precisão da classificação, como por exemplo, a rochosidade, resíduos de desbaste e a espessura da camada de humus. Segundo este autor, o potencial de crescimento de um sítio pode ter um impacto na radiação eletromagnética refletida, pois a reflectância da luz vermelha em sítios improdutivos mostrou-se maior do que em sítios exuberantes.
O estudo da relação entre os dados obtidos através do sensoriamento remoto e as variáveis florestais é uma forma de auxiliar o inventário florestal, como demonstram diversos trabalhos. Mukai e Takeuchi (1979) avaliaram a capacidade dos dados MSS para estimar o volume de madeira de florestas implantadas. Nas três regiões estudadas, as estimativas obtidas com o emprego do modelo gerado \(R = 0,633 \) apresentaram diferenças de +9,5% (região I), +4,2% (região II) e +22,4% (região III). O alto erro verificado na região III foi devido à ocorrência de povoamentos mistos. O volume, em m³/ha, foi obtido por um modelo que considerava o valor digital da banda MSS 6 (0,7 a 0,8 um) em 06/AGO (X1) e o valor digital da banda MSS 6 em 16/DEZ (X2), através da expressão:

\[
V = 245,5 - 3,4(X1) + 5,4(X2) \tag{2.3}
\]

Jaakkola (1986) reune a experiência europeia nos trabalhos de estimativas da produção volumétrica e classificação de sitios. Com o emprego de dados MSS do Landsat-2 e visando desenvolver um modelo para estimar o volume de madeira de *Pinus silvestris*, Jaakkola e Saukkola (1979), citados por Jaakkola (1986), empregaram modelos de regressão \(V_j = f(X_j) \) que foram derivados usando os dados espectrais como variáveis independentes. O volume de madeira num pixel "j" é função da resposta espectral de um canal "i" no pixel "j".

Neste estudo, o logaritmo natural do volume mostrou-se como sendo a melhor variável dependente, com um coeficiente de determinação \(R^2 = 0,923 \) e um erro padrão de 3,5%. A variável dependente empregada foi o logaritmo natural do volume acrescido de um valor de correção e a variável independente consistiu do valor obtido considerando as quatro bandas do sensor. O modelo geral da expressão gerada foi um polinômio do segundo grau que
considera $X = (MSS4 + MSS5) \times (MSS6 + MSS7)$ e Y como $\ln (V + 20)$, dado por:

$$Y = a + bX + cX^2 \quad (2.4)$$

Quatro anos depois, Saukkola e Jaakkola (1983), também citados por Jaakkola (1986), empregaram imagens orbitais para um inventário do volume de madeira, usando amostragem em dois estágios e os resultados obtidos em 1979 (equação 2.4).

Diversos pesquisadores têm utilizado a correlação e a análise de regressão para avaliar a relação entre características da vegetação e dados espectrais (Santos, 1988a; Butera, 1986; Covre, 1989; Leonardi, 1990). Analisando povoamentos de *Abies* sp e *Pinus* sp, Franklin (1986) verificou que o logaritmo das variáveis florestais estudadas, biomassa e área basal, apresentavam melhores resultados, conforme a Tabela 2.1.

TABELA 2.1 - CORRELAÇÃO ENTRE DADOS DIGITAIS TM E VARIÁVEIS FLORESTAIS, PARA Abies sp E Pinus sp

<table>
<thead>
<tr>
<th>PARÂMETRO</th>
<th>BANDA</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus</td>
<td>Log (Área Basal)</td>
<td>TM3</td>
</tr>
<tr>
<td></td>
<td>Log (Biomassa)</td>
<td>TM3</td>
</tr>
<tr>
<td>Abies</td>
<td>Log (Área Basal)</td>
<td>TM4/TM3</td>
</tr>
<tr>
<td></td>
<td>Log (Biomassa)</td>
<td>TM4/TM3</td>
</tr>
</tbody>
</table>

nível de significância 99%

A área basal e a biomassa foliar estão fortemente relacionadas com o IAF (Índice de Área Foliar). Franklin atribuiu parte deste comportamento à variação do grau de cobertura, que se mostrou ser a variável estrutural de maior importância relacionada com o brilho da cena em povoamentos de coníferas.

Estudando uma Floresta Nacional no Colorado (EUA), Butera (1986) obteve os resultados apresentados na Tabela 2.2, ao fazer uma análise de correlação do grau de cobertura em função da reflectância a partir de dados do TMS (Thematic Mapper Simulator), cujas bandas são equivalentes às do TM. A autora concluiu que as bandas 1, 5 e 7 são as que fornecem maiores informações sobre o grau de cobertura, observando que a correlação negativa deve-se à contribuição da reflectância de fundo ("background").

TABELA 2.2 - CORRELAÇÃO ENTRE DADOS TMS E O GRAU DE COBERTURA PARA SAN JUAN NATIONAL FOREST, COLORADO (EUA)

<table>
<thead>
<tr>
<th>TMS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>-0,764</td>
<td>-0,682</td>
<td>-0,661</td>
<td>-0,142*</td>
<td>-0,807</td>
<td>-0,574</td>
<td>-0,763</td>
</tr>
</tbody>
</table>

* não significativo

nível de significância 99%

FONTE: Modificada de Butera (1986), p. 126.

Peterson et al. (1986) relacionaram dados do TMS (Thematic Mapper Simulator) com o grau de cobertura e a área basal para *Pinus* sp e *Abies* sp. O índice de vegetação diferença normalizada apresentou uma correlação de 0,84 com a área basal e de 0,94 com o grau de cobertura para *Pinus* sp. Os autores observaram que a área basal apresenta um
maior potencial de ser estimada com alta precisão em áreas de menor densidade e em povoamentos mais jovens.

Franklin et al. (1986) desenvolveram um sistema automático, denominado FOCIS (FOrest Classification and Inventory System), para inventário da vegetação natural, utilizando processamento digital de imagens e modelo numérico do terreno (MNT). Esta metodologia demonstrou uma maior capacidade de classificar e estratificar a floresta para fins de inventário do volume de madeira, com maior precisão e menor custo do que os métodos convencionais de fotointerpretação.

Kleman (1987), estudando áreas implantadas com Spruce sp e Pinus sp, observou que a variação consideravelmente maior na reflectância em áreas com Spruce sp do que em áreas de Pinus sp pode significar um resultado da sua estrutura vertical mais pronunciada e maior biomassa.

Danson (1987) e Santos (1988b) citam diversos estudos em que dados de sensoriamento remoto das bandas do infravermelho próximo e vermelho são relacionados com elementos da vegetação, como a área basal, percentagem de cobertura e índice de área foliar (IAF).

O sensoriamento remoto permite caracterizar rapidamente a floresta (tipologia, gênero, estágio de desenvolvimento, área, ocorrência de queimadas) em grandes áreas, com menor amostragem de campo (Danson, 1987). Avaliando dados do sensor HRV/SPOT-1, este autor observou fortes correlações negativas entre a resposta da banda 3 (infravermelho próximo) e variáveis florestais (DAP, Altura total, Idade), sugerindo que estas relações não são função da quantidade de vegetação, mas devidas à variação na quantidade de sombra.
A avaliação da biomassa está geralmente associada ao emprego de índices de vegetação, que são modelos numéricos que indicam a densidade da vegetação através de combinações, lineares ou não, da radiância entre duas bandas (Santos, 1988a). Uma grande variedade de índices de vegetação pode ser obtida a partir da combinação de bandas espectrais, podendo ser citados os índices razão simples (R), diferença normalizada (NDVI), diferença normalizada e transformada (TVI), índice de vegetação verde (GVI) e índice vegetativo multitemporal (MVI). Entre entes índices, os mais utilizados são a razão simples e a diferença normalizada (Huete et al., 1985).

Ardó (1989) ressalta a forte correlação negativa entre o volume de madeira e a radiância espectral em todas as bandas do TM, ao trabalhar com florestas de coníferas no sul da Suécia.

Shimabukuro et al. (1989) relacionaram dados digitais do sensor TM/Landsat com a idade, densidade, área basal e altura média de povoamentos de *Pinus* sp e *Eucalyptus* spp, sendo que as correlações mais significativas encontram-se na Tabela 2.3. Os coeficientes encontrados foram baixos, e os autores recomendam uma maior amostragem de campo, uma vez que os resultados obtidos podem ter sido influenciados pelo regime de manejo.

De acordo com Hagner (1990), é possível estimar os parâmetros de povoamentos florestais através da relação entre dados de campo e dados orbitais com uma precisão que pode ser comparada com o inventário florestal nos moldes tradicionais.
TABELA 2.3 - CORRELACAO ENTRE DADOS DIGITAIS TM E VARIAVEIS FLORESTAIS PARA Pinus sp E Eucalyptus spp

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>BANDA</th>
<th>R</th>
<th>PARÁMETRO</th>
<th>BANDA</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Basal</td>
<td>TM6</td>
<td>-0,407*</td>
<td>Idade</td>
<td>TM4</td>
<td>-0,476*</td>
</tr>
<tr>
<td>Densidade</td>
<td>TM4</td>
<td>0,572**</td>
<td>Idade</td>
<td>TM4/TM5</td>
<td>-0,433*</td>
</tr>
<tr>
<td>Densidade</td>
<td>TM4/TM3</td>
<td>0,606**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidade</td>
<td>TM6</td>
<td>0,449*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidade</td>
<td>TM4/TM5</td>
<td>0,432*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%

Dando continuidade ao trabalho iniciado em 1989, Ardö (1991) investigou a correlação entre os dados Landsat TM e o volume de madeira (m3/ha) em talhões de coníferas no sul da Suécia, procurando estabelecer uma regressão para estimar o volume de madeira destas áreas a partir da radiância espectral (R). Ao empregar a transformação logaritmo natural da resposta das bandas (Ln R), verificou uma pequena melhoria na correlação, conforme a Tabela 2.4.

A banda que apresentou a melhor correlação com o volume de madeira foi a banda TM5. Segundo o autor, a transformação empregada tem por objetivo remover tendências da regressão. Para talhões com volumes entre 1 e 151 m3/ha a precisão do modelo foi maior ($R^2 = 0,66$) do que para talhões com altos volumes de madeira ($R^2 = 0,20$). O modelo que proporcionou o melhor ajuste dos dados foi dado pela expressão:
V (m³/ha) = (Ln TM5 + 0,3468) / -0,00322 \hspace{1cm} (2.5)

TABELA 2.4 - RELAÇÃO ENTRE DADOS TM LANDSAT E VOLUME DE MADEIRA EM POVOAMENTOS DE CONÍFERAS NO SUL DA SUÉCIA

<table>
<thead>
<tr>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>-0,74</td>
<td>-0,78</td>
<td>-0,71</td>
<td>-0,48</td>
<td>-0,79</td>
</tr>
<tr>
<td>Ln R</td>
<td>-0,74</td>
<td>-0,79</td>
<td>-0,73</td>
<td>-0,50</td>
<td>-0,80</td>
</tr>
</tbody>
</table>

nível de significância 99%

FONTE: Ardö (1991).

A Figura 2.5 apresenta a plotagem dos dados referentes aos dois tipos de variáveis, mostrando a tendência e o grau do ajuste.

Kazmierzczak (1991) apresenta resultados preliminares da estimativa de volume em povoamentos de *Araucaria angustifolia* utilizando dados TM. O reagrupamento dos dados com base nos sítios florestais melhorou a correlação com a banda TM4, apresentando um valor de 0,85. Cabe observar que o reduzido número de pares de dados empregado (20 pares de dados iniciais e 9 pares após o reagrupamento) teve influência no resultado, fazendo com que o valor do coeficiente de correlação tenha sido alto.

Ahern et al. (s.d.) estudaram a relação quantitativa entre a reflectância das bandas TM e as variáveis incremento de volume, volume das árvores vivas e volume das árvores mortas em áreas de *Spruce* sp. A análise inicial mostrou correlações significativas ao nível de 99% de probabilidade mas com valores baixos. Os dados foram
então reagrupados em 8 grupos de 9 unidades amostrais cada e reprocessados. Os resultados podem ser observados na Tabela 2.5, em que IMAV corresponde ao incremento médio anual e V(L) ao volume das árvores vivas.

![Gráfico](image)

Fig. 2.5 - Relação entre o logaritmo natural da banda TM5 e o volume de madeira de coníferas no Sul da Suécia.

FONTE: Modificada de Ardö (1991).

Apesar da dificuldade na obtenção do IAF em árvores (medição direta), algumas relações entre variáveis dendrométricas e o IAF têm sido estabelecidas, empregando amostragem não destrutiva. Peterson e Running (1989), empregando imagens TM, encontraram relações lineares diretas entre o IAF e a reflectância da banda TM4 (0,76 a 0,90 um), como pode ser visto na Figura 2.6. Considerando povoamentos com grau de cobertura superior a 89%, a análise de regressão gerou a seguinte expressão ($R^2 = 0,84$):

$$IAF = 4,05 + 0,34 \text{ TM4}$$

(2.6)
TABELA 2.5 - RELAÇÃO ENTRE DADOS ESPECTRAIS E DADOS DENDROMÉTRICOS PARA Spruce sp

<table>
<thead>
<tr>
<th>VARIÁVEL INDEPENDENTE</th>
<th>VARIÁVEL DEPENDENTE</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5-4)/(5+4)</td>
<td>IMAV</td>
<td>0,713</td>
</tr>
<tr>
<td>(5/4)</td>
<td>IMAV</td>
<td>0,755</td>
</tr>
<tr>
<td>(5/4+5+7)</td>
<td>IMAV</td>
<td>0,770</td>
</tr>
<tr>
<td>(7-4)/(7+4)</td>
<td>IMAV</td>
<td>0,717</td>
</tr>
<tr>
<td>(7/4)</td>
<td>IMAV</td>
<td>0,647</td>
</tr>
<tr>
<td>(4-3)/(4+3)</td>
<td>V(L)</td>
<td>0,726</td>
</tr>
<tr>
<td>4</td>
<td>V(L)</td>
<td>0,666</td>
</tr>
</tbody>
</table>

nível de significância 99%

FONTE: Ahern et al. (s.d.).

Fig. 2.6 - Relação entre o índice de área foliar e a banda TM4 em florestas de coníferas no Oregon, EUA.
Já para povoamentos mais abertos, com grau de cobertura entre 25 e 89%, os resultados diferiram sensivelmente, dependendo da reflectância do fundo. Utilizando o índice de diferença normalizada, a relação tornou-se assintótica para valores de IAF = 8,0, saturando o índice de vegetação diferença normalizada (NDVI) em 0,8 ($R^2 = 0,89$).

A abordagem de maior sucesso para estimar a altura e o diâmetro de copa em povoamentos de coníferas tem sido a de Strahler e Li (1981). Cabe ressaltar porém que esta abordagem é física e não estatística, como todas as que foram relacionadas até aqui.

As florestas cobrem aproximadamente 13% da superfície da Terra, constituindo-se numa das maiores fontes de recursos naturais renováveis para o homem (Peterson e Running, 1989). Estes dois fatos por si só implicam em vantagens na aplicação das técnicas de sensoriamento remoto para a Ciência Florestal. Segundo estes autores, os pesquisadores devem centrar esforços para avaliar quais as variáveis florestais que podem ser estimadas pelo sensoriamento remoto e como elas podem ser relacionadas com importantes processos funcionais.
CAPÍTULO 3

MATERIAL E MÉTODOS

Este capítulo abrange a caracterização geral da área selecionada para o estudo, a descrição do satélite Landsat, a seleção da imagem utilizada e a infraestrutura necessária ao desenvolvimento do trabalho. Seguem-se as metodologias de obtenção e tratamento dos dados dendrométricos, dos procedimentos de tratamento digital da imagem e da obtenção e seleção das equações.

3.1 - MATERIAL

3.1.1 - DESCRIÇÃO DA ÁREA DE ESTUDO

Este tópico tem por objetivo caracterizar a área definida para o trabalho, visando transmitir ao leitor uma noção do ambiente e dos fatores locais que influem sobre a floresta.

geográficas 28° 16' e 28° 20' de latitude Sul e 52° 09' e 52° 13' de longitude Oeste.

Em termos econômicos, a localização da Flona é altamente positiva, uma vez que existem cerca de 250 empresas do setor (serrarias, indústrias de transformação de produtos florestais, papelão, papel e celulose) num raio de 120 km.

A Flona apresenta uma área total de 1.286.244 hectares, com 676.570 hectares de florestas implantadas, 489.598 hectares de áreas nativas e 119.076 hectares de áreas não estocadas. Uma discriminação mais detalhada pode ser vista na Tabela 3.1.

TABELA 3.1 - DISCRIMINAÇÃO DAS ÁREAS ESTOCADAS E NÃO ESTOCADAS DA FLORESTA NACIONAL DE PASSO FUNDO (RS), 1988

<table>
<thead>
<tr>
<th>Ocupação</th>
<th>Área (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araucaria angustifolia</td>
<td>391.767</td>
<td>30,45</td>
</tr>
<tr>
<td>Pinus sp</td>
<td>277.456</td>
<td>21,57</td>
</tr>
<tr>
<td>Eucalyptus spp</td>
<td>7.347</td>
<td>0,57</td>
</tr>
<tr>
<td>Ilex sp</td>
<td>1.000</td>
<td>0,08</td>
</tr>
<tr>
<td>Capoeirão</td>
<td>124.197</td>
<td>9,66</td>
</tr>
<tr>
<td>Mata Nativa</td>
<td>365.401</td>
<td>28,41</td>
</tr>
<tr>
<td>Área não estocada</td>
<td>119.076</td>
<td>9,26</td>
</tr>
<tr>
<td></td>
<td>1.286.244</td>
<td>100,00</td>
</tr>
</tbody>
</table>
Fig. 3.1 - Localização da área de estudo.
A área de estudo caracteriza-se por apresentar um relevo ondulado, ocorrendo também algumas declividades acentuadas com um relevo mais movimentado. A altitude média é de aproximadamente 700 metros, com um máximo de 780 metros, e a declividade média oscila entre 5 e 15 graus.

Segundo a classificação de Köppen, o clima da região é definido como subtropical do tipo Cfa (temperatura do mês mais quente superior a 22 graus centígrados e a do mês mais frio entre -3 e 18 graus centígrados). A precipitação média anual é de 1659 mm, regularmente distribuída, com um máximo de 162 mm em outubro e um mínimo de 110 mm em novembro. Ocorrem em média 14 dias de geada por ano, sendo nordeste o sentido predominante dos ventos (Moreno, 1961).

Em termos geológicos, a região enquadra-se no Grupo São Bento, que abrange as formações Serra Geral, Botucatu e Rosário do Sul. Mais especificamente, o local de trabalho encontra-se na formação Serra Geral, caracterizada por derrames de lava basáltica (Carraro et al., 1973; Lemos et al., 1973).

O solo é enquadrado na Unidade de Mapeamento Passo Fundo e classificado como Latossol Vermelho Escuro Distrófico (Lemos et al., 1973). Esta unidade apresenta 80% dos solos com profundidade variável de 2,5 a 3,0 metros, com horizonte B latossólico, bem drenado, sem pedregosidade. A textura é argilosa, com mais de 40% de argila em todo o perfil. Além deste solo característico e dominante, ocorrem solos hidromórficos, litólicos e perfis de solos arenosos.

A Flona de Passo Fundo apresenta uma densa rede de drenagem, composta de pequenos córregos que cortam
a área de diversos talhões e que dão vazão no Rio Branco, que forma a barragem do Capingui (localizada no limite sul da Flona). A rede existente permite um excelente escoamento das águas, ocorrendo poucas áreas hidromórficas (cerca de 5% da área total).

3.1.2 - DESCRIÇÃO DO SATÉLITE LANDSAT

O sensor Thematic Mapper (TM) é um radiômetro imagemador, com melhor resolução espacial, maior separação espectral, maior fidelidade geométrica e radiométrica, quando comparado ao MSS. No que diz respeito a áreas florestais homogêneas e/ou equiâneas, o aumento da resolução espacial para 30 metros foi de grande importância para alguns estudos, haja visto que oferece uma visão mais detalhada dos elementos presentes em pequenos talhões. Possui sete bandas especrais (seis no espectro refletido, com resolução espacial de 30 metros, e uma no termal, com resolução de 120 metros), permitindo a caracterização de alguns fenômenos em regiões específicas do espectro, anteriormente não abrangidas pelo MSS.

A melhoria da resolução radiométrica, de 64 para 256 níveis de cinza repercitu diretamente na...
qualidade do processamento das imagens, proporcionando um maior contraste entre os elementos de uma cena. As bandas apresentam as seguintes finalidades:

Banda 1: 0,45 a 0,52 μm (30 m), sensível à concentração de clorofila e carotenoides, permite a diferenciação entre solo e vegetação, decíduas e coníferas e serve para estudos de águas costeiras.

Banda 2: 0,52 a 0,60 μm (30 m), sensível à reflectância da vegetação sadia.

Banda 3: 0,63 a 0,69 μm (30 m), sensível à absorção da clorofila, é um canal importante para o estudo da vegetação (foi projetado para discriminar áreas vegetadas de áreas não vegetadas e enfatizar o contraste entre tipos diferentes de vegetação).

Banda 4: 0,76 a 0,90 μm (30 m), útil em trabalhos que envolvam cálculo de biomassa e discriminação de corpos d'água.

Banda 5: 1,55 a 1,75 μm (30 m), fornece informações sobre a umidade do solo e da vegetação e permite diferenciar tipos de cultura.

Banda 7: 2,08 a 2,35 μm (30 m), para mapeamentos de formações rochosas (sensível a ions hidroxila em minerais).

Banda 6: 10,40 a 12,60 μm (120 m), auxilia na classificação vegetal, análise de "stress" e no mapeamento de fenômenos termais.

Para o desenvolvimento do trabalho foi selecionada uma imagem Landsat/TM, correspondente à
passagem do dia 27/06/87, órbita ponto 222/80, quadrante Norte, com 0% de cobertura de nuvens. Esta passagem coincidiu com a época de coleta de dados à campo, o que assegura uma maior veracidade aos resultados. Foram utilizadas as bandas TM1, TM2, TM3, TM4, TM5 e TM7.

3.1.3 - INFRAESTRUTURA OPERACIONAL

A infraestrutura necessária foi dividida em três grupos: para levantamento de dados à campo, para tratamento de dados digitais e para processamento de dados.

Para o levantamento dos dados à campo foram necessários os seguintes materiais: trena de 50 metros, bússola, trado metálico, facão, formulários de sondagem, Blume Leiss, suta, balizas, cruzeta angular, tinta amarela, pinceis, pregos, etiquetas de aluminio, jogos de tipos para inscrição em baixo relevo, formulários de inventário, motosserra, medidor de casca, formulários de cubagem e pranchetas.

Para definição das unidades amostrais foram empregados o mapa de sitios e o mapa de vegetação da Flona. Para o processamento das imagens, foi definida a utilização do sistema SITIM-150 para o tratamento digital e extração dos valores digitais e do sistema SGI para a digitalização de alguns planos de informação. Como apoio foi utilizada a carta da região (SH-22-V-B-I-4), em escala 1:50.000.

O Sistema de Tratamento de Imagens (SITIM-150) é um sistema de tratamento de imagens multiespectrais que permite realizar operações de pré-processamento e classificação de imagens. Compõe-se de um microcomputador com disco rígido, terminal gráfico UVI-150 e impressora. Complementar a este sistema, o Sistema de Informações Geográficas (SGI) é um banco de dados que permite adquirir,
armazenar, analisar e recuperar informações codificadas espacialmente. Pode ser encontrado no mesmo ambiente descrito anteriormente, acrescido de uma mesa digitalizadora e uma plotter.

Para o processamento dos dados foram empregados um computador IBM-360, PC-286 e disquetes flexíveis 5\"1/4. O software utilizado para a geração dos gráficos foi o "Statgraphics".

3.2 - MÉTODOS

Este tópico apresenta as metodologias referentes às partes essenciais do trabalho: inventário dos sítios naturais, inventário florestal, cubagem e cálculo dos volumes, reagrupamento dos dados dendrométricos, processamento digital, obtenção dos modelos e critérios de seleção dos mesmos.

3.2.1 - INVENTÁRIO DOS SÍTIOS NATURAIS

Como mencionado anteriormente, nos trabalhos de planejamento florestal, a delimitação dos sítios naturais assume um papel especial, uma vez que possuem características ecológicas próprias, um crescimento semelhante e representam as unidades de produção.

Neste estudo empregou-se a metodologia descrita por Andrae (1978), segundo a qual os sítios são delimitados de acordo com fatores secundários (solo e vegetação), devido à mútua correlação que exercem entre si e pela possibilidade de serem alterados em períodos menores de tempo.

O clima local, devido à dificuldade de avaliação no decorrer dos levantamentos, não foi avaliado.
A análise do solo foi efetuada através da avaliação da manta orgânica que se encontra sobre a superfície do solo mineral, do tipo de húmus e pelas características físicas do solo.

O conhecimento da composição florística é importante na delimitação de sítios, pois ela pode indicar as linhas de transição (vinculação entre o tipo vegetal e a qualidade do sítio). Utilizando o critério de Braun Blanquet (1979), avaliou-se a composição florística em cada estrato da floresta (arbóreo, arbustivo e herbáceo).

Para o levantamento das informações foram definidas linhas de sondagem equidistantes de 100 metros, em todos os talhões de floresta implantada. Em cada linha, iniciando a 10 metros da bordadura dos talhões, localizaram-se pontos de estudo, de 100 em 100 metros (Figura 3.2), onde foram levantados os dados referentes ao relevo, manta, solo e vegetação (Ficha 1, Apêndices A e B).

Com o auxílio do mapa administrativo, na escala de 1:10.000, e de uma bússola, definiu-se a direção da linha de sondagem, e com uma trena de 50 metros, foram medidas as distâncias entre os pontos de coleta de dados. Determinada a posição do ponto, a análise da manta foi realizada da seguinte maneira: com um facão, foi feito um corte visando obter um perfil transversal da manta, que então foi avaliada com uma régua graduada em centímetros em suas três camadas (L, F e H):

- camada L: é a camada superior da manta, onde a matéria-orgânica não apresenta sinais de decomposição, reconhecendo-se o material de origem;
- camada F: material em decomposição, mas as partículas ainda permitem reconhecer o material de origem;

- camada H: material decomposto, muitas vezes com micélios de fungos, não permitindo mais a identificação do material de origem (macroscopicamente).

Fig. 3.2 - Esquema da amostragem para definição dos sítios.

Analisou-se também o grau de enraizamento da manta e o tipo de húmus (Mull, Moder ou Mor). Com o auxílio de um trado metálico, o solo foi avaliado em diferentes profundidades (10, 30, 50 e 70 cm) quanto à textura, estrutura, cor e observações gerais, profundidade e grau de hidromorfismo (Ficha 1, Lado A, Apêndice A).
A vegetação foi avaliada em torno do ponto de tradagem, nos três estratos anteriormente citados (Ficha 1 Lado B, Apêndice B). No estrato arbóreo, foram avaliadas as duas ou três árvores mais próximas, sendo medidas suas alturas e diâmetro (DAP). Foi feita uma avaliação silvicultural do povoamento nas imediações do ponto.

No estrato arbustivo foram identificadas as principais espécies presentes, anotando-se a altura e algumas observações gerais. No estrato herbáceo identificaram-se as principais espécies e alguns sinais típicos (quando era o caso).

A existência de um tipo de sitio diferente em relação ao anterior ou lateral determinava a procura da linha de transição (na linha e/ou entre as linhas). Concluída a sondagem, as áreas cujos pontos apresentavam informações semelhantes foram reunidas para a construção da chave de mapeamento, que deu suporte à confecção do mapa de sitios naturais. O trabalho foi feito sistematicamente em todos os talhões e posteriormente foi elaborado um mapa em escala 1:10.000.

3.2.2 - INVENTÁRIO FLORESTAL

O inventário florestal é um instrumento básico para o manejo e para o planejamento das atividades florestais. Deste modo, a definição do tipo de inventário, do processo de amostragem, da unidade amostral e das informações a serem coletadas é fundamental para o êxito do trabalho.

As florestas plantadas totalizam 676,57 hectares, constituídas por plantios de Araucaria angustifolia (57,90%) e Pinus sp (41,00%), sendo que nestas
áreas o inventário foi o mais detalhado possível, já que representam a área de produção mais importante da Flona.

O inventário realizado foi do tipo contínuo com amostragem de repetição parcial, onde as medições de campo são repetidas periodicamente, fornecendo um controle do comportamento da floresta ao longo do tempo. Com este método podem ser obtidas três estimativas:

a) estimativa das características da população no primeiro inventário (X1);
b) estimativa das características da população no segundo inventário (X2);
c) estimativa das mudanças nas características da população no período compreendido entre os dois inventários (X2-X1).

A escolha do processo de amostragem constitui uma parte essencial no levantamento dos dados (Péllico Neto, 1984). Sendo possível dividir a população em estratos homogêneos, de modo que os valores medidos variem pouco de uma unidade para outra, pode-se obter uma estimativa precisa de um estrato qualquer com uma menor amostragem. Assim, o processo de amostragem utilizado foi o aleatório estratificado com alocação proporcional. O propósito da estratificação é reduzir a variabilidade dentro dos estratos e o custo da amostragem, aumentando a precisão.

Na estruturação da amostragem foram definidos dois estratos administrativos em espécie (Araucaria angustifolia e Pinus sp) e cinco estratos em volume, definidos pelos sitios naturais mapeados sobre a população na etapa anterior (3.2.1).

A intensidade de amostragem é uma função da variância da população, do erro máximo de amostragem
desenvolvidos na área, a intensidade de amostragem foi calculada admitindo-se um erro máximo de amostragem de 10% da média estratificada, com 95% de probabilidade de confiança.

Para suprir a necessidade de informações setorizadas por talhão amostrando o maior número possível de sítios, a intensidade de amostragem foi aumentada de 180 para 225. A distribuição das unidades pode ser vista nas Tabelas 3.2 e 3.3.

TABELA 3.2 - DISTRIBUIÇÃO DAS UNIDADES AMOSTRAIS SEGUNDO OS ESTRATOS DEFINIDOS PARA O INVENTÁRIO FLORESTAL

<table>
<thead>
<tr>
<th>ESPÉCIE</th>
<th>SÍTIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Araucaria sp</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>Pinus sp</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>75</td>
<td>29</td>
</tr>
<tr>
<td>TALHÃO</td>
<td>ESPÉCIE</td>
<td>N</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>01</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>02</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>03</td>
<td>Aa</td>
<td>4</td>
</tr>
<tr>
<td>04</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>P</td>
<td>4</td>
</tr>
<tr>
<td>06</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>07</td>
<td>Aa</td>
<td>4</td>
</tr>
<tr>
<td>08</td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>Aa</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Nativas</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Aa</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Aa</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Aa</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Aa</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Aa</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>Aa</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Aa</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>P</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>Aa</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>P</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Aa</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Aa</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>34</td>
<td>Aa</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>Aa</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>P</td>
<td>8</td>
</tr>
<tr>
<td>37</td>
<td>P</td>
<td>2</td>
</tr>
</tbody>
</table>

Na tabela anterior, **N** corresponde ao número total de unidades do talhão, **P** a Pinus sp, **Aa** a Araucaria e **NA** a Não amostrado.
A unidade amostral utilizada no inventário foi a da forma retangular, com 20 metros de largura e 30 metros de comprimento, totalizando 600 metros quadrados de área. As unidades foram distribuídas na população em três etapas:

a) inicialmente o número total de unidades foi distribuído por espécie, proporcionalmente à sua área plantada;
b) a seguir, as unidades de cada espécie foram distribuídas por talhão, de maneira idêntica ao item anterior;
c) por fim, as unidades de cada talhão foram distribuídas proporcionalmente à área de cada sítio natural.

Em cada talhão, as unidades foram distribuídas aleatoriamente, identificando-se as permanentes e temporárias em uma proporção média de 49% e 51%, respectivamente.

A localização das unidades nos talhões, a partir do mapa de sítios naturais, em escala 1:10.000, foi feita através de coordenadas de referência como aceiros, entroncamentos de estradas, cursos d’água e vias de acesso, medidas com trena.

Uma vez definida a localização da unidade, sua instalação foi feita com o emprego de uma cruzeta angular para marcação dos ângulos retos, uma trena para medição dos lados e quatro balizas. As unidades foram demarcadas no terreno a partir de um ponto inicial neutro definido pela interseção das diagonais das quatro árvores mais próximas do ponto, e dispostas de modo que seu comprimento ficasse paralelo ao alinhamento original do plantio.
A materialização das unidades foi feita de acordo com o tipo de unidade. Nas unidades temporárias, a marcação foi feita com o simples balizamento dos vértices, cuja duração foi apenas o tempo necessário para a coleta dos dados.

As unidades permanentes foram marcadas de modo duradouro, haja visto que serão remediadas em outras ocasiões, quando o inventário for repetido. Além do balizamento dos vértices, as unidades foram materializadas com tinta e etiquetas metálicas da seguinte maneira:

a) a árvore do primeiro vértice (ponto inicial neutro) estabelece o início e o sentido da medição, recebendo dois anéis de tinta amarela a 1,30 metros do solo;

b) as demais árvores de canto recebem um semi-círculo de tinta amarela, voltado para o vértice inicial, permitindo uma rápida visualização de todos os limites da unidade amostral;

c) as seis árvores mais grossas da unidade (árvores dominantes) recebem uma etiqueta de alumínio de 20x50 mm, onde são inscritos em baixo relevo o número da unidade e o número da árvore dominante na unidade; esta etiqueta é pregada ao nível do toco (base da árvore).

Na margem da estrada ou aceiro que foi utilizado para a localização da unidade, pintou-se um semi-círculo amarelo, indicando que naquela direção há uma unidade permanente.

Os dados coletados nas unidades amostrais seguiram a metodologia padrão do Centro de Pesquisas Florestais (CEPEF/FATEC), apresentada por Schneider et al. (1988). A identificação dos dados coletados foi feita
mediante o registro no cabeçalho da Ficha 2 (Apêndice C): idade, diâmetro médio, diâmetro médio das árvores dominantes, altura média, altura média das árvores dominantes, densidade, mortalidade, árvores bifurcadas abaixo de 1,30 m, árvores bifurcadas acima de 1,30 m e falhas. Estes dados alimentaram o programa que calculou todas as variáveis dendrométricas empregadas no estudo.

Em cada unidade amostral foram medidos todos os diâmetros e a altura das 20 primeiras árvores, acrescidas das 6 árvores dominantes de cada unidade.

3.2.3 - CUBAGEM DAS ÁRVORES E CÁLCULO DOS VOLUMES

O volume engloba o engrossamento, o alongamento e a forma, e a cubagem é feita para determinar o volume das árvores. O estudo matemático do volume das árvores, supondo-se suas regiões circulares, parte do princípio de que as figuras geométricas relacionadas, tanto o cilindro como o cone, ao sofrerem uma rotação em torno do seu eixo principal, originam os sólidos de revolução correspondentes. Cubar uma árvore ou parte dela é tomar o volume total ou parcial dos sólidos de revolução.

A cubagem foi realizada através do seccionamento dos troncos em comprimentos absolutos, conforme a Figura 3.3, onde cada parte (torete) é cubada isoladamente, pelas seguintes expressões:

\[Vo = g \times L \] \hspace{1cm} (3.1)

\[Vi = \left(\frac{g_{n-1} + g_n}{2} \right) \times L \] \hspace{1cm} (3.2)

\[Vn = \frac{1}{3} \times g \times L \] \hspace{1cm} (3.3)
Onde: $V_0 = \text{volume do toco}$
$V_i = \text{volume dos "n" toretes}$
$V_n = \text{volume do ápice da árvore}$
$g = \text{área transversal}$
$L = \text{comprimento do torete}$

As árvores-amostra foram coletadas de forma estratificada nos sítios naturais, em número de 100 árvores de Araucaria angustifolia e 100 árvores de Pinus sp, distribuídas por classe de DAP, procurando abranger todos os sítios naturais.

![Diagrama de seccionamento do tronco para cubagem.](image)

Fig. 3.3 - Esquema de seccionamento do tronco para cubagem.

As árvores foram abatidas, identificadas e cubadas conforme a Ficha 3 (Apêndice D), registrando-se o número do talhão, idade, número da árvore, espécie, data, equipe, altura total, altura aproveitável (diâmetro = 10 cm), altura do primeiro galho vivo e as medições de diâmetro com casca e espessura de casca, nas posições 0,1, 0,3, 1,3m e de metro em metro até a altura total da árvore, conforme a figura anterior.

A marcação das posições de medição ao longo do fuste foi feita com o auxílio de uma trena, sendo os diâmetros medidos com a suta e a espessura de casca com o medidor de casca.
A relação hipsométrica é a relação existente entre o diâmetro e a altura da árvore, sendo representada por uma função de altura em relação ao diâmetro, e usada para fornecer a altura das árvores que tiveram apenas o diâmetro medido. No estudo da relação hipsométrica foram empregados os dados de altura e diâmetro das árvores cubadas, e a Tabela 3.4 mostra os modelos de regressão empregados. Para a determinação dos coeficientes das equações de relação hipsométrica foram utilizadas as alturas e diâmetros das 20 primeiras árvores de cada unidade amostral. Para as equações das Tabelas 3.4 e 3.5, empregou-se a seguinte convenção: $V = \text{volume}$, $d = \text{DAP}$, $h = \text{altura total}$, $\log = \logaritmo decimal$ e $b_0, b_1, b_2, b_3, b_4, b_5$ = coeficientes da equação.

TABELA 3.4 - EQUAÇÕES DE RELAÇÃO HIPSOMÉTRICA TESTADAS

<table>
<thead>
<tr>
<th>N</th>
<th>EQUAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>$h-1,30 = (1/b_0+b_1(1/d))^2$</td>
</tr>
<tr>
<td>02</td>
<td>$h-1,30 = b_0+b_1d+b_2d^2$</td>
</tr>
<tr>
<td>03</td>
<td>$h = b_0+b_1d+b_2d^2+b_3d^3$</td>
</tr>
<tr>
<td>04</td>
<td>$h = b_0+b_1(1/d^2)$</td>
</tr>
<tr>
<td>05</td>
<td>$h-1,30 = 1/(b_0+b_1(1/d)+b_2(1/d^2))$</td>
</tr>
<tr>
<td>06</td>
<td>$\log(h-1,30) = b_0+b_1(1/d)$</td>
</tr>
<tr>
<td>07</td>
<td>$h-1,30 = b_0-b_1d$</td>
</tr>
<tr>
<td>08</td>
<td>$\log h = b_0+b_1d$</td>
</tr>
<tr>
<td>09</td>
<td>$h = b_0+b_1d$</td>
</tr>
<tr>
<td>10</td>
<td>$\log h = b_0+b_1Logd$</td>
</tr>
<tr>
<td>11</td>
<td>$\log(h-1,30) = b_0+b_1Logd$</td>
</tr>
<tr>
<td>12</td>
<td>$\log(h-1,30) = b_0+b_1Logd+b_2Log^2d$</td>
</tr>
<tr>
<td>13</td>
<td>$\log(h-1,30) = b_0+b_1Logd+b_2Log^2d$</td>
</tr>
<tr>
<td>14</td>
<td>$\log(h-1,30) = b_0+b_1Log(1/1+d)$</td>
</tr>
</tbody>
</table>

A determinação do volume real total e comercial, com e sem casca, foi feito a partir da seguinte expressão:
\[V = V_0 + V'_s + V_n \]

(3.4)

O processamento dos dados da cubagem foi realizado através do programa SMALLI, (Schneider, 1982) que calcula os parâmetros necessários. A partir dos volumes calculados para as árvores cubadas, estudaram-se os modelos de regressão para descrever a relação de volume. Entre os modelos existentes, procurou-se trabalhar com os mais usuais, incluindo os modelos aritméticos e logarítmicos, a fim de melhor estimar os volumes de cada espécie. Estes modelos podem ser vistos na Tabela 3.5.

TABELA 3.5 - EQUAÇÕES DE VOLUME TESTADAS

<table>
<thead>
<tr>
<th>N</th>
<th>EQUAÇÃO</th>
<th>AUTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>(V = b_0 + b_1 d + b_2 d^2 + b_3 dh + b_4 d^2 h + b_5 h)</td>
<td>Meyer</td>
</tr>
<tr>
<td>02</td>
<td>(V = b_0 + b_1 d + b_2 d^2 + b_3 dh^2 + b_4 d^2 h)</td>
<td>Meyer modificada</td>
</tr>
<tr>
<td>03</td>
<td>(V = b_0 + b_1 d^2 + b_2 d^2 h + b_3 dh + b_4 h^2)</td>
<td>Meyer modificada</td>
</tr>
<tr>
<td>04</td>
<td>(V = b_o + b_1 d^2 + b_2 d^2 h + b_3 h)</td>
<td>Stoate</td>
</tr>
<tr>
<td>05</td>
<td>(V = b_o + b_1 d)</td>
<td>Berkhout</td>
</tr>
<tr>
<td>06</td>
<td>(V = b_o + b_1 d^2 h)</td>
<td>Spurr</td>
</tr>
<tr>
<td>07</td>
<td>(V = b_o + b_1 d + b_2 d^2)</td>
<td>Hohenadl-Krenn</td>
</tr>
<tr>
<td>08</td>
<td>(V = b_o + b_1 d^2)</td>
<td>Kopezki-Gehrn</td>
</tr>
<tr>
<td>09</td>
<td>(V = d (b_o + b_1 h))</td>
<td>Ogaya</td>
</tr>
<tr>
<td>10</td>
<td>(\text{Log} V = b_o + b_1 \text{Log} d + b_2 \text{Log}^2 d + b_3 \text{Log} h + b_4 \text{Log}^2 h)</td>
<td>Prodan</td>
</tr>
<tr>
<td>11</td>
<td>(\text{Log} V = b_o + b_1 \text{Log} d + b_2 \text{Log} h)</td>
<td>Schumacher-Hall</td>
</tr>
<tr>
<td>12</td>
<td>(\text{Log} V = b_o + b_1 \text{Log} (d^2 h))</td>
<td>Spurr</td>
</tr>
<tr>
<td>13</td>
<td>(\text{Log} V = b_o + b_1 \text{Log} d + b_2 d - 1)</td>
<td>Brenac</td>
</tr>
<tr>
<td>14</td>
<td>(\text{Log} V = b_o + b_1 \text{Log} d)</td>
<td>Husch</td>
</tr>
</tbody>
</table>
3.2.4 - REAGRUPAMENTO DOS DADOS DENDROMÉTRICOS

Este procedimento foi necessário na preparação dos dados para o processamento digital devido à impossibilidade de localizar todas as "n" unidades amostrais na imagem, uma vez que não se dispunha de um mapa com a localização de todas as unidades \(^1\), e mesmo porque qualquer diferença de 1 pixel estaria comprometendo toda a precisão de extração dos valores digitais. Optou-se então por reagrupar os dados dendrométricos por sítio por talhão, para que se pudesse obter os valores digitais referentes aos novos dados reagrupados.

Foi aplicado o teste \(t\) para comparar as médias antes e depois do reagrupamento, visando determinar se havia diferença significativa entre as mesmas. O reagrupamento dos dados fez com que o número de amostras fosse reduzido, como mostra a Tabela 3.6.

TABELA 3.6 - DISTRIBUIÇÃO DAS UNIDADES AMOSTRAIS APÓS O REAGRUPAMENTO DAS AMOSTRAS

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>SIT 1</th>
<th>SIT 2</th>
<th>SIT 3</th>
<th>SIT 4</th>
<th>SIT 5</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araucaria</td>
<td>55</td>
<td>10</td>
<td>36</td>
<td>40</td>
<td>09</td>
<td>150</td>
</tr>
<tr>
<td>(antes)</td>
<td>29</td>
<td>08</td>
<td>25</td>
<td>24</td>
<td>05</td>
<td>091</td>
</tr>
<tr>
<td>(depois)</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>11</td>
<td>04</td>
<td>075</td>
</tr>
<tr>
<td>Pinus</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>08</td>
<td>02</td>
<td>043</td>
</tr>
</tbody>
</table>

\(^1\) Por ocasião do levantamento de dados, apenas as unidades permanentes foram plotadas, visando assegurar que no inventário seguinte os locais que receberam as unidades temporárias teriam a mesma probabilidade de serem medidos novamente.
3.2.5 - PROCESSAMENTO DIGITAL

Os procedimentos de processamento digital dividem-se em processamento da imagem e utilização do SGI para digitalização do mapa de sitios naturais. No que se refere à imagem, as etapas foram as seguintes:

a) leitura das fitas CCT, localização da área de estudo e armazenamento em disquetes;
b) análise para determinação dos parâmetros estatísticos das seis bandas;
c) registro da imagem com o mapa de sitios naturais; e
d) extração dos valores digitais correspondentes às amostras.

O tratamento digital utilizando todas as bandas de um sensor não é um procedimento usual, devido ao aumento substancial do custo e tempo do projeto. Entretanto, no presente estudo, foram consideradas as 6 bandas do espectro refletido do Thematic Mapper, tendo em vista a determinação das melhores correlações entre os dados espectrais e dendrométricos.

A imagem apresenta distorções em relação às coordenadas geodésicas, em virtude da trajetória do satélite. Assim, é necessário fazer o registro entre a imagem e o mapa de referência. O registro é uma transformação geométrica que corrige distorções entre produtos a serem sobrepostos, de modo que os elementos correspondentes nos dois produtos coincidam espacialmente.

O registro imagem-mapa consiste do posicionamento de um sistema de coordenadas de imagem dentro da escala e projeção do mapa da mesma área. A operação de registro corrige apenas as diferenças de deslocamento nas direções vertical e/ou horizontal.
(registro translacional), não considerando escala e projeção. A operação é feita em três fases:

a) construção, no disco rígido, de um arquivo descritor que agrupa as diversas imagens (e/ou mapas) a serem registrados;

b) aquisição dos pontos de controle que servirão de referência para estimar os desvios entre as imagens a ajustar;

c) sobreposição a partir dos deslocamentos calculados.

Os pontos de controle devem estar nitidamente visíveis na imagem e no mapa. Uma vez que se disponha de pontos bem determinados é possível obter funções que mapeiem as coordenadas da imagem no mapa de forma mais precisa.

A sobreposição consiste na construção da imagem registrada pela aplicação de uma transformação geométrica que define a posição dos pontos na nova imagem (registrada), em que interpoladores definem o valor do nível de cinza a ser atribuído a cada ponto.

Uma das finalidades da transformação geométrica é eliminar distorções causadas pelo sistema de imageamento e pela posição do sistema no momento da coleta dos dados. Quando não se dispõe de informações sobre o processo de distorção, a função de transformação deve ser inferida das próprias imagens. O procedimento mais comum é supor que a transformação pode ser aproximada por um polinômio (Mascarenhas e Velasco, 1989).

A transformação fica conhecida se forem determinados os coeficientes da equação, cuja determinação é feita através dos pontos de controle estabelecidos analisando-se a imagem e o mapa.
O número de pontos de controle para a determinação dos coeficientes depende do número destes, segundo a expressão

\[C(n) = n^2 + 3n + 2 \] (3.5)

Para polinômios do primeiro grau, \(C = 6 \). Como cada ponto de controle dá origem a duas equações, necessita-se de pelo menos \(1/2 \) \(C(n) \) pontos de controle, ou seja, três.

A atribuição dos valores de níveis de cinza à imagem registrada pode ser feita através de diferentes interpoladores no processo de reamostragem. Segundo a Figura 3.4, as coordenadas \((c,r) \) representam linha e coluna da imagem original e as coordenadas \((e,n) \) representam linha e coluna do produto referência.

É praticamente impossível que a função de mapeamento gere valores inteiros de \((c,r) \). Os valores não inteiros dessas coordenadas implicam que o outro pixel da imagem registrada tenha caído entre a linha e a coluna do pixel da imagem original. É necessário interpolar o valor digital da imagem corrigida.

Os métodos de interpolação mais comumente utilizados são o vizinho mais próximo, bilinear e convolução cúbica (Mather, 1987). O interpolador vizinho mais próximo atribui ao pixel da imagem corrigida o valor do nível de cinza do pixel da imagem original que tiver o seu centro mais próximo do centro do pixel da imagem registrada. É um método rápido e que não emprega nenhum algoritmo de interpolação, como os outros dois métodos citados, garantindo que os valores de níveis de cinza atribuídos à imagem sejam reais, uma vez que são extraídos diretamente da imagem original.
Considerando o objetivo do trabalho, que pretende extrair os valores de nível de cinza correspondentes às amostras, é fundamental que estes não sejam alterados. Por este motivo foi selecionado este método de interpolação.

Utilizando o mapa de sítios e o mapa de vegetação foram definidos os locais de amostragem, uma vez que alguns talhões sondados apresentam áreas de vegetação natural. Foram plotadas 164 amostras sobre uma carta e extraídas as coordenadas de suas localizações espaciais.

A definição do tamanho da janela de amostragem na imagem TM foi feita com base na análise do tamanho dos sítios amostrados em relação à resolução espacial do sensor (30 metros), e a uma margem de segurança nas bordas desta janela.

Fig. 3.4 - Relação entre os pontos no processo de reamostragem.
As bandas dos espectro refletido do sensor TM apresentam uma resolução espacial de 30 metros, o que equivale a uma área de 0,09 hectare (900 metros quadrados) por pixel.

Os sitios amostrados à campo foram classificados em função da sua área total em 26 classes (intervalos de 1 pixel), determinando-se a frequência absoluta (Freq) e relativa (%) dos sitios para as duas espécies (Tabela 3.7). Como exemplo, 4,40% dos sitios amostrados em Araucaria apresentaram-se com áreas entre 0,541 e 0,630 hectare, enquanto 4,66% dos sitios de Pinus apresentaram-se com áreas entre 1,801 e 1,890 hectare.

A literatura apresenta casos com diversos tamanhos de janelas de amostragem para correlacionar com dados de campo. Curran e Williamson (1986) determinaram que 1 ou 2 pixels são suficientes para estudos com gramíneas heterogêneas enquanto Danson (1987) utilizou apenas 1 pixel para estudar alvos florestais. No presente trabalho, uma janela deste tamanho incorreria em erros, devido ao problema de precisão no registro.

Para evitar erros de localização das unidades amostrais decorrentes do registro entre a imagem e o mapa de sitios naturais, e para evitar o problema de amostras não representativas, definiu-se uma janela de amostragem de 2x2 pixels. Esta janela foi utilizada para extração dos
niveis de cinza correspondentes às unidades amostrais e cálculo da resposta-espectral média de cada unidade.

TABELA 3.7 - CLASSIFICAÇÃO DOS SÍTIOS AMOSTRADOS EM FUNÇÃO DA RESOLUÇÃO ESPACIAL DO SENSOR TM (30 M)

<table>
<thead>
<tr>
<th>Área (ha)</th>
<th>Pixels</th>
<th>Araucaria</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Freq</td>
<td>%</td>
<td>Freq</td>
</tr>
<tr>
<td>0,000 - 0,090</td>
<td>01</td>
<td>00</td>
<td>0,00</td>
<td>01</td>
</tr>
<tr>
<td>0,091 - 0,180</td>
<td>02</td>
<td>02</td>
<td>2,20</td>
<td>00</td>
</tr>
<tr>
<td>0,181 - 0,270</td>
<td>03</td>
<td>02</td>
<td>2,20</td>
<td>00</td>
</tr>
<tr>
<td>0,271 - 0,360</td>
<td>04</td>
<td>02</td>
<td>2,20</td>
<td>00</td>
</tr>
<tr>
<td>0,361 - 0,450</td>
<td>05</td>
<td>01</td>
<td>1,10</td>
<td>01</td>
</tr>
<tr>
<td>0,451 - 0,540</td>
<td>06</td>
<td>03</td>
<td>3,30</td>
<td>00</td>
</tr>
<tr>
<td>0,541 - 0,630</td>
<td>07</td>
<td>04</td>
<td>4,40</td>
<td>01</td>
</tr>
<tr>
<td>0,631 - 0,720</td>
<td>08</td>
<td>01</td>
<td>1,10</td>
<td>00</td>
</tr>
<tr>
<td>0,721 - 0,810</td>
<td>09</td>
<td>01</td>
<td>1,10</td>
<td>00</td>
</tr>
<tr>
<td>0,811 - 0,900</td>
<td>10</td>
<td>01</td>
<td>1,10</td>
<td>01</td>
</tr>
<tr>
<td>0,901 - 0,990</td>
<td>11</td>
<td>02</td>
<td>2,20</td>
<td>01</td>
</tr>
<tr>
<td>0,991 - 1,080</td>
<td>12</td>
<td>02</td>
<td>2,20</td>
<td>01</td>
</tr>
<tr>
<td>1,081 - 1,170</td>
<td>13</td>
<td>01</td>
<td>1,10</td>
<td>00</td>
</tr>
<tr>
<td>1,171 - 1,260</td>
<td>14</td>
<td>00</td>
<td>0,00</td>
<td>01</td>
</tr>
<tr>
<td>1,261 - 1,350</td>
<td>15</td>
<td>01</td>
<td>1,10</td>
<td>01</td>
</tr>
<tr>
<td>1,351 - 1,440</td>
<td>16</td>
<td>01</td>
<td>2,20</td>
<td>01</td>
</tr>
<tr>
<td>1,441 - 1,530</td>
<td>17</td>
<td>01</td>
<td>1,10</td>
<td>00</td>
</tr>
<tr>
<td>1,531 - 1,620</td>
<td>18</td>
<td>02</td>
<td>2,20</td>
<td>01</td>
</tr>
<tr>
<td>1,621 - 1,710</td>
<td>19</td>
<td>01</td>
<td>1,10</td>
<td>00</td>
</tr>
<tr>
<td>1,711 - 1,800</td>
<td>20</td>
<td>01</td>
<td>1,10</td>
<td>02</td>
</tr>
<tr>
<td>1,801 - 1,890</td>
<td>21</td>
<td>03</td>
<td>3,30</td>
<td>02</td>
</tr>
<tr>
<td>1,891 - 1,980</td>
<td>22</td>
<td>04</td>
<td>4,40</td>
<td>01</td>
</tr>
<tr>
<td>1,981 - 2,070</td>
<td>23</td>
<td>02</td>
<td>2,20</td>
<td>00</td>
</tr>
<tr>
<td>2,071 - 2,160</td>
<td>24</td>
<td>02</td>
<td>2,20</td>
<td>00</td>
</tr>
<tr>
<td>2,161 - 2,250</td>
<td>25</td>
<td>03</td>
<td>3,30</td>
<td>01</td>
</tr>
<tr>
<td>> 2,251</td>
<td>>25</td>
<td>45</td>
<td>49,40</td>
<td>26</td>
</tr>
</tbody>
</table>

TOTAL | 91 | 100 | 43 | 100

Os sitios com área inferior a 0,360 hectare (4 pixels) foram sumariamente descartados, devido à impossibilidade de se garantir que a janela na imagem
corresponda exatamente àquele sitio. Como margem de segurança foi empregada uma borda de 1 pixel, o que equivale a uma área de 4X4 pixels em que os 4 pixels centrais (2x2) foram empregados para gerar o valor médio daquela unidade amostral.

Alguns sitios, embora apresentassem áreas maiores que 1,44 hectare (4X4 pixels), não foram utilizados devido a problemas de descontinuidade dos povoamentos, onde alguns fragmentos de mata nativa remanescente impediram a disposição da janela.

Se no inventário florestal foram alocadas "n" unidades amostrais num determinado sitio, na etapa de processamento digital foram também empregadas "n" unidades para gerar a resposta média daquele sitio. Assim, foram definidas 106 unidades amostrais para Araucaria e 58 para Pinus.

O tamanho de janela empregada (2X2) permitiu que fossem utilizadas 69% (63) das unidades amostrais de Araucaria angustifolia e 72% (31) das unidades de Pinus sp.

Foram listadas as coordenadas UTM das unidades amostrais, utilizando-se a opção de extração de coordenadas do SGI. Foi criado um programa de navegação, a partir do qual, fornecendo as coordenadas UTM da unidade amostral, obtém-se as coordenadas linha-coluna na imagem registrada.

Para a extração dos valores digitais, localizou-se a área da unidade amostral considerando-se os valores fornecidos pela navegação da imagem. Com a utilização do programa "Lê pixel", implementado no SITIM, obtiveram-se os valores da janela. Definida a posição da janela 2x2 pixels, listaram-se os valores da janela para
aquela unidade amostral em questão nas três bandas carregadas. O procedimento foi repetido para cada site em cada talhão inventariado, em todas as bandas definidas para o estudo.

Extraídos os valores digitais, foram calculados os valores referentes à Razão Simples (TM4/TM3), Diferença Normalizada ((TM4-TM3)/(TM4+TM3)) e Diferença Normalizada e Transformada ((TM4-TM3)/(TM4+TM3)+0,5)\(^{1/2}\), totalizando 9 variáveis independentes para a análise estatística da relação com as variáveis dendrométricas levantadas à campo.

3.2.6 - RELAÇÃO ENTRE OS DADOS ESPECTRAIS E DENDROMÉTRICOS

De posse dos dados de campo e dos dados espectrais tornou-se necessário estabelecer a existência ou não de associação entre os dois tipos de variáveis. Uma primeira medida do grau e do sinal da relação entre duas variáveis é dada pela covariância. A grande desvantagem desta medida é que ela é afetada pelas unidades de X e Y. Para suprir esta falha, emprega-se a fórmula da correlação, que é o quociente entre a covariância de X e Y e o produto dos desvios-padrão de X e Y. Este coeficiente expressa o grau de aproximação dos pontos do diagrama de dispersão de uma reta de regressão.

A função a ser empregada na regressão é definida pela análise da plotagem dos dados e da sua distribuição, sendo inúmeras as funções existentes para ajustar os dados de duas variáveis. A situação ideal é de que se empregue a relação natural entre as variáveis, mas que nem sempre é conhecida. A obtenção da equação que melhor ajusta os dados pode não ser obtida de forma fácil e rápida, especialmente para um elevado número de observações.
Diversos fatores influenciam o crescimento de uma árvore. Ao lidar com dados florestais, tem-se uma grande variabilidade no indivíduos e, por conseguinte, na variância dos dados que compõe uma série de observações. Ao se construir o gráfico da relação entre duas variáveis, o que se verifica é que a distribuição dos pontos forma uma nuvem, mais concentrada ou menos concentrada em função da relação que se tenta estabelecer e da natureza das variáveis.

Partindo-se desta observação, optou-se por testar cinco funções distintas para verificar o melhor tipo de abordagem. Empregando o pacote "Statgraphics", foram testadas as funções linear \(Y = a + bX \), multiplicativa \(Y = ax^b \), exponencial \(Y = e^{(a+bX)} \), recíproca \(Y = 1/(a+bX) \) e quadrática \(Y = a + bX + cX^2 \). Diversos trabalhos nesta linha de pesquisa avaliaram apenas a tendência linear, em detrimento das outras abordagens citadas. Deve se ressaltar que uma correlação linear pobre não indica necessariamente que não haja relação entre duas variáveis. Pode ser um indicativo de que esta relação não é linear.

Uma das abordagens empregadas na busca do entendimento das relações entre parâmetros da vegetação é a sua resposta espectral é a do método de regressão (Tucker, 1978; Butera, 1986; Franklin, 1986; Walsh, 1987; Covre, 1989; Leonardi, 1990). A análise de regressão permite estudar o efeito que algumas variáveis exercem sobre outras. Pode-se analisar a relação matemática entre duas variáveis e fazer inferências sobre elas. A análise foi feita em duas etapas, regressão simples e regressão múltipla.

Como um dos objetivos foi a busca de uma função que descrevesse adequadamente os dados e não a melhor função, o que implicaria em testar inúmeras funções,
decidiu-se testar as cinco funções mencionadas anteriormente. As correlações significativas ao nível de 99% de probabilidade foram então objeto de um estudo mais detalhado, determinando-se os parâmetros de regressão e gerando-se os gráficos de distribuição de resíduos.

Para a regressão múltipla, dados \(X_1, X_2, \ldots, X_n \) como sendo variáveis independentes e \(Y \) como variável dependente, tem-se \(2^{n-1} \) possíveis regressões. Considerando-se as quatorze variáveis dendrométricas envolvidas no trabalho, tem-se um total de 256 combinações para cada variável dependente, ou 3.584 combinações para cada espécie. A opção "Forward" do Stepwise seleciona as variáveis independentes que podem gerar uma equação de regressão significativa através dos seguintes passos:

1) Cálculo dos coeficientes de correlação \(R(X,Y) \) para todas as variáveis independentes e introdução no modelo da variável \(X_1 \) mais correlacionada com \(Y \).

2) Obtenção do modelo \(Y = f(X_1) \).

3) Cálculo dos coeficientes de correlação parcial entre as variáveis restantes e \(Y \), dado que \(X_1 \) já está no modelo, e introdução da variável que apresentar o maior valor de coeficiente de correlação parcial.

4) Obtenção do modelo \(Y = f(X_1,X_2) \). O programa então faz o teste F-parcial para medir a contribuição de \(X_2 \) para o modelo. Se a contribuição for significativa, o procedimento continua, de forma análoga. Se a contribuição não for significativa, o procedimento pára e as variáveis selecionadas até opasso anterior são as que fornecem o melhor ajuste dos dados.

O teste F-parcial é feito a cada variável introduzida e o procedimento termina quando se obtém um
valor de F-parcial não significativo. Assim, a escolha do valor de F-limite para inclusão e exclusão das variáveis constitui-se num passo importante, uma vez que o valor de F-limite está inversamente relacionado com o número de variáveis a serem incluídas no modelo. Quanto menor o número de variáveis, maior o valor de F para haver significância.

A escolha do valor de F-limite foi feita com base no trabalho de Heimes (1977), que empregou o número de amostras e o nível de significância para o cálculo, de acordo com a seguinte expressão:

\[F-\text{limite} = f(k-1,n-k-1;ns) \quad (3.6) \]

Nesta expressão, "k" representa o número de variáveis independentes no modelo de regressão, "n" o número de amostras e "ns" o nível de significância. As tabelas de F forneceram os valores utilizados como F-limite na regressão múltipla (Tabela 3.8), para 95% de significância.

TABELA 3.8 - VALORES DE F-LIMITE PARA SELEÇÃO DE VARIÁVEIS

<table>
<thead>
<tr>
<th>ESPÉCIE</th>
<th>NÚMERO DE VARIÁVEIS INDEPENDENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Araucaria</td>
<td>4,00</td>
</tr>
<tr>
<td>Pinus</td>
<td>4,17</td>
</tr>
</tbody>
</table>
3.2.7 - CRITÉRIOS DE SELEÇÃO DOS MODELOS DE REGRESSÃO

Para selecionar o melhor modelo de regressão não pode haver tendenciasidade, devendo-se estabelecer previamente os critérios próprios para a seleção. Para isso foram feitas análises baseadas nos valores calculados do coeficiente de determinação, erro padrão da estimativa e distribuição de resíduos.

O coeficiente de determinação expressa a quantidade da variação total explicada pela regressão. Este coeficiente é crescente à medida em que se inclui uma nova variável ao modelo, sendo perigoso usá-lo isoladamente como critério de seleção.

Entretanto, o coeficiente de determinação apresenta a limitação de que é uma medida muito influenciada pelo tamanho da amostra, no sentido de que modelos de regressão ajustados com poucos pares de dados tendem a apresentar altos valores de R^2. Para contornar este problema, existe o coeficiente de determinação corrigido para graus de liberdade, definido como (Elian, 1988):

$$\overline{R^2} = R^2 - ((1/n-2)(1-R^2))$$

(3.7)

Na análise dos resultados, selecionou-se aquele que apresentou o maior valor de $\overline{R^2}$ em associação com as outras estatísticas.

O erro padrão da estimativa é uma medida de dispersão entre os valores observados e estimados pela regressão, sendo desejável que o modelo selecionado apresente o menor valor. Deve-se observar que na comparação só podem ser analisadas variáveis dependentes de mesma unidade. A alternativa apresentada por Meyer (1938) foi o
erro padrão em porcentagem, dado por:

\[Syx = (QMR)^{1/2} \] (3.8)

\[Syx\% = (Syx/y) \times 100 \] (3.9)

Syx é o erro padrão da estimativa, Syx\% é o erro padrão em percentagem, y é a média aritmética da variável dependente e QMR é o quadrado médio do resíduo na análise de variância.

A análise da distribuição de resíduos é de grande importância na seleção de modelos, pois permite verificar o grau de ajustamento da equação ao longo de toda a amplitude de dados observados.

O resíduo é visto como a quantidade que a equação de regressão não consegue explicar devido ao efeito de variáveis explicativas omitidas e a variabilidade natural entre os indivíduos. É interessante utilizar os resíduos padronizados, que servem para verificar a normalidade do erro. O resíduo padronizado é dado pela seguinte razão:

\[Z_i = e_i/(QMR)^{1/2} \] (3.10)

\(Z_i \) é o resíduo padronizado, \(e_i \) é a diferença entre os valores observados e estimados e QMR é o quadrado médio dos resíduo fornecido pela análise de variância, cuja raiz representa o desvio padrão da variável dependente (Elian, 1988).

A vantagem de se trabalhar com os resíduos padronizados é a possibilidade de comparação. Um resíduo igual a dois (2) pode ser alto ou baixo, dependendo da variabilidade dos indivíduos e da grandeza das variáveis
envolvidas. Quando se padronizam os resíduos, este problema desaparece. Os Z_i's devem se comportar aproximadamente como uma variável aleatória de uma curva normal padrão, tendo 95% dos valores dentro do intervalo $-1,64;+1,64$ (Elian, 1988). Pontos fora deste intervalo podem ser considerados "outliers", ou seja, resíduos discrepantes, e que influenciam a equação de regressão proporcionalmente à distância de sua abcissa ao ponto médio "X". A solução é fornecer duas análises, uma com e outra sem os "outliers".

A análise de resíduos pode detectar possíveis tendências de ajuste ao longo da linha de regressão, ajudando na tomada de decisão quanto à mudança do modelo ou a sua manutenção. Permite também que haja uma visualização da homocedasticidade (homogeneidade da variância).
CAPÍTULO 4

RESULTADOS E DISCUSSÃO

Depois de uma breve caracterização dos sítios definidos pela sondagem, são apresentadas as equações selecionadas para relação hipsométrica e cálculo dos volumes. A seguir, tem-se os resultados do inventário florestal e os resultados oriundos do reagrupamento das unidades amostrais por sítio por talhão. Na sequência, são apresentadas as etapas de processamento digital e análise, seleção e teste das melhores correlações.

4.1 - INVENTÁRIO DE SÍTIOS NATURAIS

Realizada a sondagem e o mapeamento das áreas de florestas homogéneas da Flona, foi constatada a existência de cinco sítios naturais distintos que representam o resultado do avanço dinâmico da floresta, constituindo as unidades de produção. Segue-se uma breve descrição de cada um dos sítios definidos na área de estudo, que podem ser visualizados em conjunto no mapa de sítios naturais (Apêndice E).

Sítio 1: abrange as áreas mais elevadas do relevo, geralmente planas ou levemente inclinadas, e representa 35,10% da área interna dos talhões (Figura 4.1a). Apresenta uma manta média de 7,5 cm (L = 5,0 cm, F = 2,0 cm e H = 0,5 cm), e o solo deste sítio caracteriza-se por ser profundo, bem drenado, friável, ligeiramente pegajoso, coloração avermelhada, textura argilosa, estrutura granular a blocos subangulares.
Fig. 4.1 - Distribuição espacial dos sítios florestais. a) Sítio 1, b) Sítio 2, c) Sítio 3, d) Sítio 4 e e) Sítio 5. Escala 1:100.000

Sítio 2: localiza-se nas partes mais baixas do terreno e nas margens dos córregos e banhados, abrangendo 11,21% da área interna dos talhões (Figura 4.1b). Devido ao alto grau de hidromorfismo nestas áreas, apenas os plantios de Pinus sp respondem satisfatoriamente em termos de crescimento. A manta
encontrada na superfície tem uma espessura média de 11,0 cm (L = 6,0 cm, F = 4,0 cm e H = 1,0 cm), e o solo apresenta cor brunó-escura, textura franco-argilosa, estrutura em blocos subangulares, é mal drenado e com enraizamento basicamente superficial.

Sítio 3: abrange as áreas mais ingremes da Flona ou à pequena profundidade, bem como as encostas e locais onde ocorrem afloramentos de rochas, correspondendo a 30,82% da área interna dos talhões (Figura 4.1c). A manta tem em média 6,0 cm (L = 3,0 cm, F = 2,0 cm e H = 1,0 cm) e o solo deste sítio caracteriza-se por apresentar aspectos lateríticos, com pouca profundidade e afloramento de rochas, textura franco-arenosa, estrutura granular a blocos subangulares, é poroso, com coloração brunó-escura, não plástico e não pegajoso.

Sítio 4: localiza-se nas partes mais elevadas do relevo, cobrindo 19,26% da área interna dos talhões (Figura 4.1d). A espessura média da manta apresenta-se igual à do sítio 3, com diferenças na composição de cada uma das camadas (L = 3,0 cm, F = 2,5 cm e H = 0,5 cm), e o solo é profundo, bem drenado, friável, plástico, pegajoso, com baixa porosidade, coloração brunó-avermelhada, textura franco-argilosa, estrutura em blocos angulares a subangulares, compactado (possivelmente em função de cultivo agrícola no passado, anteriormente à implantação dos povoamentos).

Sítio 5: também localiza-se nas partes mais elevadas da Flona, predominantemente nas regiões mais planas e levemente inclinadas, abrangendo 3,61% da área interna dos talhões (Figura 4.1e). A manta apresenta uma espessura média de 3,5 cm (L = 2,0 cm, F = 1,5 cm e H praticamente nula), e o solo é profundo, altamente
compactado, muito duro, plástico, pegajoso, textura argilosa, estrutura em blocos e coloração bruno avermelhada, com presença de incrustações de quartzo.

4.2 - EQUAÇÕES SELECIONADAS PARA O CÁLCULO DOS VOLUMES

A partir do conjunto de dados medidos no campo, o modelo de relação hipsométrica que apresentou o melhor ajuste para Araucaria angustifolia e Pinus sp foi o modelo 6 da Tabela 3.4.

Araucaria angustifolia
\[h_{1,30} = 1/(0,05758 + 0,23978 \cdot (1/d) + 5,44847 \cdot (1/d^2)) \]

(4.1)

Pinus sp
\[h_{1,30} = 1/(0,04508 + 0,04488 \cdot (1/d) + 3,08006 \cdot (1/d^2)) \]

(4.2)

Como exemplo, uma Araucaria com DAP de 20 centímetros apresentaria uma altura de 13,23 metros, enquanto um Pinus com o mesmo diâmetro apresentaria uma altura de 18,17 metros.

Estas equações (4.1 e 4.2) permitiram calcular as alturas das árvores que tiveram apenas o diâmetro medido à campo, para então alimentar os modelos de volume. Para o volume individual, as equações selecionadas foram baseadas no modelo de Schumacher-Hall (equação 11 da Tabela 3.5), que apresentou o melhor ajuste para o conjunto de dados. VCC corresponde ao volume com casca e VSC ao volume sem casca (total e comercial, respectivamente). As tabelas com os resultados estatísticos para todos os modelos testados encontram-se no Apêndice F.
Araucaria angustifolia

\[
\log VCC = -4.04114 + 1.99757 \log d + 0.74005 \log h
\]

\[
(4.3)
\]

\[
\log VSC = -4.37003 + 1.95613 \log d + 0.96191 \log h
\]

\[
(4.4)
\]

Pinus sp

\[
\log VCC = -4.38912 + 1.88094 \log d + 1.12884 \log h
\]

\[
(4.5)
\]

\[
\log VSC = -4.75319 + 1.95531 \log d + 1.25033 \log h
\]

\[
(4.6)
\]

Como exemplo, uma Araucaria com 20 cm de diâmetro e 13,23 m de altura tem um volume total (VCC) de 0,243 m³ e um volume comercial (VSC) de 0,179 m³. Já um Pinus com 20 cm de diâmetro e 18,17 m de altura tem um volume total (VCC) de 0,301 m³ e um volume comercial (VSC) de 0,231 m³.

4.3 - INVENTÁRIO FLORESTAL

Cada unidade amostral foi analisada segundo as seguintes variáveis dendrométricas: idade (IDA), diâmetro médio à altura do peito (DAP), diâmetro da árvore de área basal média (DG), diâmetro médio das árvores dominantes (DDOM), altura média (H), altura média das árvores dominantes (HDOM), área transversal média (G), área basal (AB), incremento médio anual em área basal (IMAG), volume total com casca (VCC), volume total sem casca (VSC), volume em estéreos (VST), incremento médio anual em volume (IMAV) e densidade (N). Um (l) metro cúbico de madeira equivale a 1,49 estéreos.
Os resultados obtidos no inventário das florestas plantadas são apresentados na Tabela 4.1 juntamente com a análise estatística e precisão das estimativas para cada estrato administrativo.

<table>
<thead>
<tr>
<th>PARÂMETRO</th>
<th>Araucaria angustifolia</th>
<th>Pinus sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média estratíf. (m³/ha)</td>
<td>292,37</td>
<td>540,14</td>
</tr>
<tr>
<td>Variância estratíf. (m³/ha)</td>
<td>4.028,32</td>
<td>8.302,27</td>
</tr>
<tr>
<td>Coeficiente de Variação (%)</td>
<td>21,71</td>
<td>16,87</td>
</tr>
<tr>
<td>Var. da média estratíf. (m³/ha)</td>
<td>28,55</td>
<td>115,96</td>
</tr>
<tr>
<td>Erro padrão (m³/ha)</td>
<td>5,34</td>
<td>10,77</td>
</tr>
<tr>
<td>Erro de amostragem (%)</td>
<td>3,60</td>
<td>3,99</td>
</tr>
<tr>
<td>Total estimado (m³)</td>
<td>109.294</td>
<td>149.867</td>
</tr>
<tr>
<td>Estimativa mínima (m³)</td>
<td>106.000</td>
<td>144.877</td>
</tr>
</tbody>
</table>

nível de significância 95%

Segundo a metodologia definida para o processamento digital, os valores obtidos para as unidades amostrais foram reagrupados por sitio por talhão, gerando novos valores. De acordo com a Tabela 4.2, os valores calculados de t apresentaram-se sempre menores que os valores tabelados, indicando que, a um nível de 99%, não há diferença significativa entre as médias antes e depois do reagrupamento. As Tabelas 4.3 e 4.4 apresentam os resultados finais para cada estrato.
TABELA 4.2 - TESTE t PARA COMPARAÇÃO DAS MÉDIAS

<table>
<thead>
<tr>
<th>Sp</th>
<th>SIT</th>
<th>ANTES</th>
<th>DEPOIS</th>
<th>tcalc</th>
<th>ttab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Volume (m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Volume (m³)</td>
<td></td>
</tr>
<tr>
<td>Aa</td>
<td>1</td>
<td>55</td>
<td>324,46</td>
<td>29</td>
<td>326,01</td>
</tr>
<tr>
<td>Aa</td>
<td>2</td>
<td>10</td>
<td>207,03</td>
<td>08</td>
<td>204,58</td>
</tr>
<tr>
<td>Aa</td>
<td>3</td>
<td>36</td>
<td>262,68</td>
<td>25</td>
<td>259,96</td>
</tr>
<tr>
<td>Aa</td>
<td>4</td>
<td>40</td>
<td>285,57</td>
<td>24</td>
<td>281,57</td>
</tr>
<tr>
<td>Aa</td>
<td>5</td>
<td>09</td>
<td>275,20</td>
<td>05</td>
<td>256,50</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>20</td>
<td>599,17</td>
<td>12</td>
<td>594,95</td>
</tr>
<tr>
<td>P</td>
<td>2</td>
<td>19</td>
<td>552,83</td>
<td>10</td>
<td>545,45</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
<td>21</td>
<td>503,08</td>
<td>11</td>
<td>505,45</td>
</tr>
<tr>
<td>P</td>
<td>4</td>
<td>11</td>
<td>520,62</td>
<td>08</td>
<td>510,71</td>
</tr>
<tr>
<td>P</td>
<td>5</td>
<td>04</td>
<td>571,82</td>
<td>02</td>
<td>571,80</td>
</tr>
</tbody>
</table>

Nível de significância 99%

TABELA 4.3 - RESULTADOS FINAIS DE Araucaria angustifolia

<table>
<thead>
<tr>
<th>S I T I O</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIÁVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAP</td>
<td>22,88</td>
<td>18,87</td>
<td>20,02</td>
<td>20,34</td>
<td>18,42</td>
</tr>
<tr>
<td>DG</td>
<td>24,24</td>
<td>19,86</td>
<td>21,04</td>
<td>21,59</td>
<td>19,44</td>
</tr>
<tr>
<td>DDOM</td>
<td>34,41</td>
<td>29,18</td>
<td>29,98</td>
<td>31,58</td>
<td>28,94</td>
</tr>
<tr>
<td>H</td>
<td>15,36</td>
<td>12,51</td>
<td>13,18</td>
<td>13,45</td>
<td>12,52</td>
</tr>
<tr>
<td>HDOM</td>
<td>18,20</td>
<td>15,13</td>
<td>15,60</td>
<td>16,30</td>
<td>15,92</td>
</tr>
<tr>
<td>G</td>
<td>0,045</td>
<td>0,031</td>
<td>0,035</td>
<td>0,036</td>
<td>0,026</td>
</tr>
<tr>
<td>AB</td>
<td>34,87</td>
<td>25,41</td>
<td>31,01</td>
<td>32,97</td>
<td>31,64</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,95</td>
<td>0,72</td>
<td>0,89</td>
<td>0,92</td>
<td>1,02</td>
</tr>
<tr>
<td>VCC</td>
<td>326,01</td>
<td>204,58</td>
<td>259,96</td>
<td>281,51</td>
<td>256,50</td>
</tr>
<tr>
<td>VSC</td>
<td>250,54</td>
<td>151,56</td>
<td>194,61</td>
<td>211,62</td>
<td>190,70</td>
</tr>
<tr>
<td>VST</td>
<td>485,77</td>
<td>304,82</td>
<td>387,33</td>
<td>419,47</td>
<td>382,18</td>
</tr>
<tr>
<td>IMAV</td>
<td>9,20</td>
<td>6,06</td>
<td>7,77</td>
<td>8,95</td>
<td>8,34</td>
</tr>
<tr>
<td>N</td>
<td>811,41</td>
<td>877,25</td>
<td>949,08</td>
<td>997,29</td>
<td>1104,60</td>
</tr>
</tbody>
</table>
TABELA 4.4 - RESULTADOS FINAIS DE Pinus sp

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>S I T I O</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>DAP</td>
<td>26,28</td>
<td>28,25</td>
<td>26,87</td>
<td>26,27</td>
<td>30,50</td>
</tr>
<tr>
<td>DG</td>
<td>27,97</td>
<td>29,05</td>
<td>27,68</td>
<td>26,95</td>
<td>31,20</td>
</tr>
<tr>
<td>DDOM</td>
<td>38,00</td>
<td>37,93</td>
<td>36,86</td>
<td>35,36</td>
<td>40,15</td>
</tr>
<tr>
<td>H</td>
<td>22,97</td>
<td>22,23</td>
<td>21,74</td>
<td>22,06</td>
<td>24,45</td>
</tr>
<tr>
<td>HDOM</td>
<td>24,26</td>
<td>23,39</td>
<td>23,50</td>
<td>23,41</td>
<td>25,75</td>
</tr>
<tr>
<td>G</td>
<td>0,062</td>
<td>0,067</td>
<td>0,059</td>
<td>0,056</td>
<td>0,075</td>
</tr>
<tr>
<td>AB</td>
<td>48,37</td>
<td>45,83</td>
<td>45,39</td>
<td>43,68</td>
<td>44,05</td>
</tr>
<tr>
<td>IMAG</td>
<td>2,38</td>
<td>2,23</td>
<td>2,21</td>
<td>2,23</td>
<td>1,90</td>
</tr>
<tr>
<td>VCC</td>
<td>594,95</td>
<td>545,45</td>
<td>505,45</td>
<td>510,71</td>
<td>571,80</td>
</tr>
<tr>
<td>VSC</td>
<td>487,24</td>
<td>446,57</td>
<td>411,09</td>
<td>414,10</td>
<td>473,15</td>
</tr>
<tr>
<td>VST</td>
<td>886,50</td>
<td>812,82</td>
<td>753,11</td>
<td>760,98</td>
<td>852,00</td>
</tr>
<tr>
<td>IMAV</td>
<td>28,99</td>
<td>26,28</td>
<td>25,47</td>
<td>27,26</td>
<td>25,15</td>
</tr>
<tr>
<td>N</td>
<td>837,91</td>
<td>783,80</td>
<td>755,18</td>
<td>808,50</td>
<td>613,00</td>
</tr>
</tbody>
</table>

No estrato *Araucaria angustifolia*, à exceção do incremento médio anual, todas as outras variáveis apresentaram o mesmo comportamento em relação à produtividade de cada sitio. O sitio que apresentou maior produção foi sempre o sitio 1, seguido do sitio 4. Para as variáveis de diâmetro e altura, o sitio menos favorável foi o sitio 5, e para as variáveis de volume, o sitio 2. A diferença entre estes dois sitios, contraindicados para esta espécie, é que o fator de forma para o sitio 5 é maior que o do sitio 2.

Para *Pinus* sp, pode-se observar que, contrariamente ao observado para *Araucaria angustifolia*, as variáveis de diâmetro e altura apresentam um melhor crescimento no sitio 5, enquanto as variáveis volumétricas são sempre superiores no sitio 1. Pode-se afirmar que em termos gerais não existem diferenças acentuadas entre os
sitios 1 e 5 e entre os sitios 3 e 4, ficando o sitio 2 numa posição intermediária.

A Tabela 4.5 apresenta as diferenças, em termos percentuais, entre a produtividade volumétrica (volume total com casca) para os diversos sitios em cada um dos estratos. Exemplificando, no caso do estrato *Araucaria angustifolia*, o sitio 2 produz 37,24% menos que o sitio 1 e 25,37% menos que o sitio 5.

TABELA 4.5 - DIFERENÇA PERCENTUAL EM VOLUME TOTAL COM CASCA ENTRE OS SITIOS NATURAIS

<table>
<thead>
<tr>
<th></th>
<th>SÍTIO 1</th>
<th>SÍTIO 2</th>
<th>SÍTIO 3</th>
<th>SÍTIO 4</th>
<th>SÍTIO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araucaria angustifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SÍTIO 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 2</td>
<td>-37,24</td>
<td>0</td>
<td>+27,07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 3</td>
<td>-20,26</td>
<td>+27,07</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 4</td>
<td>-13,64</td>
<td>+37,60</td>
<td>+ 8,28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 5</td>
<td>-21,32</td>
<td>+25,37</td>
<td>- 1,33</td>
<td>- 8,88</td>
<td>0</td>
</tr>
<tr>
<td>Pinus sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SÍTIO 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 2</td>
<td>- 8,32</td>
<td>0</td>
<td>- 7,33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 3</td>
<td>-15,04</td>
<td>- 7,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 4</td>
<td>-14,15</td>
<td>- 6,36</td>
<td>+ 1,04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SÍTIO 5</td>
<td>- 3,89</td>
<td>+ 4,83</td>
<td>+13,12</td>
<td>+11,96</td>
<td>0</td>
</tr>
</tbody>
</table>

Para ter uma ideia do comportamento das variáveis dendrométricas foram geradas as estatísticas básicas, apresentadas nas Tabelas 4.6 e 4.7.
A precisão das estimativas de Araucaria é alta, variando de 95,17 a 98,36%. A distribuição de cada variável foi analisada em relação à estabilidade da curva, que deve ser verificada estatisticamente a fim de que possa obter uma indicação do comportamento das amostras em relação à população. Esta estabilidade é medida pelos coeficientes de assimetria e curtose.

As variáveis IDA, DAP, DG e DDOM apresentaram curvas com uma leve assimetria à direita (desvio da curva à direita da mediana), enquanto que as outras apresentaram assimetria à esquerda. Quanto mais próximo de zero (0), menor a assimetria. O coeficiente de curtose mede o quanto a curva é mais achatada ou pronunciada que a curva normal. Todas as variáveis apresentaram curvas platicúrticas, ou seja, com achatamento em relação à curva normal, onde a frequência observada foi menor que a frequência esperada.

Segundo a Tabela 4.7, a precisão para Pinus variou entre 93,28 e 97,88%. As variáveis IDA, DDOM, H, HDOM, AB, VCC, VSC e VST apresentaram assimetria à direita e novamente todas as variáveis mostraram uma frequência observada menor que a frequência esperada.
TABELA 4.6 - ESTATÍSTICAS BÁSICAS DAS VARIÁVEIS DEPENDENTES DE Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>MÉDIA</th>
<th>MODA</th>
<th>MEDIANA</th>
<th>VARIÂNCIA</th>
<th>DESVIO PADRÃO</th>
<th>ERRO PADRÃO</th>
<th>ERRO (%)</th>
<th>AMPLITUDE</th>
<th>GRAU DE ASIMETRIA</th>
<th>COEFICIENTE DE CURTOSSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>34,28</td>
<td>40,00</td>
<td>36,00</td>
<td>26,27</td>
<td>5,12</td>
<td>0,64</td>
<td>1,86</td>
<td>18,0</td>
<td>-0,50</td>
<td>-1,02</td>
</tr>
<tr>
<td>DAP</td>
<td>20,73</td>
<td>22,50</td>
<td>21,30</td>
<td>12,34</td>
<td>3,51</td>
<td>0,44</td>
<td>2,12</td>
<td>13,3</td>
<td>-0,02</td>
<td>-1,09</td>
</tr>
<tr>
<td>DG</td>
<td>21,89</td>
<td>23,70</td>
<td>22,60</td>
<td>14,29</td>
<td>3,78</td>
<td>0,47</td>
<td>2,14</td>
<td>13,8</td>
<td>-0,02</td>
<td>-1,12</td>
</tr>
<tr>
<td>DDDM</td>
<td>31,22</td>
<td>32,20</td>
<td>31,70</td>
<td>21,48</td>
<td>4,63</td>
<td>0,58</td>
<td>1,85</td>
<td>19,4</td>
<td>-0,13</td>
<td>-0,85</td>
</tr>
<tr>
<td>H</td>
<td>13,71</td>
<td>13,20</td>
<td>13,60</td>
<td>4,30</td>
<td>2,07</td>
<td>0,26</td>
<td>1,89</td>
<td>9,3</td>
<td>0,21</td>
<td>-0,40</td>
</tr>
<tr>
<td>HDDM</td>
<td>16,42</td>
<td>16,70</td>
<td>16,50</td>
<td>4,78</td>
<td>2,18</td>
<td>0,27</td>
<td>1,64</td>
<td>10,6</td>
<td>0,004</td>
<td>-0,10</td>
</tr>
<tr>
<td>G</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
<td>0,0001</td>
<td>0,01</td>
<td>0,01</td>
<td>0,05</td>
<td>0,31</td>
<td>0,31</td>
<td>-0,51</td>
</tr>
<tr>
<td>AB</td>
<td>32,51</td>
<td>33,80</td>
<td>32,10</td>
<td>30,83</td>
<td>5,55</td>
<td>0,69</td>
<td>2,12</td>
<td>30,0</td>
<td>0,31</td>
<td>0,17</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,90</td>
<td>1,00</td>
<td>0,90</td>
<td>0,07</td>
<td>0,27</td>
<td>0,03</td>
<td>3,77</td>
<td>1,1</td>
<td>0,17</td>
<td>-0,52</td>
</tr>
<tr>
<td>VCC</td>
<td>270,73</td>
<td>341,10</td>
<td>277,30</td>
<td>607,00</td>
<td>77,95</td>
<td>9,82</td>
<td>3,62</td>
<td>366,5</td>
<td>0,08</td>
<td>0,14</td>
</tr>
<tr>
<td>VSC</td>
<td>205,12</td>
<td>205,10</td>
<td>205,50</td>
<td>390,88</td>
<td>62,52</td>
<td>7,87</td>
<td>3,83</td>
<td>297,5</td>
<td>0,17</td>
<td>0,19</td>
</tr>
<tr>
<td>VST</td>
<td>403,39</td>
<td>404,80</td>
<td>413,20</td>
<td>1349,40</td>
<td>116,14</td>
<td>14,63</td>
<td>3,62</td>
<td>546,4</td>
<td>0,08</td>
<td>0,14</td>
</tr>
<tr>
<td>IMAV</td>
<td>8,04</td>
<td>10,1</td>
<td>7,7</td>
<td>7,03</td>
<td>2,65</td>
<td>0,33</td>
<td>4,10</td>
<td>12,2</td>
<td>0,29</td>
<td>-0,23</td>
</tr>
<tr>
<td>N</td>
<td>903,00</td>
<td>600,00</td>
<td>775,00</td>
<td>120282,00</td>
<td>346,81</td>
<td>43,69</td>
<td>4,83</td>
<td>1433,0</td>
<td>0,66</td>
<td>-0,44</td>
</tr>
<tr>
<td>MÉDIA</td>
<td>MODA</td>
<td>MEDIANA</td>
<td>VARIÂNCIA</td>
<td>DESVIO Padrão</td>
<td>ERRO Padrão</td>
<td>ERRO (%)</td>
<td>AMPLIT</td>
<td>GRAU DE ASSIMETRIA</td>
<td>COEFICIENTE DE CURTOSE</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>IDA</td>
<td>20,64</td>
<td>22,00</td>
<td>22,00</td>
<td>12,23</td>
<td>3,49</td>
<td>0,62</td>
<td>3,00</td>
<td>12,0</td>
<td>-1,35</td>
<td>0,80</td>
</tr>
<tr>
<td>DAP</td>
<td>27,51</td>
<td>29,00</td>
<td>27,80</td>
<td>14,98</td>
<td>3,87</td>
<td>0,69</td>
<td>2,50</td>
<td>19,3</td>
<td>0,11</td>
<td>1,04</td>
</tr>
<tr>
<td>DG</td>
<td>28,28</td>
<td>29,80</td>
<td>28,60</td>
<td>14,76</td>
<td>3,84</td>
<td>0,69</td>
<td>2,43</td>
<td>19,0</td>
<td>0,04</td>
<td>0,99</td>
</tr>
<tr>
<td>DDOM</td>
<td>37,60</td>
<td>40,40</td>
<td>37,20</td>
<td>19,98</td>
<td>4,47</td>
<td>0,80</td>
<td>2,12</td>
<td>18,3</td>
<td>-0,08</td>
<td>-0,39</td>
</tr>
<tr>
<td>H</td>
<td>22,43</td>
<td>20,20</td>
<td>23,40</td>
<td>10,02</td>
<td>3,16</td>
<td>0,56</td>
<td>2,49</td>
<td>12,2</td>
<td>-0,91</td>
<td>0,02</td>
</tr>
<tr>
<td>HDOM</td>
<td>23,94</td>
<td>24,70</td>
<td>25,30</td>
<td>12,86</td>
<td>3,58</td>
<td>0,64</td>
<td>2,67</td>
<td>12,1</td>
<td>-0,95</td>
<td>-0,37</td>
</tr>
<tr>
<td>G</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,0003</td>
<td>0,01</td>
<td>0,003</td>
<td>5,00</td>
<td>0,08</td>
<td>0,71</td>
<td>1,00</td>
</tr>
<tr>
<td>AB</td>
<td>43,08</td>
<td>48,50</td>
<td>43,60</td>
<td>42,27</td>
<td>6,50</td>
<td>1,16</td>
<td>2,69</td>
<td>28,4</td>
<td>-1,07</td>
<td>1,46</td>
</tr>
<tr>
<td>IMAG</td>
<td>2,21</td>
<td>1,90</td>
<td>2,00</td>
<td>0,39</td>
<td>0,62</td>
<td>0,11</td>
<td>4,97</td>
<td>2,2</td>
<td>1,21</td>
<td>0,49</td>
</tr>
<tr>
<td>VCC</td>
<td>528,02</td>
<td>513,60</td>
<td>541,40</td>
<td>6626,20</td>
<td>81,40</td>
<td>14,62</td>
<td>2,76</td>
<td>308,1</td>
<td>-0,30</td>
<td>-0,39</td>
</tr>
<tr>
<td>VSC</td>
<td>431,31</td>
<td>420,70</td>
<td>449,10</td>
<td>5261,80</td>
<td>72,53</td>
<td>13,02</td>
<td>3,01</td>
<td>279,8</td>
<td>-0,40</td>
<td>-0,38</td>
</tr>
<tr>
<td>VST</td>
<td>786,79</td>
<td>765,20</td>
<td>806,70</td>
<td>14722,10</td>
<td>121,33</td>
<td>21,79</td>
<td>2,76</td>
<td>459,1</td>
<td>-0,30</td>
<td>-0,39</td>
</tr>
<tr>
<td>DAV</td>
<td>26,24</td>
<td>22,60</td>
<td>26,10</td>
<td>24,09</td>
<td>4,90</td>
<td>0,88</td>
<td>3,38</td>
<td>21,2</td>
<td>0,24</td>
<td>0,10</td>
</tr>
<tr>
<td>N</td>
<td>759,64</td>
<td>567,00</td>
<td>692,00</td>
<td>80907,80</td>
<td>282,44</td>
<td>51,08</td>
<td>6,72</td>
<td>1283,0</td>
<td>1,44</td>
<td>2,40</td>
</tr>
</tbody>
</table>
4.4 - PROCESSAMENTO DIGITAL

A imagem TM foi carregada para o ambiente do SITIM-150 e feita uma análise inicial, que consistiu do cálculo dos parâmetros estatísticos da imagem, com a finalidade de fornecer informações sobre brilho e contraste nas diferentes bandas (Tabela 4.8). A Figura 4.2 apresenta a área de estudo na composição 4R/5G/3B, como ilustração.

Fig. 4.2 - Área de estudo na composição 4R/5G/3B.
TABELA 4.8 - ESTATÍSTICAS DA IMAGEM TM DA ÁREA DE ESTUDO

NÍVEL DE CINZA

<table>
<thead>
<tr>
<th>BANDA</th>
<th>INTERVALO (MÍN-MÁX)</th>
<th>AMPLITUDE</th>
<th>MÉDIA</th>
<th>MODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28-81</td>
<td>53</td>
<td>39,37</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>08-49</td>
<td>41</td>
<td>16,50</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>05-67</td>
<td>62</td>
<td>19,32</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>01-67</td>
<td>66</td>
<td>26,94</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>00-122</td>
<td>122</td>
<td>41,78</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>00-61</td>
<td>61</td>
<td>14,97</td>
<td>19</td>
</tr>
</tbody>
</table>

Devido à grande escala do mapa de sitios naturais (1:10.000) e ao fato da área apresentar-se contiguamente coberta pela floresta, foi difícil definir muitos pontos de controle. Para o registro imagem/mapa de sitios naturais foram empregados seis (6) pontos de controle, sendo utilizados três (3) pontos para gerar a equação de mapeamento (polinômio do primeiro grau) e outros três para cálculo da precisão. A distribuição destes pontos encontra-se na Figura 4.3.

O polinômio do primeiro grau foi empregado devido à dificuldade de obtenção de um número maior de pontos de controle e também pelo fato de que é suficiente para corrigir as distorções translacionais existentes em uma imagem TM.

A Tabela 4.9 apresenta a localização e os resíduos de cada um dos pontos de controle. O erro na abcissa foi de 0,533 píxeis (15,99 metros) e na ordenada de 0,459 píxeis (13,77 metros), resultando num erro total de 0,703 píxeis (21,09 metros). As coordenadas linha-coluna referem-se à imagem registrada.
Fig. 4.3 - Distribuição dos pontos de controle utilizados no registro.

As unidades amostrais, plotadas sobre o mapa, tiveram suas coordenadas UTM extraídas através da subrotina existente no SGI, específica para este fim. Foi feito um programa de navegação para calcular, fornecidas as coordenadas UTM da unidade amostral considerada, as coordenadas linha-coluna na imagem TM registrada.

Ao sobrepor o plano de informação do limite da Flona sobre a imagem registrada, verificou-se um pequeno desajustamento. O resíduo em X provocou um desvio na sobreposição para oeste e o resíduo em Y para o norte. Para atenuar esta diferença em relação às coordenadas das unidades amostrais, decidiu-se deslocar a janela um pixel para leste e 1 pixel para o sul.
TABELA 4.9 - RESÍDUOS OBSERVADOS PARA OS PONTOS DE CONTROLE UTILIZADOS NO REGISTRO

<table>
<thead>
<tr>
<th>PC</th>
<th>LINHA</th>
<th>COLUNA</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>RESÍDUO X</th>
<th>RESÍDUO Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>106</td>
<td>338</td>
<td>28°16'46,7"</td>
<td>52°10'59,6"</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2</td>
<td>179</td>
<td>338</td>
<td>28°17'44,7"</td>
<td>52°11'09,4"</td>
<td>0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>3</td>
<td>199</td>
<td>298</td>
<td>28°17'55,4"</td>
<td>52°11'51,4"</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>4</td>
<td>247</td>
<td>301</td>
<td>28°18'34,4"</td>
<td>52°11'55,3"</td>
<td>0,6</td>
<td>0,1</td>
</tr>
<tr>
<td>5</td>
<td>261</td>
<td>390</td>
<td>28°18'58,6"</td>
<td>52°10'27,4"</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>6</td>
<td>337</td>
<td>365</td>
<td>28°19'56,2"</td>
<td>52°11'02,6"</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Com o emprego da subrotina "Lê pixel", foram localizadas as unidades amostrais e extraídos os valores digitais da janela 5X5 (default) na impressora, nas seis bandas. Posteriormente, os valores digitais correspondentes à janela 2X2 deslocada para a direita e para baixo foram anotados em formulário próprio.

Foram calculadas as médias de cada unidade amostral e gerados os valores médios para cada sítio amostrado. Os dois últimos passos consistiram no cálculo dos índices de vegetação razão simples (R), diferença normalizada (NDVI) e diferença normalizada e transformada (TVI) considerando as bandas TM3 e TM4, e da formação do arquivo de dados.

As variáveis digitais foram analisadas quanto à estabilidade de maneira idêntica às variáveis dendrométricas, e os resultados são mostrados nas Tabelas 4.10 e 4.11. A resposta da banda TM1 foi maior que a da
banda TM4 para Araucaria e praticamente igual para Pinus em função da atmosfera, uma vez que neste trabalho não foi adotado nenhum tipo de correção.

Estatisticamente, a precisão para os dados de Araucaria angustifolia variou entre 92,18 e 99,74%. O erro foi maior na banda TM7 devido a valores extremos em relação à média. A banda TM1 e os índices DN43 e TVI43 apresentaram assimetria à direita e todas as variáveis apresentaram frequência menor que a esperada.

Para Pinus sp a precisão das estimativas variou entre 94,06 e 99,71%. As bandas TM2, TM4, TM5 e os três índices de vegetação apresentaram assimetria à direita e novamente todas as variáveis apresentaram-se com frequência menor que a esperada. O maior contraste foi produzido pelas bandas TM4 e TM5, devido à maior amplitude dos dados.
<table>
<thead>
<tr>
<th></th>
<th>MÉDIA</th>
<th>MODA</th>
<th>MEDIANA</th>
<th>VARIÂNCIA</th>
<th>DESVIO PADRÃO</th>
<th>ERRO PADRÃO</th>
<th>ERRO (%)</th>
<th>AMPLITUDE</th>
<th>GRAU DE ASSIMETRIA</th>
<th>COEFICIENTE DE CURTOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM1</td>
<td>33,86</td>
<td>33,50</td>
<td>33,87</td>
<td>0,55</td>
<td>0,74</td>
<td>0,09</td>
<td>0,26</td>
<td>3,5</td>
<td>-0,51</td>
<td>0,68</td>
</tr>
<tr>
<td>TM2</td>
<td>11,82</td>
<td>11,75</td>
<td>11,75</td>
<td>0,40</td>
<td>0,63</td>
<td>0,08</td>
<td>0,67</td>
<td>3,0</td>
<td>0,18</td>
<td>0,10</td>
</tr>
<tr>
<td>TM3</td>
<td>9,64</td>
<td>9,50</td>
<td>9,50</td>
<td>0,64</td>
<td>0,80</td>
<td>0,10</td>
<td>1,03</td>
<td>4,5</td>
<td>1,15</td>
<td>2,63</td>
</tr>
<tr>
<td>TM4</td>
<td>30,73</td>
<td>28,00</td>
<td>30,25</td>
<td>20,06</td>
<td>4,47</td>
<td>0,56</td>
<td>1,82</td>
<td>21,0</td>
<td>0,72</td>
<td>0,65</td>
</tr>
<tr>
<td>TM5</td>
<td>14,25</td>
<td>11,62</td>
<td>14,00</td>
<td>13,29</td>
<td>3,64</td>
<td>0,45</td>
<td>3,15</td>
<td>19,0</td>
<td>0,69</td>
<td>0,46</td>
</tr>
<tr>
<td>TM7</td>
<td>1,79</td>
<td>1,50</td>
<td>1,50</td>
<td>1,38</td>
<td>1,17</td>
<td>0,14</td>
<td>7,82</td>
<td>5,0</td>
<td>1,16</td>
<td>1,23</td>
</tr>
<tr>
<td>R34</td>
<td>3,19</td>
<td>3,40</td>
<td>3,21</td>
<td>0,22</td>
<td>0,47</td>
<td>0,05</td>
<td>1,56</td>
<td>2,5</td>
<td>0,43</td>
<td>0,96</td>
</tr>
<tr>
<td>DN43</td>
<td>0,51</td>
<td>0,54</td>
<td>0,52</td>
<td>0,002</td>
<td>0,05</td>
<td>0,006</td>
<td>1,17</td>
<td>0,29</td>
<td>-0,44</td>
<td>1,04</td>
</tr>
<tr>
<td>TNI43</td>
<td>1,00</td>
<td>1,02</td>
<td>1,01</td>
<td>0,0007</td>
<td>0,02</td>
<td>0,003</td>
<td>0,30</td>
<td>0,15</td>
<td>-0,54</td>
<td>1,23</td>
</tr>
<tr>
<td>TAM</td>
<td>MÉDIA</td>
<td>MODA</td>
<td>MEDIANA</td>
<td>VARIÂNCIA</td>
<td>DESVIO PÁDRAO</td>
<td>ERRO PÁDRAO</td>
<td>ERRO (%)</td>
<td>AMPLITUDE</td>
<td>GRAU DE ASSimetria</td>
<td>COEFICIENTE DE CURTOSE</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>TM1</td>
<td>34,32</td>
<td>34,00</td>
<td>34,25</td>
<td>0,36</td>
<td>0,60</td>
<td>0,10</td>
<td>0,29</td>
<td>2,6</td>
<td>0,23</td>
<td>0,37</td>
</tr>
<tr>
<td>TM2</td>
<td>12,32</td>
<td>12,75</td>
<td>12,37</td>
<td>0,37</td>
<td>0,61</td>
<td>0,10</td>
<td>0,81</td>
<td>3,0</td>
<td>-0,26</td>
<td>0,86</td>
</tr>
<tr>
<td>TM3</td>
<td>9,71</td>
<td>9,50</td>
<td>9,50</td>
<td>0,28</td>
<td>0,53</td>
<td>0,09</td>
<td>0,92</td>
<td>1,9</td>
<td>0,38</td>
<td>-0,61</td>
</tr>
<tr>
<td>TM4</td>
<td>35,82</td>
<td>36,37</td>
<td>36,37</td>
<td>33,11</td>
<td>5,75</td>
<td>1,03</td>
<td>2,87</td>
<td>25,5</td>
<td>-0,27</td>
<td>0,08</td>
</tr>
<tr>
<td>TM5</td>
<td>14,17</td>
<td>12,50</td>
<td>14,25</td>
<td>11,45</td>
<td>3,38</td>
<td>0,60</td>
<td>4,23</td>
<td>13,5</td>
<td>-0,04</td>
<td>-0,55</td>
</tr>
<tr>
<td>TM7</td>
<td>1,87</td>
<td>2,25</td>
<td>1,87</td>
<td>0,44</td>
<td>0,66</td>
<td>0,11</td>
<td>5,94</td>
<td>3,0</td>
<td>0,22</td>
<td>0,07</td>
</tr>
<tr>
<td>R43</td>
<td>3,68</td>
<td>3,82</td>
<td>3,68</td>
<td>0,27</td>
<td>0,53</td>
<td>0,09</td>
<td>2,44</td>
<td>2,2</td>
<td>-0,13</td>
<td>0,05</td>
</tr>
<tr>
<td>DN43</td>
<td>0,56</td>
<td>0,58</td>
<td>0,57</td>
<td>0,002</td>
<td>0,05</td>
<td>0,009</td>
<td>1,60</td>
<td>0,2</td>
<td>-0,79</td>
<td>0,77</td>
</tr>
<tr>
<td>TV143</td>
<td>1,03</td>
<td>1,02</td>
<td>1,03</td>
<td>0,0006</td>
<td>0,02</td>
<td>0,004</td>
<td>0,38</td>
<td>0,1</td>
<td>-0,87</td>
<td>0,91</td>
</tr>
</tbody>
</table>
4.5 - CORRELAÇÃO ENTRE AS VARIÁVEIS

A abordagem adotada neste trabalho considera o problema inverso da modelagem, assumindo que as variáveis dependentes são as variáveis dendrométricas e que as variáveis independentes são as bandas isoladas e os índices de vegetação definidos na metodologia. Os dados foram analisados nas seguintes fases:

1. Correlação das variáveis dependentes entre si;
2. Correlação das variáveis independentes entre si; e
3. Correlação entre as variáveis dependentes e independentes.

As matrizes de correlação obtidas e as análises são apresentadas a seguir, para as duas espécies.

4.5.1 - CORRELAÇÃO DAS VARIÁVEIS DEPENDENTES

As matrizes de correlação entre as variáveis dependentes para **Araucaria angustifolia** e para **Pinus** sp encontram-se nas Tabelas 4.12 e 4.13, respectivamente.

A avaliação silvicultural feita no campo foi extremamente útil para compreender alguns resultados. Na época de implantação dos talhões foi adotado o regime de manejo em alto fuste, visando a produção de madeira de grandes dimensões para utilização nobre.

Verificou-se, porém, que os povoamentos não tiveram ao longo do tempo os cuidados necessários para assegurar o bom desenvolvimento e o objetivo proposto. Limitada a preservar o patrimônio florestal, houve uma demora acentuada da administração da Flona para dar início às intervenções técnicas, necessárias em virtude dos pequenos espaçamentos iniciais.
A adoção desta postura levou a um manejo moderado sem uma definição clara dos objetivos da exploração e à existência de vários talhões com desbastes atrasados e alta densidade populacional. Entre outras consequências, diversas variáveis apresentam desajustes em relação à idade, afetando a produtividade em termos de incremento médio anual.

Cabe observar que as quatorze variáveis consideradas abrangem praticamente todas as informações mais importantes para o planejamento de uma área florestal. Verifica-se, pelas duas tabelas anteriores, que a maioria das variáveis dendrométricas encontra-se correlacionada a nível de 99% de probabilidade. Os dados de *Araucaria angustifolia* apresentaram 67 (68,36%) correlações significativas a esse nível e os de *Pinus* sp apresentaram 34 (34,69%). Isso ocorreu devido às relações naturais entre as variáveis dendrométricas na população, como por exemplo as relações entre DAP e DG, DAP e DDOM, DAP e H, HDOM e VCC.

Considerando a variável idade (IDA) como exemplo, tem-se, para as duas espécies, os mesmos comportamentos em relação ao sinal (relação positiva ou negativa), diferindo apenas no grau (maior ou menor correlação). A correlação positiva com as variáveis de diâmetro (DAP, DG e DDOM) e altura (H, HDOM) é causada pela função de crescimento que governa todos os seres vivos, até que se atinja a assintótica (ponto máximo).
TABELA 4.12 - MATRIZ DE CORRELAÇÃO DAS VARIÁVEIS DEPENDENTES PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>IDA</th>
<th>DAP</th>
<th>DG</th>
<th>DDOM</th>
<th>H</th>
<th>HDOM</th>
<th>G</th>
<th>AB</th>
<th>IMAG</th>
<th>VCC</th>
<th>VSC</th>
<th>VST</th>
<th>IMAV</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>1.0</td>
<td>0.462**</td>
<td>0.494**</td>
<td>0.449**</td>
<td>0.211</td>
<td>0.202</td>
<td>0.492**</td>
<td>-0.138</td>
<td>-0.587**</td>
<td>0.059</td>
<td>0.05</td>
<td>0.060</td>
<td>-0.443**</td>
<td>-0.450**</td>
</tr>
<tr>
<td>DAP</td>
<td>1.0</td>
<td>0.992**</td>
<td>0.822**</td>
<td>0.802**</td>
<td>0.677**</td>
<td>0.951**</td>
<td>0.016</td>
<td>-0.122</td>
<td>0.426**</td>
<td>0.456**</td>
<td>0.426**</td>
<td>0.151</td>
<td>-0.796**</td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td>1.0</td>
<td>0.871**</td>
<td>0.790**</td>
<td>0.703**</td>
<td>0.958**</td>
<td>0.028</td>
<td>-0.126</td>
<td>0.449**</td>
<td>0.475**</td>
<td>0.449**</td>
<td>0.149</td>
<td>-0.788**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDOM</td>
<td>1.0</td>
<td>0.734**</td>
<td>0.797**</td>
<td>0.846**</td>
<td>0.243</td>
<td>0.074</td>
<td>0.646**</td>
<td>0.657**</td>
<td>0.646**</td>
<td>0.322**</td>
<td>-0.538**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.916**</td>
<td>0.750**</td>
<td>0.355**</td>
<td>0.303**</td>
<td>0.755**</td>
<td>0.783**</td>
<td>0.755**</td>
<td>0.570**</td>
<td>-0.437**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDOM</td>
<td>1.0</td>
<td>0.640**</td>
<td>0.407**</td>
<td>0.375**</td>
<td>0.816**</td>
<td>0.837**</td>
<td>0.816**</td>
<td>0.623**</td>
<td>-0.309**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1.0</td>
<td>0.021</td>
<td>-0.135</td>
<td>0.432**</td>
<td>0.455**</td>
<td>0.432**</td>
<td>0.125</td>
<td>-0.719**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>1.0</td>
<td>0.655**</td>
<td>0.726**</td>
<td>0.723**</td>
<td>0.726**</td>
<td>0.704**</td>
<td>0.319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMAG</td>
<td>1.0</td>
<td>0.699**</td>
<td>0.696**</td>
<td>0.699**</td>
<td>0.942**</td>
<td>0.568**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>1.0</td>
<td>0.993**</td>
<td>1.000**</td>
<td>0.847**</td>
<td>0.104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSC</td>
<td>1.0</td>
<td>0.993**</td>
<td>0.854**</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>VST</td>
<td>1.0</td>
<td>0.847**</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>IMAV</td>
<td>1.0</td>
<td>0.335**</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

* * significativo a 95% ** significativo a 99%
TABELA 4.13 - MATRIZ DE CORRELAÇÃO DAS VARIÁVEIS DEPENDENTES PARA Pinus sp

<table>
<thead>
<tr>
<th></th>
<th>IDA</th>
<th>DAP</th>
<th>DG</th>
<th>DDOM</th>
<th>H</th>
<th>HDOM</th>
<th>G</th>
<th>AB</th>
<th>IMAG</th>
<th>VCC</th>
<th>VSC</th>
<th>VST</th>
<th>IMAV</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>1</td>
<td>0.088</td>
<td>0.028</td>
<td>0.591**</td>
<td>0.579**</td>
<td>-0.035</td>
<td>-0.316</td>
<td>-0.904**</td>
<td>0.337</td>
<td>0.372*</td>
<td>0.337</td>
<td>-0.706**</td>
<td>-0.227</td>
<td></td>
</tr>
<tr>
<td>DAP</td>
<td>1</td>
<td>0.996**</td>
<td>0.806**</td>
<td>0.451**</td>
<td>0.379*</td>
<td>0.898**</td>
<td>-0.371**</td>
<td>-0.279</td>
<td>0.039</td>
<td>0.120</td>
<td>0.039</td>
<td>-0.210</td>
<td>-0.913**</td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td>1</td>
<td>0.850**</td>
<td>0.449**</td>
<td>0.394*</td>
<td>0.901**</td>
<td>-0.344</td>
<td>-0.276</td>
<td>0.071</td>
<td>0.152</td>
<td>0.071</td>
<td>-0.190</td>
<td>-0.912**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDOM</td>
<td>1</td>
<td>0.332</td>
<td>0.407*</td>
<td>0.777**</td>
<td>-0.118</td>
<td>-0.190</td>
<td>0.238</td>
<td>0.302</td>
<td>0.239</td>
<td>0.302</td>
<td>0.239</td>
<td>0.302</td>
<td>-0.738**</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>0.944**</td>
<td>0.318</td>
<td>-0.407**</td>
<td>-0.704**</td>
<td>0.652**</td>
<td>0.711**</td>
<td>0.652**</td>
<td>0.200</td>
<td>-0.666**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDOM</td>
<td>1</td>
<td>0.277</td>
<td>-0.329</td>
<td>-0.698**</td>
<td>0.708**</td>
<td>0.764**</td>
<td>0.708**</td>
<td>-0.177</td>
<td>-0.597**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>-0.025</td>
<td>-0.128</td>
<td>0.077</td>
<td>0.141</td>
<td>0.077</td>
<td>-0.081</td>
<td>-0.745**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>0.581**</td>
<td>0.327</td>
<td>0.257</td>
<td>0.327</td>
<td>0.622**</td>
<td>0.560*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMAG</td>
<td>1</td>
<td>-0.225</td>
<td>-0.285</td>
<td>-0.224</td>
<td>0.801**</td>
<td>0.470**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>1</td>
<td>0.995**</td>
<td>1.000**</td>
<td>0.359*</td>
<td>-0.137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSC</td>
<td>1</td>
<td>0.995**</td>
<td>0.307</td>
<td>-0.226</td>
<td></td>
</tr>
<tr>
<td>VST</td>
<td>1</td>
<td>0.359*</td>
<td>-0.137</td>
<td></td>
</tr>
<tr>
<td>IMAV</td>
<td>1</td>
<td>0.275</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
A correlação negativa entre IDA e N e entre IDA e AB decorre do fato de que ambas as espécies são manejadas em regime de desbastes seletivos, em que periodicamente são realizadas intervenções na floresta para remover indivíduos previamente determinados.

A correlação negativa com as duas variáveis de incremento médio anual (IMAG e IMAV) demonstra claramente a função sigmoidal que rege o incremento: à medida que aumenta a idade, decresce o incremento médio anual, em função do regime de manejo.

A análise das correlações e das estatísticas básicas apresentadas no item 4.3 permitem inferir que o comportamento da amostra é normal.

4.5.2 - CORRELAÇÃO DAS VARIÁVEIS INDEPENDENTES

Os resultados das relações entre as variáveis independentes podem ser observados nas Tabelas 4.14 e 4.15. Com relação às bandas isoladas, as maiores correlações para Araucaria angustifolia foram obtidas entre as bandas TM3, TM5 e TM7. Nestas bandas, a vegetação apresenta baixa reflectância, pois na banda TM3 há alta absorção de clorofila e nas bandas TM5 e TM7 se encontram faixas sensíveis ao conteúdo de água das folhas e do solo. Como esperado, a banda TM4 apresentou-se altamente correlacionada com os três índices de vegetação, uma vez que é o componente de maior peso na derivação destes índices.

Para Pinus sp, as maiores correlações foram encontradas entre as bandas TM4 e TM5, TM5 e TM7, e TM1 e TM4. Em relação aos índices de vegetação, a banda TM4 foi a que apresentou as maiores correlações.
A alta correlação entre as variáveis independentes conduz à multicolinearidade. Todavia isso só se torna problemático quando há duas ou mais variáveis independentes no modelo, ou seja, no caso de regressão múltipla, o que será abordado no item 4.7.

Como um dos objetivos do trabalho foi determinar quais bandas ou índices de vegetação podem ser empregados na estimativa de variáveis dendrométricas, testando-se cinco abordagens de regressão simples, optou-se pela permanência das nove variáveis no estudo.

Pinus sp apresentou resposta espectral média superior à resposta de Araucaria angustifolia em todas as bandas, à exceção de TM5 (Tabela 4.16). Isto poderia ser um indicativo da sua estrutura vertical mais pronunciada e de sua maior biomassa, o que concordaria com resultados obtidos por Kleman (1987) para povoamentos de Spruce sp e Pinus sp. A banda TM5 apresentou valor maior para Araucaria devido a ocorrência de valores extremos em algumas amostras, onde o valor de um dos pixels era discrepante em relação aos outros três.
TABELA 4.14 - MATRIZ DE CORRELAÇÃO DAS VARIÁVEIS INDEPENDENTES PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM1</td>
<td>1</td>
<td>0,340*</td>
<td>0,513*</td>
<td>0,288*</td>
<td>0,520*</td>
<td>0,404**</td>
<td>0,015</td>
<td>-0,0008</td>
<td>-0,0004</td>
</tr>
<tr>
<td>TM2</td>
<td>1</td>
<td>0,608**</td>
<td>0,417**</td>
<td>0,598**</td>
<td>0,478**</td>
<td>0,107</td>
<td>0,050</td>
<td>0,043</td>
<td></td>
</tr>
<tr>
<td>TM3</td>
<td>1</td>
<td>0,174</td>
<td>0,631**</td>
<td>0,712**</td>
<td>-0,322*</td>
<td>-0,388**</td>
<td>-0,394**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM4</td>
<td>1</td>
<td>0,238</td>
<td>0,019</td>
<td>0,872**</td>
<td>0,830**</td>
<td>0,824**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM5</td>
<td>1</td>
<td>0,641**</td>
<td>-0,084</td>
<td>-0,131</td>
<td>-0,136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM7</td>
<td>1</td>
<td>-0,326**</td>
<td>-0,372**</td>
<td>-0,375**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R43</td>
<td>1</td>
<td>0,984**</td>
<td>0,999**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN43</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVI43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.15 - MATRIZ DE CORRELAÇÃO DAS VARIÁVEIS INDEPENDENTES PARA *Pinus sp*

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM1</td>
<td>1</td>
<td>0,479**</td>
<td>0,460**</td>
<td>0,780**</td>
<td>0,721**</td>
<td>0,603**</td>
<td>0,714**</td>
<td>0,698**</td>
<td>0,696**</td>
</tr>
<tr>
<td>TM2</td>
<td>1</td>
<td>0,726**</td>
<td>0,612**</td>
<td>0,753**</td>
<td>0,720**</td>
<td>0,433*</td>
<td>0,488**</td>
<td>0,492**</td>
<td>0,253</td>
</tr>
<tr>
<td>TM3</td>
<td>1</td>
<td>0,522**</td>
<td>0,622**</td>
<td>0,612**</td>
<td>0,222</td>
<td>0,247</td>
<td>0,941**</td>
<td>0,940**</td>
<td>0,940**</td>
</tr>
<tr>
<td>TM4</td>
<td>1</td>
<td>0,829**</td>
<td>0,591**</td>
<td>0,946**</td>
<td>0,720**</td>
<td>0,720**</td>
<td>0,720**</td>
<td>0,720**</td>
<td>0,720**</td>
</tr>
<tr>
<td>TM5</td>
<td>1</td>
<td>0,814**</td>
<td>0,717**</td>
<td>0,446*</td>
<td>0,459**</td>
<td>0,462**</td>
<td>0,462**</td>
<td>0,462**</td>
<td>0,462**</td>
</tr>
<tr>
<td>TM7</td>
<td>1</td>
<td>0,988**</td>
<td>0,985**</td>
<td>0,985**</td>
<td>0,985**</td>
<td>0,985**</td>
<td>0,985**</td>
<td>0,985**</td>
<td>0,985**</td>
</tr>
<tr>
<td>R43</td>
<td>1</td>
<td>1</td>
<td>0,999**</td>
<td>0,999**</td>
<td>0,999**</td>
<td>0,999**</td>
<td>0,999**</td>
<td>0,999**</td>
<td>0,999**</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.16 - RESPOSTA ESPECTRAL MÉDIA EM FUNÇÃO DA ESPÉCIE

<table>
<thead>
<tr>
<th>BANDA</th>
<th>Araucaria</th>
<th>Pinus</th>
<th>DIFERENÇA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM 1</td>
<td>33,863</td>
<td>34,327</td>
<td>1,356</td>
</tr>
<tr>
<td>TM 2</td>
<td>11,829</td>
<td>12,328</td>
<td>4,254</td>
</tr>
<tr>
<td>TM 3</td>
<td>9,644</td>
<td>9,716</td>
<td>0,744</td>
</tr>
<tr>
<td>TM 4</td>
<td>30,733</td>
<td>35,823</td>
<td>16,567</td>
</tr>
<tr>
<td>TM 5</td>
<td>14,251</td>
<td>14,179</td>
<td>-0,507</td>
</tr>
<tr>
<td>TM 7</td>
<td>1,798</td>
<td>1,857</td>
<td>3,28%</td>
</tr>
</tbody>
</table>

Analisando-se a influência do sitio na resposta espectral média de cada banda, chegou-se aos resultados apresentados na Tabela 4.17, onde se verifica que não há uma tendência de uniformidade, com os diferentes sitios apresentando diferentes sequências em relação à resposta espectral média de cada banda. A única observação conclusiva é de que a resposta do sitio 2 (hidromórfico) é sempre menor, em relação aos demais, para ambas as espécies.

Dispondo em ordem decrescente os valores médios de cada variável dependente e independente, obtiveram-se as seguintes sequências, considerando os cinco sitios:

Araucaria Pinus
DAP 1-4-3-2-5 5-2-3-1-4
DG 1-4-3-2-5 5-2-1-3-4
DDOM 1-4-3-2-5 5-1-2-3-4
H 1-4-3-5-2 5-1-2-4-3
HDOM 1-4-3-5-2 5-1-3-4-2
G 1-4-3-2-5 5-2-1-4-3
AB 1-4-5-3-2 1-2-5-4-3
IMAG 5-1-4-3-2 1-2-4-3-5
VCC 1-4-3-5-2 1-5-2-4-3
VSC 1-4-3-5-2 1-5-2-4-3
VST 1-4-3-5-2 1-5-2-4-3
IMAV 1-4-5-3-2 1-4-2-3-5
N 5-4-3-2-1 1-4-2-3-5
TABELA 4.17 - RESPOSTA ESPECTRAL MÉDIA POR SÍTIO PARA Araucaria angustifolia e Pinus sp

<table>
<thead>
<tr>
<th>BANDA</th>
<th>SÍTIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Araucaria</td>
<td></td>
</tr>
<tr>
<td>TM 1</td>
<td>33,69</td>
</tr>
<tr>
<td>TM 2</td>
<td>11,95</td>
</tr>
<tr>
<td>TM 3</td>
<td>9,61</td>
</tr>
<tr>
<td>TM 4</td>
<td>30,55</td>
</tr>
<tr>
<td>TM 5</td>
<td>13,86</td>
</tr>
<tr>
<td>TM 7</td>
<td>1,52</td>
</tr>
<tr>
<td>Pinus</td>
<td></td>
</tr>
<tr>
<td>TM 1</td>
<td>34,64</td>
</tr>
<tr>
<td>TM 2</td>
<td>12,81</td>
</tr>
<tr>
<td>TM 3</td>
<td>10,23</td>
</tr>
<tr>
<td>TM 4</td>
<td>36,60</td>
</tr>
<tr>
<td>TM 5</td>
<td>15,43</td>
</tr>
<tr>
<td>TM 7</td>
<td>2,33</td>
</tr>
</tbody>
</table>

Não há nenhuma relação concordante entre sequências nas bandas e nas variáveis dendrométricas. O que se verifica é que em termos de produtividade de madeira, o sitio 1 de Pinus tem maior volume e maior resposta espectral média, enquanto o sitio 2 de Araucaria tem menor volume e menor resposta. Verifica-se que a resposta espectral do sitio não está diretamente vinculada com a sua produtividade, em função da análise efetuada. A importância do sitio reside no fato de que é um elemento fundamental na determinação das variáveis dendrométricas para o planejamento florestal, com maior precisão e menor amostragem de campo, fornecendo informações estratificadas.
4.5.3 - CORRELAÇÃO ENTRE VARIÁVEIS DEPENDENTES E INDEPENDENTES

Para esta terceira fase tem-se um total de quatorze variáveis dependentes (IDA, DAP, DG, DDOM, H, HDOM, G, AB, IMAG, VCC, VSC, VST, IMAV, N) e nove variáveis independentes (TM1, TM2, TM3, TM4, TM5, TM7, R43, DN43, TVI43). A adoção deste procedimento fez com que se trabalhasse com um conjunto consideravelmente grande de dados em detrimento da redução da sua dimensionalidade.

O risco foi assumido para cumprir os objetivos números um e dois, de avaliar a correlação entre todas as variáveis definidas e de buscar a melhor função que ajuste os dados.

Os arquivos de dados de *Araucaria angustifolia* e *Pinus* sp foram processados segundo as cinco funções definidas na metodologia. Os resultados iniciais com os coeficientes de correlação podem ser observados nas Tabelas 4.18 a 4.27. Optou-se pela apresentação deste coeficiente para que se pudesse ter idéia do sinal da relação entre as variáveis.
TABELA 4.18 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO LINEAR PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0,015</td>
<td>-0,016</td>
<td>-0,073</td>
<td>-0,078</td>
<td>-0,020</td>
<td>-0,100</td>
<td>-0,034</td>
<td>-0,169</td>
<td>-0,015</td>
</tr>
<tr>
<td>DAP</td>
<td>0,136</td>
<td>0,118</td>
<td>0,076</td>
<td>-0,139</td>
<td>0,136</td>
<td>0,074</td>
<td>-0,164</td>
<td>-0,160</td>
<td>-0,159</td>
</tr>
<tr>
<td>DG</td>
<td>0,123</td>
<td>0,105</td>
<td>0,079</td>
<td>-0,166</td>
<td>0,146</td>
<td>0,080</td>
<td>-0,191</td>
<td>-0,183</td>
<td>-0,182</td>
</tr>
<tr>
<td>DDOM</td>
<td>0,080</td>
<td>0,247</td>
<td>0,081</td>
<td>-0,249</td>
<td>0,199</td>
<td>0,008</td>
<td>-0,273*</td>
<td>-0,257*</td>
<td>-0,255*</td>
</tr>
<tr>
<td>H</td>
<td>0,169</td>
<td>0,227</td>
<td>0,246</td>
<td>-0,093</td>
<td>0,272*</td>
<td>0,107</td>
<td>-0,202</td>
<td>0,222</td>
<td>-0,224</td>
</tr>
<tr>
<td>HDOM</td>
<td>0,107</td>
<td>0,166</td>
<td>0,258*</td>
<td>-0,216</td>
<td>0,286*</td>
<td>0,101</td>
<td>-0,303*</td>
<td>-0,342**</td>
<td>-0,342**</td>
</tr>
<tr>
<td>G</td>
<td>0,136</td>
<td>0,080</td>
<td>0,067</td>
<td>0,076</td>
<td>0,154</td>
<td>0,031</td>
<td>-0,101</td>
<td>-0,090</td>
<td>-0,087</td>
</tr>
<tr>
<td>AB</td>
<td>0,336**</td>
<td>0,371**</td>
<td>0,416**</td>
<td>0,087</td>
<td>0,608**</td>
<td>0,297*</td>
<td>-0,111</td>
<td>-0,146</td>
<td>-0,150</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,293*</td>
<td>0,157</td>
<td>0,299*</td>
<td>0,083</td>
<td>0,253*</td>
<td>0,095</td>
<td>-0,057</td>
<td>-0,090</td>
<td>-0,095</td>
</tr>
<tr>
<td>VCC</td>
<td>0,246*</td>
<td>0,187</td>
<td>0,328**</td>
<td>-0,077</td>
<td>0,365**</td>
<td>0,081</td>
<td>-0,223</td>
<td>-0,241</td>
<td>-0,111</td>
</tr>
<tr>
<td>VSC</td>
<td>0,252*</td>
<td>0,214</td>
<td>0,329**</td>
<td>-0,054</td>
<td>0,380**</td>
<td>0,088</td>
<td>-0,199</td>
<td>-0,225</td>
<td>-0,228</td>
</tr>
<tr>
<td>VST</td>
<td>0,246*</td>
<td>0,187</td>
<td>0,328**</td>
<td>-0,077</td>
<td>0,365**</td>
<td>0,088</td>
<td>-0,223</td>
<td>-0,241</td>
<td>-0,111</td>
</tr>
<tr>
<td>IMAV</td>
<td>0,286*</td>
<td>0,213</td>
<td>0,326**</td>
<td>-0,004</td>
<td>0,338**</td>
<td>0,141</td>
<td>-0,153</td>
<td>-0,186</td>
<td>-0,190</td>
</tr>
<tr>
<td>N</td>
<td>0,068</td>
<td>-0,049</td>
<td>0,078</td>
<td>0,149</td>
<td>-0,002</td>
<td>-0,086</td>
<td>0,103</td>
<td>0,090</td>
<td>0,088</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.19 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO MULTIPLICATIVA PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0,024</td>
<td>-0,052</td>
<td>-0,073</td>
<td>-0,074</td>
<td>-0,022</td>
<td>--</td>
<td>-0,031</td>
<td>-0,019</td>
<td>-0,021</td>
</tr>
<tr>
<td>DAP</td>
<td>0,136*</td>
<td>0,145</td>
<td>0,083</td>
<td>-0,120</td>
<td>0,146</td>
<td>--</td>
<td>-0,160</td>
<td>-0,158</td>
<td>-0,157</td>
</tr>
<tr>
<td>DG</td>
<td>0,112</td>
<td>0,129</td>
<td>0,079</td>
<td>-0,150</td>
<td>0,152</td>
<td>--</td>
<td>-0,187</td>
<td>-0,181</td>
<td>-0,181</td>
</tr>
<tr>
<td>DDOM</td>
<td>0,080</td>
<td>0,037</td>
<td>0,074</td>
<td>-0,234</td>
<td>0,189</td>
<td>--</td>
<td>-0,265*</td>
<td>-0,251*</td>
<td>-0,253*</td>
</tr>
<tr>
<td>H</td>
<td>0,160</td>
<td>0,232</td>
<td>0,234</td>
<td>-0,095</td>
<td>0,252*</td>
<td>--</td>
<td>-0,219</td>
<td>-0,231</td>
<td>-0,227</td>
</tr>
<tr>
<td>HDOM</td>
<td>0,094</td>
<td>0,163</td>
<td>0,233</td>
<td>-0,218</td>
<td>0,251*</td>
<td>--</td>
<td>-0,336**</td>
<td>-0,338**</td>
<td>-0,338**</td>
</tr>
<tr>
<td>G</td>
<td>0,154</td>
<td>0,137</td>
<td>0,098</td>
<td>-0,033</td>
<td>0,181</td>
<td>--</td>
<td>-0,085</td>
<td>-0,082</td>
<td>-0,080</td>
</tr>
<tr>
<td>AB</td>
<td>0,324*</td>
<td>0,357**</td>
<td>0,429**</td>
<td>0,111</td>
<td>0,555**</td>
<td>--</td>
<td>-0,126</td>
<td>-0,156</td>
<td>-0,145</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,259*</td>
<td>0,129</td>
<td>0,286*</td>
<td>0,107</td>
<td>0,191</td>
<td>--</td>
<td>-0,052</td>
<td>-0,079</td>
<td>-0,070</td>
</tr>
<tr>
<td>VCC</td>
<td>0,213</td>
<td>0,135</td>
<td>0,271*</td>
<td>-0,069</td>
<td>0,244</td>
<td>--</td>
<td>-0,213</td>
<td>-0,223</td>
<td>-0,219</td>
</tr>
<tr>
<td>VSC</td>
<td>0,218</td>
<td>0,160</td>
<td>0,270*</td>
<td>-0,044</td>
<td>0,256*</td>
<td>--</td>
<td>-0,189</td>
<td>-0,205</td>
<td>-0,199</td>
</tr>
<tr>
<td>VST</td>
<td>0,213</td>
<td>0,130</td>
<td>0,271*</td>
<td>-0,069</td>
<td>0,244</td>
<td>--</td>
<td>-0,213</td>
<td>-0,223</td>
<td>-0,219</td>
</tr>
<tr>
<td>IMAV</td>
<td>0,253*</td>
<td>0,173</td>
<td>0,296*</td>
<td>0,022</td>
<td>0,249</td>
<td>--</td>
<td>-0,139</td>
<td>-0,161</td>
<td>-0,154</td>
</tr>
<tr>
<td>N</td>
<td>0,051</td>
<td>-0,037</td>
<td>0,094</td>
<td>0,165</td>
<td>-0,001</td>
<td>--</td>
<td>0,107</td>
<td>-0,087</td>
<td>0,093</td>
</tr>
</tbody>
</table>

OBS: A Banda TM7 não apresenta valores devido a ocorrência de dois valores zero (0).
A função multiplicativa não aceita valores nulos ou negativos.

* significativo a 95% ** significativo a 99%
TABELA 4.20 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO EXPONENCIAL PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0,028</td>
<td>-0,052</td>
<td>-0,069</td>
<td>-0,084</td>
<td>-0,018</td>
<td>-0,105</td>
<td>-0,043</td>
<td>-0,025</td>
<td>-0,023</td>
</tr>
<tr>
<td>DAP</td>
<td>0,135</td>
<td>0,137</td>
<td>0,085</td>
<td>-0,132</td>
<td>0,139</td>
<td>0,081</td>
<td>-0,161</td>
<td>-0,160</td>
<td>-0,157</td>
</tr>
<tr>
<td>DG</td>
<td>0,110</td>
<td>0,121</td>
<td>0,083</td>
<td>-0,164</td>
<td>0,144</td>
<td>0,081</td>
<td>-0,190</td>
<td>-0,185</td>
<td>-0,182</td>
</tr>
<tr>
<td>DDOM</td>
<td>0,079</td>
<td>0,030</td>
<td>0,078</td>
<td>-0,253*</td>
<td>0,182</td>
<td>0,006</td>
<td>-0,274*</td>
<td>-0,259*</td>
<td>-0,256*</td>
</tr>
<tr>
<td>H</td>
<td>0,159</td>
<td>0,227</td>
<td>0,237</td>
<td>-0,101</td>
<td>0,253*</td>
<td>0,104</td>
<td>-0,206</td>
<td>-0,225</td>
<td>-0,225</td>
</tr>
<tr>
<td>HDOM</td>
<td>0,093</td>
<td>0,159</td>
<td>0,239</td>
<td>-0,224</td>
<td>0,253*</td>
<td>0,080</td>
<td>-0,328**</td>
<td>-0,338**</td>
<td>-0,338**</td>
</tr>
<tr>
<td>G</td>
<td>0,153</td>
<td>0,129</td>
<td>0,099</td>
<td>-0,048</td>
<td>0,163</td>
<td>0,041</td>
<td>-0,087</td>
<td>-0,084</td>
<td>-0,081</td>
</tr>
<tr>
<td>AB</td>
<td>0,325**</td>
<td>0,357**</td>
<td>0,420**</td>
<td>0,096</td>
<td>0,575**</td>
<td>0,313*</td>
<td>-0,103</td>
<td>-0,137</td>
<td>-0,141</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,258*</td>
<td>0,128</td>
<td>0,285*</td>
<td>0,101</td>
<td>0,184</td>
<td>0,043</td>
<td>-0,031</td>
<td>-0,063</td>
<td>-0,066</td>
</tr>
<tr>
<td>VCC</td>
<td>0,211</td>
<td>0,127</td>
<td>0,274*</td>
<td>-0,086</td>
<td>0,242</td>
<td>0,028</td>
<td>-0,205</td>
<td>-0,216</td>
<td>-0,217</td>
</tr>
<tr>
<td>VSC</td>
<td>0,217</td>
<td>0,157</td>
<td>0,273*</td>
<td>-0,057</td>
<td>-0,252*</td>
<td>0,031</td>
<td>-0,175</td>
<td>-0,195</td>
<td>-0,197</td>
</tr>
<tr>
<td>VST</td>
<td>0,210</td>
<td>0,127</td>
<td>0,274*</td>
<td>-0,086</td>
<td>0,242</td>
<td>0,028</td>
<td>-0,205</td>
<td>-0,216</td>
<td>-0,217</td>
</tr>
<tr>
<td>IMAV</td>
<td>0,252*</td>
<td>0,170</td>
<td>0,296*</td>
<td>0,014</td>
<td>0,242</td>
<td>0,076</td>
<td>-0,120</td>
<td>-0,148</td>
<td>-0,150</td>
</tr>
<tr>
<td>N</td>
<td>0,051</td>
<td>-0,030</td>
<td>0,091</td>
<td>0,169</td>
<td>0,002</td>
<td>-0,082</td>
<td>0,120</td>
<td>0,100</td>
<td>0,096</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.21 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO RECÍPROCA PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>0,043</td>
<td>0,042</td>
<td>0,064</td>
<td>0,090</td>
<td>0,015</td>
<td>0,109</td>
<td>0,051</td>
<td>0,034</td>
<td>0,033</td>
</tr>
<tr>
<td>DAP</td>
<td>-0,133</td>
<td>-0,156</td>
<td>-0,092</td>
<td>0,125</td>
<td>-0,141</td>
<td>-0,087</td>
<td>0,157</td>
<td>0,158</td>
<td>0,156</td>
</tr>
<tr>
<td>DG</td>
<td>-0,107</td>
<td>-0,137</td>
<td>-0,084</td>
<td>0,161</td>
<td>-0,141</td>
<td>-0,081</td>
<td>0,188</td>
<td>0,186</td>
<td>0,186</td>
</tr>
<tr>
<td>DDOM</td>
<td>-0,077</td>
<td>-0,034</td>
<td>-0,073</td>
<td>0,255*</td>
<td>-0,162</td>
<td>-0,003</td>
<td>0,274*</td>
<td>0,259*</td>
<td>0,256*</td>
</tr>
<tr>
<td>H</td>
<td>-0,147</td>
<td>-0,226</td>
<td>-0,225</td>
<td>0,108</td>
<td>-0,232</td>
<td>-0,098</td>
<td>0,208</td>
<td>0,225</td>
<td>0,226</td>
</tr>
<tr>
<td>HDOM</td>
<td>-0,078</td>
<td>-0,150</td>
<td>-0,215</td>
<td>0,231</td>
<td>-0,216</td>
<td>-0,057</td>
<td>0,324*</td>
<td>0,331**</td>
<td>0,331**</td>
</tr>
<tr>
<td>G</td>
<td>-0,171</td>
<td>-0,179</td>
<td>-0,128</td>
<td>0,012</td>
<td>-0,175</td>
<td>-0,052</td>
<td>0,066</td>
<td>0,070</td>
<td>0,068</td>
</tr>
<tr>
<td>AB</td>
<td>-0,303*</td>
<td>-0,331**</td>
<td>-0,410**</td>
<td>-0,103</td>
<td>-0,529**</td>
<td>-0,317*</td>
<td>0,091</td>
<td>0,123</td>
<td>0,126</td>
</tr>
<tr>
<td>IMAG</td>
<td>-0,215</td>
<td>-0,083</td>
<td>-0,254*</td>
<td>-0,111</td>
<td>-0,100</td>
<td>0,022</td>
<td>0,005</td>
<td>0,033</td>
<td>0,036</td>
</tr>
<tr>
<td>VCC</td>
<td>-0,162</td>
<td>-0,053</td>
<td>-0,189</td>
<td>0,091</td>
<td>-0,101</td>
<td>0,048</td>
<td>0,170</td>
<td>0,174</td>
<td>0,174</td>
</tr>
<tr>
<td>VSC</td>
<td>-0,162</td>
<td>-0,077</td>
<td>-0,180</td>
<td>0,064</td>
<td>-0,252*</td>
<td>0,052</td>
<td>0,138</td>
<td>0,150</td>
<td>0,151</td>
</tr>
<tr>
<td>VST</td>
<td>-0,162</td>
<td>-0,053</td>
<td>-0,189</td>
<td>0,091</td>
<td>-0,101</td>
<td>0,048</td>
<td>0,170</td>
<td>0,174</td>
<td>0,174</td>
</tr>
<tr>
<td>IMAV</td>
<td>-0,208</td>
<td>-0,110</td>
<td>-0,242</td>
<td>-0,021</td>
<td>-0,128</td>
<td>0,009</td>
<td>0,086</td>
<td>0,108</td>
<td>0,110</td>
</tr>
<tr>
<td>N</td>
<td>-0,028</td>
<td>0,002</td>
<td>0,116</td>
<td>-0,189</td>
<td>-0,017</td>
<td>0,061</td>
<td>-0,130</td>
<td>-0,106</td>
<td>-0,100</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.22 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO QUADRÁTICA PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0,232</td>
<td>-0,064</td>
<td>-0,111</td>
<td>-0,106</td>
<td>-0,033</td>
<td>-0,160</td>
<td>-0,107</td>
<td>-0,088</td>
<td>-0,083</td>
</tr>
<tr>
<td>DAP</td>
<td>0,152</td>
<td>0,240</td>
<td>0,102</td>
<td>-0,169</td>
<td>0,141</td>
<td>0,082</td>
<td>-0,164</td>
<td>-0,164</td>
<td>-0,161</td>
</tr>
<tr>
<td>DG</td>
<td>0,142</td>
<td>0,221</td>
<td>0,113</td>
<td>-0,202</td>
<td>0,155</td>
<td>0,087</td>
<td>-0,194</td>
<td>-0,193</td>
<td>-0,190</td>
</tr>
<tr>
<td>DDOM</td>
<td>0,130</td>
<td>0,186</td>
<td>0,095</td>
<td>-0,307*</td>
<td>0,222</td>
<td>0,011</td>
<td>-0,283*</td>
<td>-0,276*</td>
<td>-0,273*</td>
</tr>
<tr>
<td>H</td>
<td>0,170</td>
<td>0,261*</td>
<td>0,250*</td>
<td>-0,102</td>
<td>0,273*</td>
<td>0,123</td>
<td>-0,236</td>
<td>-0,241</td>
<td>-0,239</td>
</tr>
<tr>
<td>HDOM</td>
<td>0,116</td>
<td>0,190</td>
<td>0,266*</td>
<td>-0,220</td>
<td>0,290*</td>
<td>0,115</td>
<td>-0,343**</td>
<td>-0,343**</td>
<td>-0,342**</td>
</tr>
<tr>
<td>G</td>
<td>0,151</td>
<td>0,199</td>
<td>0,089</td>
<td>-0,155</td>
<td>0,191</td>
<td>0,031</td>
<td>-0,115</td>
<td>-0,110</td>
<td>-0,108</td>
</tr>
<tr>
<td>AB</td>
<td>0,350**</td>
<td>0,373**</td>
<td>0,437**</td>
<td>0,184</td>
<td>0,610**</td>
<td>0,300*</td>
<td>-0,208</td>
<td>-0,256*</td>
<td>-0,257*</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,293*</td>
<td>0,168</td>
<td>0,304*</td>
<td>0,108</td>
<td>0,259*</td>
<td>0,100</td>
<td>-0,187</td>
<td>-0,210</td>
<td>-0,208</td>
</tr>
<tr>
<td>VCC</td>
<td>0,252*</td>
<td>0,219</td>
<td>0,328**</td>
<td>-0,189</td>
<td>0,371**</td>
<td>0,094</td>
<td>-0,241</td>
<td>-0,262*</td>
<td>-0,262*</td>
</tr>
<tr>
<td>VSC</td>
<td>0,258*</td>
<td>0,239</td>
<td>0,330**</td>
<td>-0,144</td>
<td>0,387**</td>
<td>0,098</td>
<td>-0,243</td>
<td>-0,265*</td>
<td>-0,264*</td>
</tr>
<tr>
<td>VST</td>
<td>0,252*</td>
<td>0,219</td>
<td>0,328**</td>
<td>-0,189</td>
<td>0,371**</td>
<td>0,094</td>
<td>-0,241</td>
<td>-0,262*</td>
<td>-0,262*</td>
</tr>
<tr>
<td>IMAV</td>
<td>0,287*</td>
<td>0,232</td>
<td>0,328**</td>
<td>-0,084</td>
<td>0,341**</td>
<td>0,146</td>
<td>-0,237</td>
<td>-0,255*</td>
<td>-0,253*</td>
</tr>
<tr>
<td>N</td>
<td>0,074</td>
<td>-0,171</td>
<td>0,086</td>
<td>0,150</td>
<td>-0,043</td>
<td>-0,094</td>
<td>0,122</td>
<td>0,124</td>
<td>0,123</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
Para os dados de Araucaria, não houve correlação significativa, aos níveis estudados, para as variáveis IDA, DAP, DG, G e N. DDOM, H e IMAG foram significativas a 95% e as demais (HDOM, AB, VCC, VSC, VST e IMAV) apresentaram coeficientes de correlação significativos a 99%.

A altura dominante (HDOM) apresentou uma relação negativa com o índice diferença normalizada (DN43), tendo o coeficiente de correlação variado entre -0,324 e -0,343, segundo a função empregada. Este comportamento está associado ao efeito de sombreamento provocado pelas árvores dominantes sobre o estrato imediatamente abaixo. Nesta espécie a diferença de altura entre as árvores dominantes e o dossel médio varia de 2,42 a 3,40 metros.

A relação entre a área basal (AB) e as variáveis digitais forneceu valores entre 0,331 e 0,610, tendo sido a variável dendrométrica com melhores resultados. O motivo seria o fato de que a área basal é altamente correlacionada com o diâmetro de copa que está no campo de visada do sensor.

O volume total com casca (VCC) e sua transformada VST apresentaram correlações variando entre 0,328 e 0,371, considerando a banda TM5. Os coeficientes não foram significativos para a banda TM4, evidenciando uma maior sensibilidade da banda TM5 às variáveis volumétricas. Os resultados não foram concordantes com Kazmierczak (1991), onde a banda TM4 apresentou alta correlação com o volume total. Esse comportamento pode ser explicado pelo tamanho da amostra, que naquele trabalho empregou 9 pares de dados e neste 63. Entretanto, verifica-se que a maior correlação ocorreu com a banda TM5, conforme observado por Ardó (1991), ao trabalhar com povoamentos de coníferas. VSC
mostrou-se de forma análoga, com os coeficientes variando entre 0,329 e 0,387.

O incremento médio anual em volume (IMAV) apresentou valores entre 0,328 e 0,341, tendo seu comportamento atribuído, a exemplo das três variáveis anteriores, à capacidade da banda TM5 em diferenciar não apenas tipos de cultura, mas variações dentro de uma mesma cultura com maior facilidade que as demais bandas.

Para os dados de Pinus, as três variáveis volumétricas (VCC, VSC e VST) não apresentaram nenhuma correlação significativa a 95 e 99%. DAP, DG, DDOM, HDOM e G foram significativas a 95% e IDA, H, AB, IMAG, IMAV e N foram significativas a 99%.

A idade (IDA) gerou uma única correlação significativa a 99%, apresentando um valor de -0,486 e evidenciando uma relação negativa com a resposta captada na banda TM5.

A altura (H) também apresentou relação negativa, em função da quantidade de sombra presente no elemento de resolução da imagem, variando de -0,457 a -0,485. Para esta espécie, a diferença entre as árvores dominantes e o dossel médio variou entre 1,16 a 1,72 metros. Foi uma das duas variáveis em que a melhor relação foi obtida através de um índice de vegetação (R43).

A área basal (AB), a exemplo do que se verificou para Araucaria e pelo mesmo motivo, foi novamente a variável mais bem correlacionada, com o coeficiente variando entre 0,485 e 0,818.
<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0.290</td>
<td>-0.208</td>
<td>-0.048</td>
<td>-0.347</td>
<td>-0.435*</td>
<td>-0.368*</td>
<td>-0.369*</td>
<td>-0.350*</td>
<td>-0.347*</td>
</tr>
<tr>
<td>DAP</td>
<td>-0.269</td>
<td>-0.046</td>
<td>-0.152</td>
<td>-0.401*</td>
<td>-0.332</td>
<td>-0.057</td>
<td>-0.395*</td>
<td>-0.367*</td>
<td>-0.363*</td>
</tr>
<tr>
<td>DG</td>
<td>-0.261</td>
<td>-0.020</td>
<td>-0.152</td>
<td>-0.398*</td>
<td>-0.308</td>
<td>-0.033</td>
<td>-0.391*</td>
<td>-0.361*</td>
<td>-0.357*</td>
</tr>
<tr>
<td>DDOM</td>
<td>-0.152</td>
<td>0.094</td>
<td>-0.164</td>
<td>-0.314</td>
<td>-0.134</td>
<td>0.085</td>
<td>-0.288</td>
<td>-0.257</td>
<td>-0.254</td>
</tr>
<tr>
<td>H</td>
<td>-0.291</td>
<td>-0.078</td>
<td>-0.107</td>
<td>-0.408</td>
<td>-0.316</td>
<td>-0.208</td>
<td>-0.459**</td>
<td>-0.435*</td>
<td>-0.432*</td>
</tr>
<tr>
<td>HDOM</td>
<td>-0.252</td>
<td>-0.075</td>
<td>-0.069</td>
<td>-0.367*</td>
<td>-0.267</td>
<td>-0.167</td>
<td>-0.386*</td>
<td>-0.371*</td>
<td>-0.369*</td>
</tr>
<tr>
<td>G</td>
<td>-0.035</td>
<td>0.181</td>
<td>-0.0001</td>
<td>-0.104</td>
<td>-0.059</td>
<td>0.185</td>
<td>-0.102</td>
<td>-0.042</td>
<td>-0.035</td>
</tr>
<tr>
<td>AB</td>
<td>0.643**</td>
<td>0.616**</td>
<td>0.389*</td>
<td>0.732**</td>
<td>0.777**</td>
<td>0.646**</td>
<td>0.702**</td>
<td>0.739**</td>
<td>0.742**</td>
</tr>
<tr>
<td>IMAC</td>
<td>0.447*</td>
<td>0.327</td>
<td>0.184</td>
<td>0.523**</td>
<td>0.589**</td>
<td>0.516**</td>
<td>0.520**</td>
<td>0.504**</td>
<td>0.501**</td>
</tr>
<tr>
<td>VCC</td>
<td>0.160</td>
<td>0.313</td>
<td>0.192</td>
<td>0.057</td>
<td>0.253</td>
<td>0.249</td>
<td>-0.002</td>
<td>0.019</td>
<td>0.022</td>
</tr>
<tr>
<td>VSC</td>
<td>0.112</td>
<td>0.284</td>
<td>0.166</td>
<td>-0.0008</td>
<td>0.197</td>
<td>0.217</td>
<td>-0.058</td>
<td>-0.034</td>
<td>-0.031</td>
</tr>
<tr>
<td>VST</td>
<td>0.160</td>
<td>0.313</td>
<td>0.192</td>
<td>0.057</td>
<td>0.253</td>
<td>0.249</td>
<td>-0.002</td>
<td>0.019</td>
<td>0.022</td>
</tr>
<tr>
<td>IMAV</td>
<td>0.461**</td>
<td>0.459**</td>
<td>0.277</td>
<td>0.477**</td>
<td>0.677**</td>
<td>0.602**</td>
<td>0.433*</td>
<td>0.424*</td>
<td>0.423*</td>
</tr>
<tr>
<td>**N</td>
<td>0.424*</td>
<td>0.091</td>
<td>0.173</td>
<td>0.530**</td>
<td>0.445*</td>
<td>0.204</td>
<td>0.536**</td>
<td>0.506**</td>
<td>0.503**</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0.295</td>
<td>-0.192</td>
<td>-0.060</td>
<td>-0.333</td>
<td>-0.394*</td>
<td>-0.355*</td>
<td>-0.361*</td>
<td>-0.343</td>
<td>-0.348</td>
</tr>
<tr>
<td>DAP</td>
<td>-0.285</td>
<td>-0.042</td>
<td>-0.152</td>
<td>-0.397*</td>
<td>-0.329</td>
<td>-0.108</td>
<td>-0.401*</td>
<td>-0.375*</td>
<td>-0.383*</td>
</tr>
<tr>
<td>DC</td>
<td>-0.276</td>
<td>-0.016</td>
<td>-0.154</td>
<td>-0.392*</td>
<td>-0.306</td>
<td>-0.088</td>
<td>-0.394*</td>
<td>-0.367*</td>
<td>-0.375*</td>
</tr>
<tr>
<td>DDOM</td>
<td>-0.160</td>
<td>0.086</td>
<td>-0.171</td>
<td>-0.302</td>
<td>-0.143</td>
<td>-0.008</td>
<td>-0.284</td>
<td>-0.257</td>
<td>-0.264</td>
</tr>
<tr>
<td>H</td>
<td>-0.289</td>
<td>-0.048</td>
<td>-0.005</td>
<td>-0.388*</td>
<td>-0.296</td>
<td>-0.209</td>
<td>-0.446*</td>
<td>-0.422*</td>
<td>-0.431*</td>
</tr>
<tr>
<td>HDOM</td>
<td>-0.250</td>
<td>-0.061</td>
<td>-0.068</td>
<td>-0.354*</td>
<td>-0.256</td>
<td>-0.186</td>
<td>-0.382</td>
<td>-0.366*</td>
<td>-0.373*</td>
</tr>
<tr>
<td>G</td>
<td>-0.043</td>
<td>0.201</td>
<td>0.018</td>
<td>-0.074</td>
<td>-0.012</td>
<td>0.168</td>
<td>-0.092</td>
<td>-0.042</td>
<td>-0.056</td>
</tr>
<tr>
<td>AB</td>
<td>0.649**</td>
<td>0.628**</td>
<td>0.408*</td>
<td>0.773**</td>
<td>0.804**</td>
<td>0.663**</td>
<td>0.738**</td>
<td>0.771**</td>
<td>0.765**</td>
</tr>
<tr>
<td>IMAG</td>
<td>0.471**</td>
<td>0.379*</td>
<td>0.207</td>
<td>0.531**</td>
<td>0.599**</td>
<td>0.520**</td>
<td>0.535**</td>
<td>0.523**</td>
<td>0.527**</td>
</tr>
<tr>
<td>VCC</td>
<td>0.148</td>
<td>0.305</td>
<td>0.193</td>
<td>0.054</td>
<td>0.221</td>
<td>0.184</td>
<td>-0.010</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>VSC</td>
<td>0.094</td>
<td>0.277</td>
<td>0.165</td>
<td>-0.007</td>
<td>0.162</td>
<td>0.147</td>
<td>-0.071</td>
<td>-0.056</td>
<td>-0.057</td>
</tr>
<tr>
<td>VST</td>
<td>0.148</td>
<td>0.305</td>
<td>0.193</td>
<td>0.054</td>
<td>0.221</td>
<td>0.184</td>
<td>-0.010</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>IMAV</td>
<td>0.417*</td>
<td>0.487**</td>
<td>0.276</td>
<td>0.417*</td>
<td>0.599**</td>
<td>0.541**</td>
<td>0.377*</td>
<td>0.377*</td>
<td>0.377*</td>
</tr>
<tr>
<td>N</td>
<td>0.624*</td>
<td>0.160</td>
<td>0.212</td>
<td>0.524**</td>
<td>0.485**</td>
<td>0.258</td>
<td>0.525**</td>
<td>0.501**</td>
<td>0.509**</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.25 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO EXPONENCIAL PARA Pinus sp

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0,296</td>
<td>-0,185</td>
<td>-0,053</td>
<td>-0,353*</td>
<td>-0,425*</td>
<td>-0,365*</td>
<td>-0,373*</td>
<td>-0,353*</td>
<td>-0,351*</td>
</tr>
<tr>
<td>DAP</td>
<td>-0,286</td>
<td>-0,038</td>
<td>-0,145</td>
<td>-0,419*</td>
<td>-0,335</td>
<td>-0,069</td>
<td>-0,419*</td>
<td>-0,389*</td>
<td>-0,386*</td>
</tr>
<tr>
<td>DG</td>
<td>-0,278</td>
<td>-0,012</td>
<td>-0,147</td>
<td>-0,415*</td>
<td>-0,311</td>
<td>-0,044</td>
<td>-0,413*</td>
<td>-0,381*</td>
<td>-0,379*</td>
</tr>
<tr>
<td>DDOM</td>
<td>-0,164</td>
<td>0,092</td>
<td>-0,167</td>
<td>-0,328</td>
<td>-0,144</td>
<td>-0,067</td>
<td>-0,304</td>
<td>-0,271</td>
<td>-0,268</td>
</tr>
<tr>
<td>H</td>
<td>-0,288</td>
<td>-0,045</td>
<td>-0,002</td>
<td>-0,404*</td>
<td>-0,297</td>
<td>-0,197</td>
<td>-0,460**</td>
<td>-0,436*</td>
<td>-0,435*</td>
</tr>
<tr>
<td>HDOM</td>
<td>-0,250</td>
<td>-0,058</td>
<td>-0,061</td>
<td>-0,367*</td>
<td>-0,258</td>
<td>-0,171</td>
<td>-0,390</td>
<td>-0,375*</td>
<td>-0,376*</td>
</tr>
<tr>
<td>G</td>
<td>-0,047</td>
<td>0,198</td>
<td>0,021</td>
<td>-0,124</td>
<td>-0,053</td>
<td>0,160</td>
<td>-0,133</td>
<td>-0,069</td>
<td>-0,063</td>
</tr>
<tr>
<td>AB</td>
<td>0,645**</td>
<td>0,619**</td>
<td>0,400*</td>
<td>0,737**</td>
<td>0,761**</td>
<td>0,621**</td>
<td>0,706**</td>
<td>0,754**</td>
<td>0,760**</td>
</tr>
<tr>
<td>IVAM</td>
<td>0,471**</td>
<td>0,373</td>
<td>0,199</td>
<td>0,544**</td>
<td>0,621**</td>
<td>0,537**</td>
<td>0,541**</td>
<td>0,530**</td>
<td>0,529**</td>
</tr>
<tr>
<td>VCC</td>
<td>0,146</td>
<td>0,309</td>
<td>-0,197</td>
<td>0,041</td>
<td>0,230</td>
<td>0,218</td>
<td>-0,023</td>
<td>-0,002</td>
<td>-0,0008</td>
</tr>
<tr>
<td>VSC</td>
<td>0,093</td>
<td>0,281</td>
<td>0,170</td>
<td>-0,021</td>
<td>0,170</td>
<td>0,182</td>
<td>-0,085</td>
<td>-0,062</td>
<td>-0,060</td>
</tr>
<tr>
<td>VST</td>
<td>0,146</td>
<td>0,309</td>
<td>-0,197</td>
<td>0,041</td>
<td>0,230</td>
<td>0,218</td>
<td>-0,023</td>
<td>-0,002</td>
<td>-0,0008</td>
</tr>
<tr>
<td>IMAM</td>
<td>0,417*</td>
<td>0,482**</td>
<td>0,271</td>
<td>0,424*</td>
<td>0,631**</td>
<td>0,576**</td>
<td>-0,375*</td>
<td>-0,377*</td>
<td>-0,377*</td>
</tr>
<tr>
<td>N</td>
<td>0,425*</td>
<td>0,156</td>
<td>0,204</td>
<td>0,543**</td>
<td>0,490**</td>
<td>0,227</td>
<td>0,539**</td>
<td>0,514**</td>
<td>0,312**</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.26 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO RECÍPROCA PARA Pinus sp

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TV143</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>0,298</td>
<td>0,161</td>
<td>0,057</td>
<td>0,355*</td>
<td>0,411*</td>
<td>0,360*</td>
<td>0,374*</td>
<td>0,353*</td>
<td>0,350*</td>
</tr>
<tr>
<td>DAP</td>
<td>0,298</td>
<td>0,023</td>
<td>0,134</td>
<td>0,429*</td>
<td>0,330</td>
<td>0,075</td>
<td>0,434*</td>
<td>0,404*</td>
<td>0,402*</td>
</tr>
<tr>
<td>DC</td>
<td>0,291</td>
<td>-0,001</td>
<td>0,138</td>
<td>0,424*</td>
<td>0,307</td>
<td>0,051</td>
<td>0,427*</td>
<td>0,395*</td>
<td>0,393*</td>
</tr>
<tr>
<td>DDOM</td>
<td>0,175</td>
<td>-0,090</td>
<td>0,167</td>
<td>0,341</td>
<td>0,154</td>
<td>-0,050</td>
<td>0,318</td>
<td>0,285</td>
<td>0,282</td>
</tr>
<tr>
<td>H</td>
<td>0,284</td>
<td>0,010</td>
<td>-0,015</td>
<td>0,396*</td>
<td>0,276</td>
<td>0,183</td>
<td>0,457**</td>
<td>0,433*</td>
<td>0,432*</td>
</tr>
<tr>
<td>HDOM</td>
<td>0,245</td>
<td>0,040</td>
<td>0,052</td>
<td>0,364*</td>
<td>0,247</td>
<td>0,173</td>
<td>0,392</td>
<td>0,377</td>
<td>0,378*</td>
</tr>
<tr>
<td>G</td>
<td>0,064</td>
<td>-0,210</td>
<td>-0,034</td>
<td>0,148</td>
<td>0,051</td>
<td>-0,130**</td>
<td>0,165</td>
<td>0,101</td>
<td>0,095</td>
</tr>
<tr>
<td>AB</td>
<td>-0,638**</td>
<td>-0,610**</td>
<td>-0,403*</td>
<td>-0,730**</td>
<td>-0,733**</td>
<td>-0,588</td>
<td>-0,699**</td>
<td>-0,757**</td>
<td>-0,764**</td>
</tr>
<tr>
<td>IMAG</td>
<td>-0,493**</td>
<td>-0,416*</td>
<td>-0,241</td>
<td>-0,559**</td>
<td>-0,644**</td>
<td>-0,547**</td>
<td>-0,554**</td>
<td>-0,551**</td>
<td>-0,551**</td>
</tr>
<tr>
<td>VCC</td>
<td>-0,130</td>
<td>-0,301</td>
<td>-0,202</td>
<td>-0,024</td>
<td>-0,206</td>
<td>-0,184</td>
<td>0,045</td>
<td>0,026</td>
<td>0,025</td>
</tr>
<tr>
<td>VSC</td>
<td>-0,071</td>
<td>-0,276</td>
<td>-0,173</td>
<td>0,042</td>
<td>-0,142</td>
<td>-0,146</td>
<td>0,112</td>
<td>0,091</td>
<td>-0,089</td>
</tr>
<tr>
<td>VST</td>
<td>-0,130</td>
<td>-0,301</td>
<td>-0,202</td>
<td>-0,024</td>
<td>-0,206</td>
<td>-0,184</td>
<td>0,045</td>
<td>0,026</td>
<td>0,025</td>
</tr>
<tr>
<td>IMAV</td>
<td>-0,352*</td>
<td>-0,490**</td>
<td>-0,257</td>
<td>-0,350*</td>
<td>-0,561**</td>
<td>-0,530**</td>
<td>-0,296</td>
<td>-0,308</td>
<td>-0,308</td>
</tr>
<tr>
<td>N</td>
<td>-0,402*</td>
<td>-0,197</td>
<td>-0,223</td>
<td>-0,526</td>
<td>-0,504**</td>
<td>-0,226</td>
<td>-0,513**</td>
<td>-0,493**</td>
<td>-0,491**</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
TABELA 4.27 - MATRIZ DE CORRELAÇÃO SEGUNDO A FUNÇÃO QUADRÁTICA PARA Pinus sp

<table>
<thead>
<tr>
<th></th>
<th>TM1</th>
<th>TM2</th>
<th>TM3</th>
<th>TM4</th>
<th>TM5</th>
<th>TM7</th>
<th>R43</th>
<th>DN43</th>
<th>TVI43</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>-0,299</td>
<td>-0,300</td>
<td>-0,257</td>
<td>-0,392*</td>
<td>-0,486**</td>
<td>-0,378*</td>
<td>-0,384*</td>
<td>-0,378*</td>
<td>-0,377*</td>
</tr>
<tr>
<td>DAP</td>
<td>-0,298</td>
<td>-0,118</td>
<td>-0,293</td>
<td>-0,433*</td>
<td>-0,332</td>
<td>-0,174</td>
<td>-0,426*</td>
<td>-0,423*</td>
<td>-0,426*</td>
</tr>
<tr>
<td>DG</td>
<td>-0,300</td>
<td>-0,120</td>
<td>-0,291</td>
<td>-0,435*</td>
<td>-0,308</td>
<td>-0,178</td>
<td>-0,426*</td>
<td>-0,422*</td>
<td>-0,425*</td>
</tr>
<tr>
<td>DDOM</td>
<td>-0,320</td>
<td>-0,160</td>
<td>-0,218</td>
<td>-0,382*</td>
<td>-0,137</td>
<td>0,196</td>
<td>-0,346</td>
<td>-0,332</td>
<td>-0,335</td>
</tr>
<tr>
<td>H</td>
<td>-0,292</td>
<td>-0,105</td>
<td>-0,265</td>
<td>-0,424*</td>
<td>-0,316</td>
<td>-0,243</td>
<td>-0,470**</td>
<td>-0,478**</td>
<td>-0,485**</td>
</tr>
<tr>
<td>HDOM</td>
<td>-0,253</td>
<td>-0,101</td>
<td>-0,263</td>
<td>-0,382</td>
<td>-0,269</td>
<td>-0,203</td>
<td>-0,391*</td>
<td>-0,394*</td>
<td>-0,399*</td>
</tr>
<tr>
<td>G</td>
<td>-0,322</td>
<td>-0,199</td>
<td>-0,113</td>
<td>-0,417</td>
<td>-0,252</td>
<td>-0,187</td>
<td>-0,391*</td>
<td>-0,401*</td>
<td>-0,407*</td>
</tr>
<tr>
<td>AB</td>
<td>0,721**</td>
<td>0,649**</td>
<td>0,485**</td>
<td>0,782**</td>
<td>0,818**</td>
<td>0,674**</td>
<td>0,754**</td>
<td>0,767**</td>
<td>0,769**</td>
</tr>
<tr>
<td>IMAG</td>
<td>0,447*</td>
<td>0,372*</td>
<td>0,324</td>
<td>0,546**</td>
<td>0,609**</td>
<td>0,528**</td>
<td>0,527**</td>
<td>0,522**</td>
<td>0,522**</td>
</tr>
<tr>
<td>VCC</td>
<td>0,205</td>
<td>0,325</td>
<td>0,219</td>
<td>0,135</td>
<td>0,253</td>
<td>0,275</td>
<td>-0,127</td>
<td>0,161</td>
<td>0,172</td>
</tr>
<tr>
<td>VSC</td>
<td>0,172</td>
<td>0,299</td>
<td>-0,212</td>
<td>0,135</td>
<td>0,197</td>
<td>0,253</td>
<td>-0,148</td>
<td>-0,178</td>
<td>-0,190</td>
</tr>
<tr>
<td>VST</td>
<td>0,205</td>
<td>0,325</td>
<td>0,219</td>
<td>0,135</td>
<td>0,253</td>
<td>0,275</td>
<td>-0,127</td>
<td>0,161</td>
<td>0,172</td>
</tr>
<tr>
<td>IMAV</td>
<td>0,462**</td>
<td>0,484**</td>
<td>0,359*</td>
<td>0,493**</td>
<td>0,712**</td>
<td>0,603**</td>
<td>0,435*</td>
<td>0,429*</td>
<td>0,427*</td>
</tr>
<tr>
<td>N</td>
<td>0,426*</td>
<td>-0,114</td>
<td>0,304</td>
<td>0,554**</td>
<td>0,445*</td>
<td>0,270</td>
<td>0,558**</td>
<td>0,553**</td>
<td>0,558**</td>
</tr>
</tbody>
</table>

* significativo a 95% ** significativo a 99%
O incremento médio anual em área basal (IMAG) foi a única variável de todo o estudo que foi melhor ajustada segundo a função recíproca \((1/Y = a+bX)\). Os coeficientes variaram, em valores absolutos, entre 0,471 e 0,644.

Embora as variáveis volumétricas não tenham apresentado correlação significativa, o incremento médio anual em volume (IMAV) mostrou ser a segunda variável melhor correlacionada, com valores entre 0,459 e 0,712.

A relação com densidade \((N)\) foi positiva mas ficou restrita à faixa entre 0,485 e 0,558 em virtude da grande variabilidade desta variável em toda a população. Foi o segundo caso em que o índice de vegetação (R43) gerou o melhor ajuste.

Como se pode verificar, um número considerável de relações foram significativas a nível de 95 e 99% de probabilidade. Embora grande parte destas relações tenha apresentado coeficientes baixos, algumas podem ser consideradas como potenciais para gerar equações que estimem as variáveis dendrométricas, como é o caso de AB para **Araucaria angustifolia** e AB, IMAG, IMAV e N para **Pinus** sp.

No geral os melhores resultados foram produzidos pelas seguintes funções, em ordem decrescente:

<table>
<thead>
<tr>
<th>Araucaria angustifolia</th>
<th>Pinus sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrática</td>
<td>Quadrática</td>
</tr>
<tr>
<td>Linear</td>
<td>Linear</td>
</tr>
<tr>
<td>Exponencial</td>
<td>Exponencial</td>
</tr>
<tr>
<td>Multiplicativa</td>
<td>Reciprocá</td>
</tr>
<tr>
<td>Reciprocá</td>
<td>Multiplicativa</td>
</tr>
</tbody>
</table>
A função quadrática foi a que melhor se adequou aos dados de *Araucaria angustifolia* e *Pinus sp* nos capítulos 13 e 12 das variáveis, respectivamente.

A Tabela 4.28 apresenta um resumo das correlações para cada variável dependente, em termos da frequência e significância dos resultados. NS corresponde ao número de correlações não-significativas nos dois níveis considerados.

| TABELA 4.28 - FREQUÊNCIA E SIGNIFICÂNCIA DOS RESULTADOS OBTIDOS PELAS CORRELACÕES |
|------------------|------------------|------------------|
| | *Araucaria angustifolia* | *Pinus sp* |
| **VARIÁVEL** | **NS** | **95%** | **99%** | **NS** | **95%** | **99%** |
| IDA | 45 | 00 | 00 | 20 | 24 | 01 |
| DAP | 45 | 00 | 00 | 25 | 20 | 00 |
| DG | 45 | 00 | 00 | 25 | 20 | 00 |
| DDOM | 27 | 18 | 00 | 44 | 01 | 00 |
| H | 39 | 06 | 00 | 25 | 14 | 06 |
| HDOM | 24 | 08 | 13 | 25 | 20 | 00 |
| G | 45 | 00 | 00 | 41 | 04 | 00 |
| AB | 19 | 08 | 18 | 00 | 04 | 41 |
| IMAG | 34 | 11 | 00 | 06 | 06 | 33 |
| VCC | 35 | 06 | 04 | 45 | 00 | 00 |
| VSC | 32 | 09 | 04 | 45 | 00 | 00 |
| VST | 35 | 06 | 04 | 45 | 00 | 00 |
| IMAV | 33 | 08 | 04 | 07 | 19 | 19 |
| N | 45 | 00 | 00 | 26 | 07 | 22 |
| **TOTAL** | 80 | 47 | | 139 | 122 |

Foram determinados os parâmetros de regressão (coeficiente de determinação, valor de t, nível de significância da equação), feita a análise de variância e
gerados os gráficos de distribuição de resíduos para todas as 169 correlações significativas a 99%.

Os resultados dos valores dos coeficientes de determinação ajustados para graus de liberdade, coeficiente de correlação, erro padrão da estimativa e valor de F das equações obtidas para as duas espécies encontram-se nos Apêndices G e H.

4.6 - SELEÇÃO DAS EQUAÇÕES

Para a seleção das equações foram utilizados os resultados dos Apêndices G e H e os gráficos de análise de resíduos, como estabelecido nos critérios de seleção (item 3.2.7). Levando em consideração todos estes aspectos, foram selecionadas as equações apresentadas nas Tabelas 4.29 e 4.30.

No item 4.5.3, à exceção de IMAG de Pinus, em todas as correlações a função quadrática foi a que melhor se ajustou aos dados. Porém quando se trata de análise de regressão, a função quadrática nem sempre é a que melhor representa uma relação em virtude do número de graus de liberdade para o modelo na análise de variância.

Para a função quadrática, a análise considera dois graus de liberdade enquanto para as funções lineares e logarítmicas considera apenas um. Desta forma, os valores de F-calculado para a função quadrática são 50% menores do que para as outras. Verificou-se então que os valores de F obtidos para as equações de Araucaria nunca foram significativos, optando-se pela função linear.

Para Pinus, algumas variáveis (IMAV, IDA e AB) apresentaram valores de F-calculado significativos
mesmo sendo menores que os obtidos para a função linear, sendo selecionada a função quadrática.

Considerando os dados de Araucaria, AB foi a variável que gerou o maior coeficiente de determinação ajustado para graus de liberdade (R^2), embora este explicasse somente 35,94% da variação total. O erro estimado para esta variável foi de 13,66%, o que pode ser considerado razoável para obtenção de informações em um nível inicial.

O baixo valor do coeficiente de determinação pode ser atribuído à existência de observações que geram resíduos de grande valor e que influenciam os parâmetros de regressão e, talvez, à inadequabilidade do método de mínimos quadrados para o cálculo destes parâmetros. Segundo Elian (1988), embora o método dos mínimos quadrados produza parâmetros "pobres", não necessariamente a equação por ele gerada vá produzir estimativas "pobres". Seria o caso em que o método dos mínimos quadrados ponderados seria mais adequado para o cálculo dos parâmetros de regressão.
<table>
<thead>
<tr>
<th>VAR. DEP.</th>
<th>VAR. IND.</th>
<th>FUNÇÃO</th>
<th>R2</th>
<th>R2 AJUST.</th>
<th>ERRO (%)</th>
<th>COEFICIENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>TM5</td>
<td>LINEAR</td>
<td>0,3698</td>
<td>0,3594</td>
<td>13,66</td>
<td>19,31350</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM5</td>
<td>LINEAR</td>
<td>0,1142</td>
<td>0,0996</td>
<td>31,29</td>
<td>4,53711</td>
</tr>
<tr>
<td>VCC</td>
<td>TM5</td>
<td>LINEAR</td>
<td>0,1337</td>
<td>0,1194</td>
<td>27,01</td>
<td>159,28000</td>
</tr>
<tr>
<td>VSC</td>
<td>TM5</td>
<td>LINEAR</td>
<td>0,1451</td>
<td>0,1310</td>
<td>28,41</td>
<td>112,02200</td>
</tr>
<tr>
<td>VST</td>
<td>TM5</td>
<td>LINEAR</td>
<td>0,1337</td>
<td>0,1194</td>
<td>27,01</td>
<td>237,39200</td>
</tr>
<tr>
<td>HDOM</td>
<td>DN43</td>
<td>LINEAR</td>
<td>0,1172</td>
<td>0,1027</td>
<td>12,61</td>
<td>23,56150</td>
</tr>
<tr>
<td>VAR.</td>
<td>VAR.</td>
<td>FUNÇÃO</td>
<td>R²</td>
<td>R²</td>
<td>ERRO (%)</td>
<td>A</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>----</td>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AJUST.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMAV</td>
<td>TM5</td>
<td>QUADRÁTICA</td>
<td>0,5076</td>
<td>0,4906</td>
<td>13,58</td>
<td>27,83335</td>
</tr>
<tr>
<td>IMAG</td>
<td>TM5</td>
<td>RECÍPROCA</td>
<td>0,4150</td>
<td>0,3948</td>
<td>19,41</td>
<td>0,78382</td>
</tr>
<tr>
<td>N</td>
<td>R43</td>
<td>LINEAR</td>
<td>0,5365</td>
<td>0,5205</td>
<td>32,13</td>
<td>-314,12400</td>
</tr>
<tr>
<td>H</td>
<td>R43</td>
<td>LINEAR</td>
<td>0,2107</td>
<td>0,1834</td>
<td>12,74</td>
<td>32,66170</td>
</tr>
<tr>
<td>IDA</td>
<td>TM5</td>
<td>QUADRÁTICA</td>
<td>0,2371</td>
<td>0,2107</td>
<td>15,31</td>
<td>16,09505</td>
</tr>
<tr>
<td>AB</td>
<td>TM5</td>
<td>QUADRÁTICA</td>
<td>0,6707</td>
<td>0,6593</td>
<td>8,96</td>
<td>-2,07111</td>
</tr>
</tbody>
</table>
O mesmo comportamento foi verificado para HDOM, que apresentou um erro de 12,61% embora sua relação com o índice DN43 tenha apresentado um R^2 de 0,102. Uma relação consistente entre esta variável e dados digitais seria de grande valia, uma vez que permitiria a entrada em tabelas de índice de sitio e de produção elaboradas pelos métodos convencionais para obtenção de volume com pequena margem de erro.

As três variáveis volumétricas apresentaram coeficientes de determinação explicando apenas entre 11,94 a 13,10% da variação total, com erro sempre muito próximo a 27%, o que é muito alto para fins de planejamento. Da mesma forma, IMAV apresentou os mesmos problemas, com o erro atingindo 31,29%.

Para Pinus, AB apresentou a melhor equação de regressão de todo o estudo considerando apenas uma variável independente. A equação obtida explica 65,93% da variação total ($R = 0,8189$), gerando um erro de 8,96% e satisfazendo o quarto objetivo proposto no trabalho (erro da estimativa menor que 10%).

IDA gerou uma equação com baixo R^2 (0,2107) mas com erro igualmente baixo (15,31%). Uma maior consistência nesta relação poderia fornecer mapas de classes naturais de idade, o que seria de grande utilidade para diversos trabalhos de avaliação florestal.

A relação de N com R43 gerou o maior erro entre as equações selecionadas, com um valor de 32,13%, reflexo da grande amplitude dos dados dendrométricos observados. Apesar do coeficiente ser maior que o de IDA, o erro foi duas vezes maior.
H apresentou os mesmos problemas de EN para Araucaria, mas o erro foi baixo (12,74%). Os dois incrementos (IMAG e IMAV) geraram equações com erros de 19,41 e 13,58%, respectivamente. Seria possível obter uma noção do volume através do produto entre o resultado obtido pela equação de IMAV e a idade do talhão considerada.

As Figuras 4.4 a 4.27 apresentam a plotagem das relações selecionadas e distribuição dos resíduos padronizados para ambas as espécies. A linha cheia central dos gráficos de resíduos representa a posição zero (0) em torno da qual os resíduos devem estar centralizados, e as duas linhas tracejadas representam os limites +1,64 e -1,64. Resíduos fora deste intervalo foram considerados "outliers".
Fig. 4.4 - Distribuição dos pontos de AB em função da banda TM5 para *Araucaria angustifolia*.

Fig. 4.5 - Distribuição dos resíduos padronizados para a variável AB de *Araucaria angustifolia*.
Fig. 4.6 - Distribuição dos pontos de HDOM em função de DN43 para Araucaria angustifolia.

Fig. 4.7 - Distribuição dos resíduos padronizados para a variável HDOM de Araucaria angustifolia.
Fig. 4.8 - Distribuição dos pontos de VCC em função da banda TM5 para Araucaria angustifolia.

Fig. 4.9 - Distribuição dos resíduos padronizados para a variável VCC de Araucaria angustifolia.
Fig. 4.10 - Distribuição dos pontos de VSC em função da banda TM5 para Araucaria angustifolia.

Fig. 4.11 - Distribuição dos resíduos padronizados para a variável VSC de Araucaria angustifolia.
Fig. 4.12 - Distribuição dos pontos de VST em função da banda TM5 para *Araucaria angustifolia*.

Fig. 4.13 - Distribuição dos resíduos padronizados para a variável VST de *Araucaria angustifolia*.
Fig. 4.14 - Distribuição dos pontos de IMAV em função da banda TM5 para *Araucaria angustifolia*.

Fig. 4.15 - Distribuição dos resíduos padronizados para a variável IMAV de *Araucaria angustifolia*.
Fig. 4.16 - Distribuição dos pontos de AB em função da banda TM5 para Pinus sp.

Fig. 4.17 - Distribuição dos resíduos padronizados para a variável AB de Pinus sp.
Fig. 4.18 - Distribuição dos pontos de IMAG em função da banda TM5 para Pinus sp.

Fig. 4.19 - Distribuição dos resíduos padronizados para a variável IMAG de Pinus sp.
Fig. 4.20 - Distribuição dos pontos de H em função de $R43$ para Pinus sp.

Fig. 4.21 - Distribuição dos resíduos padronizados para a variável H de Pinus sp.
Fig. 4.22 - Distribuição dos pontos de IMAV em função da banda TM5 para Pinus sp.

Fig. 4.23 - Distribuição dos resíduos padronizados para a variável IMAV de Pinus sp.
Fig. 4.24 - Distribuição dos pontos de \(N \) em função de \(R_{43} \) TM5 para Pinus sp.

Fig. 4.25 - Distribuição dos resíduos padronizados para a variável \(N \) de Pinus sp.
Fig. 4.26 - Distribuição dos pontos de IDA em função da banda TM5 para Pinus sp.

Fig. 4.27 - Distribuição dos resíduos padronizados para a variável IDA de Pinus sp.
No caso de um bom ajuste, espera-se que os resíduos sejam um ruído branco, ou seja, estejam centrados em zero e não apresentem nenhum tipo de estrutura. Os resíduos devem ser pequenos em valor absoluto quando comparados com o valor estimado de Y (Pinheiro, 1988).

Os resíduos foram divididos em quatro classes de valores absolutos (0,0-0,5; 0,5-1,0; 1,0-1,64; + de 1,64) e analisados quanto à sua frequência e sinal (+ ou -). A estatística "d" de Durbin-Watson foi empregada para verificar a existência de correlação entre os resíduos. Os resultados podem ser observados na Tabela 4.31 para Araucaria e na Tabela 4.32 para Pinus. Nestas tabelas, "n1" corresponde ao número de resíduos com sinal positivo, "n2" ao número de resíduos com sinal negativo, "u" ao número de variações no sinal e "d" ao valor da estatística de Durbin-Watson.

TABELA 4.31 - FREQUÊNCIA DOS RESÍDUOS POR CLASSE E ESTATÍSTICA DE DURBIN-WATSON PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th>VAR</th>
<th>0,0-0,5</th>
<th>0,5-1,0</th>
<th>1,0-1,64</th>
<th>>1,64</th>
<th>n1</th>
<th>n2</th>
<th>u</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>27</td>
<td>19</td>
<td>12</td>
<td>05</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>1,54</td>
</tr>
<tr>
<td>HDOM</td>
<td>27</td>
<td>15</td>
<td>15</td>
<td>06</td>
<td>30</td>
<td>33</td>
<td>22</td>
<td>1,65</td>
</tr>
<tr>
<td>VCC</td>
<td>28</td>
<td>21</td>
<td>08</td>
<td>06</td>
<td>32</td>
<td>31</td>
<td>26</td>
<td>1,31</td>
</tr>
<tr>
<td>VSC</td>
<td>25</td>
<td>23</td>
<td>09</td>
<td>06</td>
<td>31</td>
<td>32</td>
<td>28</td>
<td>1,37</td>
</tr>
<tr>
<td>VST</td>
<td>28</td>
<td>21</td>
<td>08</td>
<td>06</td>
<td>32</td>
<td>31</td>
<td>26</td>
<td>1,31</td>
</tr>
<tr>
<td>IMAV</td>
<td>27</td>
<td>18</td>
<td>12</td>
<td>06</td>
<td>31</td>
<td>32</td>
<td>29</td>
<td>1,54</td>
</tr>
</tbody>
</table>

Os gráficos de Araucaria apresentaram 66 a 77% dos resíduos entre 0 e 1, mostrando a ocorrência de 4 a 6 "outliers" dependendo da variável considerada. Os sinais apresentaram-se bem distribuídos não se verificando tendência positiva ou negativa, à exceção de IDA, onde a diferença foi maior (19 "+" e 12 "-"). A variação da troca
de sinal (u) indica também que não houve sequências longas
de sinal de mesma magnitude. À exceção de HDOM, as demais
variáveis não apresentaram correlação entre os resíduos,
segundo o teste de Durbin-Watson.

| TABELA 4.32 - FREQUÊNCIA DOS RESÍDUOS POR CLASSE E |
| ESTATÍSTICA DE DURBIN-WATSON PARA Pinus sp |

<table>
<thead>
<tr>
<th>VAR</th>
<th>0,0-0,5</th>
<th>0,5-1,0</th>
<th>1,0-1,64</th>
<th>>1,64</th>
<th>n1</th>
<th>n2</th>
<th>u</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAV</td>
<td>14</td>
<td>10</td>
<td>05</td>
<td>02</td>
<td>17</td>
<td>14</td>
<td>21</td>
<td>2,67</td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>06</td>
<td>08</td>
<td>02</td>
<td>17</td>
<td>14</td>
<td>17</td>
<td>2,30</td>
</tr>
<tr>
<td>H</td>
<td>13</td>
<td>06</td>
<td>10</td>
<td>02</td>
<td>18</td>
<td>13</td>
<td>17</td>
<td>2,29</td>
</tr>
<tr>
<td>IDA</td>
<td>19</td>
<td>06</td>
<td>03</td>
<td>03</td>
<td>19</td>
<td>12</td>
<td>16</td>
<td>2,02</td>
</tr>
<tr>
<td>AB</td>
<td>12</td>
<td>10</td>
<td>07</td>
<td>02</td>
<td>16</td>
<td>15</td>
<td>19</td>
<td>2,10</td>
</tr>
<tr>
<td>IMAG</td>
<td>13</td>
<td>10</td>
<td>06</td>
<td>02</td>
<td>12</td>
<td>19</td>
<td>18</td>
<td>2,68</td>
</tr>
</tbody>
</table>

Os gráficos de Pinus apresentaram 61 a 80% dos resíduos entre 0 e 1, indicando a existência de 2 a 3 "outliers". A distribuição dos sinais não foi tão uniforme quanto em Araucaria, mas também não demonstrou nenhuma tendência positiva ou negativa. Os valores de "u" foram altos em relação ao número de dados (16 a 21 para n=31). Todas as variáveis apresentaram alguma correlação entre os resíduos segundo o teste de Durbin-Watson.

Percebe-se que a quase totalidade dos pontos encontra-se dentro do intervalo -2,+2, o que demonstra que há uma certa aleatoriedade dos valores residuais, não evidenciando deficiências no modelo de regressão adotado (Santos, 1988a). Como mencionado anteriormente, os pontos fora do intervalo -1,64;+1,64 foram considerados "outliers".

A título de ilustração foram reprocessadas as regressões cujas equações foram selecionadas para verificar
a influência destes pontos. A Tabela 4.33 apresenta estes resultados para Araucaria angustifolia e a Tabela 4.34 para Pinus sp. O erro das estimativas diminuiu entre 2,48 e 10,43% para Araucaria e entre 1,20 e 6,47% para Pinus.

Para IMAV de Araucaria, os 6 "outliers" detectados consistiam dados muito discrepantes, e uma vez removidos, permitiram observar que a correlação aumentou de 0,337 para 0,515, fazendo com que o erro das estimativas diminuísse de 31,29 para 20,86%.

TABELA 4.33 - RESULTADOS DA INFLUÊNCIA DOS "OUTLIERS" NAS EQUAÇÕES DE REGRESSÃO SELECIONADAS PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th>VAR</th>
<th>COM OUTLIERS</th>
<th>SEM OUTLIERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>AB</td>
<td>63</td>
<td>0,608</td>
</tr>
<tr>
<td>IMAV</td>
<td>63</td>
<td>0,337</td>
</tr>
<tr>
<td>VCC</td>
<td>63</td>
<td>0,365</td>
</tr>
<tr>
<td>VSC</td>
<td>63</td>
<td>0,380</td>
</tr>
<tr>
<td>VST</td>
<td>63</td>
<td>0,365</td>
</tr>
<tr>
<td>HDOM</td>
<td>63</td>
<td>-0,342</td>
</tr>
</tbody>
</table>

De maneira análoga, o erro para os dados de Pinus diminuiu consideravelmente ao serem removidos os "outliers". Todavia, no caso das variáveis N e H, a correlação diminuiu, indicando que os dois pares de dados removidos são informações discrepantes mas não inconsistentes, e que auxiliam na obtenção de uma equação com maior precisão.
TABELA 4.34 - RESULTADOS DA INFLUÊNCIA DOS "OUTLIERS" NAS EQUAÇÕES DE REGRESSÃO SELECIONADAS PARA Pinus sp

VAR	COM OUTLIERS		SEM OUTLIERS					
	N	R	R^2	ERRO (%)	N	R	R^2	ERRO (%)
IMAV	31	0,712	0,490	13,58	29	0,842	0,698	9,60
N	31	0,536	0,262	32,13	29	0,503	0,225	26,05
H	31	-0,459	0,183	12,75	29	-0,425	0,151	10,49
IDA	31	-0,486	0,210	15,31	28	-0,692	0,458	8,84
IMAG	31	0,589	0,324	23,28	29	0,673	0,433	18,64
AB	31	0,818	0,659	8,96	29	0,822	0,664	7,76

4.7 - REGRESSÃO MULTIPLA

Nessa última fase os dados foram processados através do procedimento "Stepwise" para determinar possíveis contribuições para a geração de equações com duas ou mais variáveis independentes.

A Tabela 4.35 apresenta as equações selecionadas e seus parâmetros para Araucaria angustifolia e Pinus sp. Os resultados de todas as combinações significativas encontram-se no Apêndice I.
<table>
<thead>
<tr>
<th>ESP</th>
<th>VAR. DEP.</th>
<th>VAR. IND.</th>
<th>R²</th>
<th>R² AJUST.</th>
<th>ERRO (%)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>AB</td>
<td>TM5</td>
<td>0,7362</td>
<td>0,7271</td>
<td>8,16</td>
<td>-2339,81223</td>
<td>0,97765</td>
<td>-1469,52172</td>
<td>3100,71112</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DN43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARA</td>
<td>HDOM</td>
<td>TM5</td>
<td>0,2346</td>
<td>0,2220</td>
<td>11,94</td>
<td>47,03956</td>
<td>0,27005</td>
<td>-0,63504</td>
<td>-33,04135</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARA</td>
<td>VCC</td>
<td>TM3</td>
<td>0,2980</td>
<td>0,2864</td>
<td>24,94</td>
<td>655,41299</td>
<td>29,95832</td>
<td>10,43302</td>
<td>-36,37127</td>
<td>-750,54107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARA</td>
<td>VSC</td>
<td>TM3</td>
<td>0,2984</td>
<td>0,2868</td>
<td>26,39</td>
<td>475,20408</td>
<td>23,27741</td>
<td>8,67731</td>
<td>-28,71173</td>
<td>-561,86270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARA</td>
<td>VST</td>
<td>TM3</td>
<td>0,2979</td>
<td>0,22863</td>
<td>24,94</td>
<td>976,21209</td>
<td>44,65730</td>
<td>15,53630</td>
<td>-54,18517</td>
<td>-1118,03372</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
O fato de haverem 123 correlações significativas para Araucaria e 262 para Pinus não implicou na existência de muitas correlações múltiplas significativas, devido à redundância de informações causada pela alta correlação entre algumas bandas e/ou índices de vegetação.

Na presença de multicolinearidade, as estimativas dos coeficientes de regressão se tornam sensíveis a pequenas variações e a precisão das estimativas diminui. Algumas variáveis podem ser eliminadas pelo Stepwise quando na verdade são necessárias.

Para o estrato de *Araucaria angustifolia*, apenas quatro variáveis apresentaram equações com resultados significativos: HDOM, VCC, VSC e VST. Apesar de a variável AB ter apresentado correlação significativa a 99% com quatro bandas isoladas (TM1, TM2, TM3 e TM5), nenhuma combinação de bandas foi significativa nesta fase.

Para a variável HDOM, a melhor combinação resultou como função de TM5/TM7/TVI43. A exemplo do que se verificou no caso de regressão simples, apesar dos resultados pobres para os parâmetros de regressão as estimativas obtidas foram consideravelmente boas, com um erro padrão de 11,94%.

Os três tipos de volume (VCC, VSC e VST) apresentaram-se melhor correlacionados com a combinação TM3/TM5/TM7/TVI43, mas o erro resultante das estimativas foi sempre próximo a 25%.

Não houve nenhuma equação com duas variáveis independentes que tenha se mostrado significativa, em função do valor de F obtido pela análise de variância. As figuras 4.28 a 4.35 apresentam a distribuição dos pontos de
acordo com as relações estabelecidas e os resíduos padronizados para estas quatro equações.

Para *Pinus* sp a única variável que gerou resultados foi AB. A associação de dados da banda TM5, DN43 e TVI43 resultou em três equações e melhorou o coeficiente de determinação, reduzindo o erro padrão das estimativas. As figuras 4.36 a 4.41 mostram a distribuição dos pontos de acordo com as relações e os resíduos padronizados para estas três equações.

Em relação aos resíduos, a Tabela 4.36 apresenta a análise de frequência e magnitude. Para *Araucaria*, 68 a 69% dos resíduos são menores que 1 e para *Pinus* 70 a 77%. Para AB de *Pinus*, o número de outliers aumentou de 2 para 4 e para as variáveis de volume de *Araucaria* permaneceu igual. O teste de Durbin-Watson mais uma vez revelou que não há correlação para os resíduos de *Araucaria* e que há correlação para os de *Pinus*.
Fig. 4.28 - Distribuição dos pontos de HDOM em função de TM5/TM7/TVI43 para Araucaria angustifolia.

Fig. 4.29 - Distribuição dos resíduos padronizados de HDOM para Araucaria angustifolia.
Fig. 4.30 - Distribuição dos pontos de VCC em função de TM3/TM5/TM7/TVI43 para Araucaria angustifolia.

Fig. 4.31 - Distribuição dos resíduos padronizados de VCC para Araucaria angustifolia.
Fig. 4.32 - Distribuição dos pontos de VSC em função de TM3/TM5/TM7/TVI43 para *Araucaria angustifolia*.

Fig. 4.33 - Distribuição dos resíduos padronizados de VSC para *Araucaria angustifolia*.
Fig. 4.34 - Distribuição dos pontos de VST em função de TM3/TM5/TM7/TVI43 para Araucaria angustifolia.

Fig. 4.35 - Distribuição dos resíduos padronizados de VST para Araucaria angustifolia.
Fig. 4.36 - Distribuição dos pontos de AB em função de TM5/DN43 para *Pinus* sp.

Fig. 4.37 - Distribuição dos resíduos padronizados de AB em função de TM5/DN43 para *Pinus* sp.
Fig. 4.38 - Distribuição dos pontos de AB em função de TM5/TVI43 para Pinus sp.

Fig. 4.39 - Distribuição dos resíduos padronizados de AB em função de TM5/TVI43 para Pinus sp.
Fig. 4.40 - Distribuição dos pontos de IDA em função de TM5/DN43/TVI43 para Pinus sp.

Fig. 4.41 - Distribuição dos resíduos padronizados de AB em função de TM5/DN43/TVI43 para Pinus sp.
TABELA 4.36 - FREQUÊNCIA DOS RESÍDUOS POR CLASSE E TESTE DE DURBIN-WATSON PARA AS EQUAÇÕES DE REGRESSÃO MÚLTIPLA

<table>
<thead>
<tr>
<th>VAR</th>
<th>0,0-0,5</th>
<th>0,51-1,00</th>
<th>1,01-1,64</th>
<th>>1,64</th>
<th>n1</th>
<th>n2</th>
<th>u</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDOM</td>
<td>26</td>
<td>18</td>
<td>15</td>
<td>04</td>
<td>31</td>
<td>32</td>
<td>22</td>
<td>1,49</td>
</tr>
<tr>
<td>VCC</td>
<td>28</td>
<td>15</td>
<td>14</td>
<td>06</td>
<td>35</td>
<td>28</td>
<td>27</td>
<td>1,30</td>
</tr>
<tr>
<td>VSC</td>
<td>27</td>
<td>17</td>
<td>13</td>
<td>06</td>
<td>35</td>
<td>28</td>
<td>27</td>
<td>1,37</td>
</tr>
<tr>
<td>VST</td>
<td>28</td>
<td>15</td>
<td>14</td>
<td>06</td>
<td>35</td>
<td>28</td>
<td>27</td>
<td>1,30</td>
</tr>
<tr>
<td>AB(1)</td>
<td>13</td>
<td>11</td>
<td>05</td>
<td>02</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>2,08</td>
</tr>
<tr>
<td>AB(2)</td>
<td>11</td>
<td>11</td>
<td>05</td>
<td>04</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>1,93</td>
</tr>
<tr>
<td>AB(3)</td>
<td>11</td>
<td>11</td>
<td>05</td>
<td>04</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>1,92</td>
</tr>
</tbody>
</table>

Da mesma forma que no item anterior, as equações geradas pelo Stepwise foram reprocessadas para verificar a influência dos outliers definidos pela análise de resíduos. Os resultados são apresentados na Tabela 4.37. AB(1) refere-se a AB em função de TM5/DN43/TVI43, AB(2) refere-se a AB em função de TM5/DN43 e AB(3) refere-se a AB em função de TM5/TVI43.

A equação selecionada para AB de Pinus consegue explicar, na ausência dos outliers, 82,2% da variação da resposta captada pelo sensor na banda TM5 como sendo causada pela variação na área basal. Para Araucaria, as 4 equações melhoraram seu coeficiente de determinação, com os três tipos de volume apresentando correlação próxima a 0,7.
TABELA 4.37 - RESULTADOS DA INFLUÊNCIA DOS "OUTLIERS" NAS EQUAÇÕES DE REGRESSÃO MÚLTIPLA

<table>
<thead>
<tr>
<th>VAR</th>
<th>Sp</th>
<th>N</th>
<th>R</th>
<th>R²</th>
<th>ERRO (%)</th>
<th></th>
<th>N</th>
<th>R</th>
<th>R²</th>
<th>ERRO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDOM</td>
<td>Aa</td>
<td>63</td>
<td>-0.484</td>
<td>0.222</td>
<td>11.94</td>
<td></td>
<td>59</td>
<td>-0.546</td>
<td>0.286</td>
<td>10.26</td>
</tr>
<tr>
<td>VCC</td>
<td>Aa</td>
<td>63</td>
<td>0.545</td>
<td>0.286</td>
<td>24.94</td>
<td></td>
<td>57</td>
<td>0.687</td>
<td>0.463</td>
<td>17.55</td>
</tr>
<tr>
<td>VSC</td>
<td>Aa</td>
<td>63</td>
<td>0.546</td>
<td>0.286</td>
<td>26.39</td>
<td></td>
<td>57</td>
<td>0.691</td>
<td>0.468</td>
<td>18.51</td>
</tr>
<tr>
<td>VST</td>
<td>Aa</td>
<td>63</td>
<td>0.545</td>
<td>0.286</td>
<td>24.94</td>
<td></td>
<td>57</td>
<td>0.687</td>
<td>0.463</td>
<td>17.55</td>
</tr>
<tr>
<td>AB(1)</td>
<td>P</td>
<td>31</td>
<td>0.858</td>
<td>0.727</td>
<td>8.16</td>
<td></td>
<td>29</td>
<td>0.910</td>
<td>0.822</td>
<td>6.65</td>
</tr>
<tr>
<td>AB(2)</td>
<td>P</td>
<td>31</td>
<td>0.819</td>
<td>0.660</td>
<td>8.95</td>
<td></td>
<td>27</td>
<td>0.836</td>
<td>0.688</td>
<td>7.32</td>
</tr>
<tr>
<td>AB(3)</td>
<td>P</td>
<td>31</td>
<td>0.821</td>
<td>0.664</td>
<td>8.89</td>
<td></td>
<td>27</td>
<td>0.838</td>
<td>0.691</td>
<td>7.28</td>
</tr>
</tbody>
</table>
CAPÍTULO 5

CONCLUSÕES E RECOMENDAÇÕES

A definição dos sitios naturais com base nos fatores secundários (solo e vegetação) permitiu estabelecer diferenças em termos de produção de madeira e delimitar a área de cada sitio, fornecendo subsídios para diversas atividades relacionadas ao manejo dos povoamentos.

O inventário florestal, além de gerar informações estratificadas, resultou em erros de amostragem consideravelmente baixos, de 3,60% para Araucaria angustifolia e de 3,99% para Pinus sp, confirmando as informações existentes na literatura sobre a vantagem de se empregar o processo de amostragem estratificada, desde que se disponha de informações sobre o tamanho dos estratos.

A relação entre dados espectrais e variáveis dendrométricas em florestas homogêneas apresentou uma série de resultados significativos, mas em geral pobres. Algumas variáveis como área basal e os incrementos médios anuais em área basal e volume apresentaram valores de correlação mais elevados, demonstrando que é possível, dentro das limitações impostas pela metodologia empregada, caracterizar quantitativamente algumas variáveis relacionadas com as condições do povoamento mesmo que elas não sejam medidas diretamente pelo sensor.

A resposta espectral do sitio não está diretamente vinculada com a sua produtividade. A importância do sitio reside no fato de que é um elemento auxiliar na determinação de variáveis dendrométricas com maior precisão.
A função que melhor ajustou os dados dendrométricos a partir dos dados digitais TM foi a função quadrática, analisando-se apenas os coeficientes de correlação e determinação. Todavia, considerando uma única variável independente, a função linear foi empregada em oito das doze equações selecionadas em função do valor de F na análise de variância. Para as variáveis incremento médio anual em volume (IMAV), área basal (AB) e idade (IDA) de *Pinus* sp a função quadrática ajustou melhor os dados mantendo os valores de F significativos.

No que diz respeito a determinação da melhor banda comovariável independente, a banda TM5 demonstrou maior potencial para distinguir pequenas variações dentro de uma mesma espécie, sendo empregada em nove das doze equações selecionadas. Os índices de vegetação apresentaram-se melhor correlacionados apenas com altura dominante (HDOM) em *Araucaria angustifolia* e com altura (H) e densidade (N) em *Pinus* sp.

Na regressão múltipla apenas sete das combinações possíveis mostraram-se significativas, definindo as variáveis TM3, TM5, TM7 e TVI43 para *Araucaria angustifolia* e TM5, DN43 e TVI43 para *Pinus* sp como as que mais contribuem para geração de equações com mais de uma variável independente.

O erro gerado pelas equações selecionadas variou entre 11,94 e 31,29% para *Araucaria angustifolia* e entre 8,16 e 32,13% para *Pinus* sp. A única variável estimada com erro inferior a 10% foi área basal (AB) de *Pinus* sp, com um erro de 8,16% na regressão múltipla e de 8,96% na regressão simples segundo a função quadrática.

As variáveis HDOM e AB de *Araucaria* e IMAV, H e IDA de *Pinus* poderiam ser estimadas com erros variando
entre 11,94 e 15,31%, permitindo a obtenção de informações preliminares de maneira rápida e de baixo custo.

A estimativa de variáveis dendrométricas considerando a relação entre a resposta espectral e a produtividade florestal pode vir a ser um fator fundamental na diminuição de custos operacionais do inventário florestal, uma vez que os sistemas convencionais de levantamento de dados tem seu custo onerado justamente na fase de coleta de dados. Esta afirmação está baseada no fato de que a tecnologia e o conhecimento hoje disponíveis oferecem condições para que se possa extrair mais informações das imagens.

A associação das informações obtidas por métodos florestais convencionais e das informações obtidas por algoritmos que consideram a resposta espectral tende a produzir resultados mais precisos na área do manejo florestal, lembrando que o sensoriamento remoto deve ser encarado como um dos meios auxiliares para a solução dos problemas, otimizando as tarefas do planejamento florestal.

Para a continuidade do trabalho, poderiam ser destacadas as seguintes sugestões:

Como diversas amostras tiveram seus valores digitais médios acrescidos em função de um único pixel com valor mais elevado em relação aos outros três pixels da janela, seria interessante avaliar a influência do tamanho da janela de amostragem na leitura dos pixels, testando diferentes valores.

Incluir na lista de variáveis independentes razões como as apresentadas por Ahern et al. (sd.), denominadas "Índices de Condição da Vegetação", verificando a contribuição destes índices na geração de equações mais
precisas. Empregar também índices com a banda TM5, em função do seu potencial em distinguir mais facilmente as pequenas variações dentro de uma mesma espécie.

Testar a metodologia nas Florestas Nacionais de Canela (RS), São Francisco de Paula (RS), Caçador (SC) e Chapecó (SC), onde foram realizados estudos empregando a mesma metodologia de levantamento de dados com base no inventário de sitios naturais.

Testar a metodologia em povoamentos de espécies não manejadas em regime de desbaste, como *Eucalyptus* spp, onde as estimativas devem ser mais precisas justamente em função de não haver influência de intervenções periódicas no desenvolvimento dos indivíduos. No processamento dos dados, empregar o método de mínimos quadrados ponderados para o cálculo dos parâmetros de regressão e verificar a sua adequabilidade.

Desenvolver uma metodologia que associe dados na forma de planos de informação georreferenciados e processamento digital de imagens para geração de mapas de sitio, uma vez que o método empregado neste trabalho mostrou-se oneroso e exigiu pessoal altamente capacitado para determinação das linhas de transição entre os sitios no campo.

Com o lançamento de sensores que operam na faixa de microondas, o estudo de variáveis dendrométricas tende a apresentar melhores resultados, uma vez que será possível obter informações inerentes a estrutura da floresta (tronco e copa) de maneira distinta à dos instrumentos eletro-ópticos. Do mesmo modo, o desenvolvimento de novos sensores com maior resolução espacial e maior discriminação espectral (EOS) deve vir a fornecer maiores subsídios para estudos da cobertura
vegetal, relacionando suas características quantitativas com a resposta captada à nível orbital.
REFERÊNCIAS BIBLIOGRÁFICAS

Ahern, F.J.; Erdle, T.; Maclean, D.A.; Kneppeck, I.D. A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements. s.n.t.

Hagner, O. Computer aided forest stand delineation and inventory based on satellite remote sensing. The usability of remote sensing for forest planning and inventory. IUFRO Workshop, Umeå. 1990.

Honer, T.G. Weight relationships in opened and forest grown balsam fir trees. IUFRO Congress of Biomass Studies, 15., Gainsville, 1971.

Schneider, P.R. Programa SMALLI para cubagem. Santa Maria, UFSM, 1982. Programa de computador.

Schneider, P.R. Diretrizes básicas para confecção de Plano de Ordenamento. Espaço Florestal, 1(2):4-12, set. 1985.

Schneider, P.R. Manejo Florestal: tópicos de planejamento da produção florestal. Santa Maria, UFSM, Departamento de Ciências Florestais, 1986. 289 p. (Série Técnica n°1.)

Schneider, P.R.; Silva, J.A. Índice de sítio para acácia-negra (Acacia mearnsii de Wild). Brasil Florestal, 42:53-60, abr./mai./jun. 1980.

APÊNDICE A

FICHA DE SONDAGEM LADO A
UNIVERSIDADE FEDERAL DE SANTA MARIA
CENTRO DE CIÊNCIAS RURAIS
DEPARTAMENTO DE CIÊNCIAS FLORESTAIS
FICHA DE LEVANTAMENTO DE HABITATS FLORESTAIS

TALHÃO Nº 018
LINHA Nº 03
PTO. SUCR. Nº 05
DATA JUL 1987
RESPONSÁVEL CG. MARCUS

RELEVO
ALTITUDE
EXPOSIÇÃO
INCLINAÇÃO

MANTA - SOLO

<table>
<thead>
<tr>
<th>ESPESSEURA</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 4,5</td>
<td>ARENOساب</td>
</tr>
<tr>
<td>F 1,5</td>
<td>ARENO Sab</td>
</tr>
<tr>
<td>H 0,5</td>
<td>ARENO 4,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEXTURA</th>
<th>ESTRUTURA</th>
<th>COR</th>
<th>OBSERVAÇÕES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARENO</td>
<td>GRANULAR</td>
<td>ARENA E LÂMINA</td>
<td></td>
</tr>
</tbody>
</table>

TIPO DE HUMUS
ENRAIZAMENTO NA MANTA
TIPO DE SOLO
PROPRIEDADE DO SOLO
GRAU DE HIDROMOFORIA

OBSERVAÇÕES GERAIS
APÊNDICE B
FICHA DE SONDAGEM LADO B
Vegetação

Estágio Arbóreo

<table>
<thead>
<tr>
<th>Árvore</th>
<th>Arvno (%)</th>
<th>H (m)</th>
<th>DAP (cm)</th>
<th>Avaliação Silvicultural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruguiera</td>
<td>245</td>
<td>40,0</td>
<td></td>
<td>Absente</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>54,0</td>
<td></td>
<td>Indivíduos entremeados em</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>54,5</td>
<td></td>
<td>Conforto</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>50,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estágio Arrustivo

<table>
<thead>
<tr>
<th>Cupulácea</th>
<th>M (m)</th>
<th>SP</th>
<th>Observações Gerais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camoata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camburú</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passelúcia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murtá</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichilia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estágio Herbáceo

<table>
<thead>
<tr>
<th>Sanguinária</th>
<th>SP</th>
<th>Observações Gerais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Son</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japáconca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sinais Típicos
APÊNDICE C
FICHA DE INVENTÁRIO FLORESTAL
APÊNDICE D
FICHA DE CUBAGEM
APÊNDICE E

MAPA DE SÍTIOS NATURAIS DA FLORESTA NACIONAL DE PASSO FUNDO
APÊNDICE F

ESTATÍSTICAS DOS MODELOS DE RELAÇÃO HIPSOMÉTRICA E VOLUME

PARA Araucaria angustifolia e Pinus sp
ESTATÍSTICAS DAS EQUAÇÕES DE RELAÇÃO HIPOSOMÉTRICA PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th>EQ</th>
<th>R2</th>
<th>Syx</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,65916</td>
<td>0,02380</td>
<td>181,79</td>
</tr>
<tr>
<td>02</td>
<td>0,63644</td>
<td>1,64230</td>
<td>81,40</td>
</tr>
<tr>
<td>03</td>
<td>0,63644</td>
<td>1,64230</td>
<td>81,40</td>
</tr>
<tr>
<td>04</td>
<td>0,63851</td>
<td>1,64650</td>
<td>54,17</td>
</tr>
<tr>
<td>05</td>
<td>0,58823</td>
<td>1,73848</td>
<td>134,28</td>
</tr>
<tr>
<td>06</td>
<td>0,66504</td>
<td>0,01578</td>
<td>88,30</td>
</tr>
<tr>
<td>07</td>
<td>0,66112</td>
<td>1,70283</td>
<td>183,38</td>
</tr>
<tr>
<td>08</td>
<td>0,59585</td>
<td>1,72231</td>
<td>138,59</td>
</tr>
<tr>
<td>09</td>
<td>0,66006</td>
<td>1,68390</td>
<td>182,52</td>
</tr>
<tr>
<td>10</td>
<td>0,59585</td>
<td>1,72231</td>
<td>138,59</td>
</tr>
<tr>
<td>11</td>
<td>0,63960</td>
<td>1,73358</td>
<td>166,82</td>
</tr>
<tr>
<td>12</td>
<td>0,63750</td>
<td>1,76227</td>
<td>164,99</td>
</tr>
<tr>
<td>13</td>
<td>0,65917</td>
<td>1,71689</td>
<td>89,93</td>
</tr>
<tr>
<td>14</td>
<td>0,66090</td>
<td>1,70340</td>
<td>183,21</td>
</tr>
</tbody>
</table>

ESTATÍSTICAS DAS EQUAÇÕES DE RELAÇÃO HIPOSOMÉTRICA PARA Pinus sp

<table>
<thead>
<tr>
<th>EQ</th>
<th>R2</th>
<th>Syx</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,71520</td>
<td>0,01122</td>
<td>253,63</td>
</tr>
<tr>
<td>02</td>
<td>0,68307</td>
<td>1,56418</td>
<td>107,76</td>
</tr>
<tr>
<td>03</td>
<td>0,68307</td>
<td>1,56418</td>
<td>107,76</td>
</tr>
<tr>
<td>04</td>
<td>0,69219</td>
<td>1,54928</td>
<td>74,21</td>
</tr>
<tr>
<td>05</td>
<td>0,66523</td>
<td>1,59962</td>
<td>200,70</td>
</tr>
<tr>
<td>06</td>
<td>0,74027</td>
<td>0,00545</td>
<td>142,51</td>
</tr>
<tr>
<td>07</td>
<td>0,70824</td>
<td>1,61995</td>
<td>245,17</td>
</tr>
<tr>
<td>08</td>
<td>0,54942</td>
<td>1,85580</td>
<td>123,16</td>
</tr>
<tr>
<td>09</td>
<td>0,70685</td>
<td>1,61208</td>
<td>243,53</td>
</tr>
<tr>
<td>10</td>
<td>0,54942</td>
<td>1,85580</td>
<td>123,16</td>
</tr>
<tr>
<td>11</td>
<td>0,64337</td>
<td>1,77820</td>
<td>182,21</td>
</tr>
<tr>
<td>12</td>
<td>0,64323</td>
<td>1,79142</td>
<td>182,10</td>
</tr>
<tr>
<td>13</td>
<td>0,72305</td>
<td>1,58622</td>
<td>130,53</td>
</tr>
<tr>
<td>14</td>
<td>0,70629</td>
<td>1,62530</td>
<td>242,87</td>
</tr>
</tbody>
</table>
ESTATÍSTICAS DAS EQUAÇÕES DE VOLUME COM CASCA PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th>EQ</th>
<th>R2</th>
<th>Syx</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,97372</td>
<td>0,03569</td>
<td>666,96</td>
</tr>
<tr>
<td>02</td>
<td>0,97247</td>
<td>0,03633</td>
<td>803,64</td>
</tr>
<tr>
<td>03</td>
<td>0,97300</td>
<td>0,03597</td>
<td>819,87</td>
</tr>
<tr>
<td>04</td>
<td>0,97098</td>
<td>0,03709</td>
<td>1026,05</td>
</tr>
<tr>
<td>05</td>
<td>0,93014</td>
<td>0,05694</td>
<td>1251,49</td>
</tr>
<tr>
<td>06</td>
<td>0,96726</td>
<td>0,03898</td>
<td>2777,31</td>
</tr>
<tr>
<td>07</td>
<td>0,95635</td>
<td>0,04525</td>
<td>1018,83</td>
</tr>
<tr>
<td>08</td>
<td>0,95597</td>
<td>0,04520</td>
<td>2040,89</td>
</tr>
<tr>
<td>09</td>
<td>0,72432</td>
<td>0,00066</td>
<td>246,97</td>
</tr>
<tr>
<td>10</td>
<td>0,99062</td>
<td>0,01870</td>
<td>2403,32</td>
</tr>
<tr>
<td>11</td>
<td>0,98956</td>
<td>0,01950</td>
<td>4408,58</td>
</tr>
<tr>
<td>12</td>
<td>0,98854</td>
<td>0,02033</td>
<td>8110,75</td>
</tr>
<tr>
<td>13</td>
<td>0,97925</td>
<td>0,02749</td>
<td>2194,56</td>
</tr>
<tr>
<td>14</td>
<td>0,97628</td>
<td>0,02924</td>
<td>3869,15</td>
</tr>
</tbody>
</table>

ESTATÍSTICAS DAS EQUAÇÕES DE VOLUME SEM CASCA PARA Araucaria angustifolia

<table>
<thead>
<tr>
<th>EQ</th>
<th>R2</th>
<th>Syx</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,96431</td>
<td>0,03196</td>
<td>486,40</td>
</tr>
<tr>
<td>02</td>
<td>0,96303</td>
<td>0,03235</td>
<td>592,58</td>
</tr>
<tr>
<td>03</td>
<td>0,96395</td>
<td>0,03194</td>
<td>608,26</td>
</tr>
<tr>
<td>04</td>
<td>0,96077</td>
<td>0,03314</td>
<td>750,97</td>
</tr>
<tr>
<td>05</td>
<td>0,90887</td>
<td>0,04997</td>
<td>937,53</td>
</tr>
<tr>
<td>06</td>
<td>0,95961</td>
<td>0,03326</td>
<td>2233,46</td>
</tr>
<tr>
<td>07</td>
<td>0,93575</td>
<td>0,04218</td>
<td>677,18</td>
</tr>
<tr>
<td>08</td>
<td>0,93551</td>
<td>0,04204</td>
<td>1363,49</td>
</tr>
<tr>
<td>09</td>
<td>0,72044</td>
<td>0,00005</td>
<td>242,24</td>
</tr>
<tr>
<td>10</td>
<td>0,98423</td>
<td>0,01833</td>
<td>1419,86</td>
</tr>
<tr>
<td>11</td>
<td>0,98329</td>
<td>0,01865</td>
<td>2736,36</td>
</tr>
<tr>
<td>12</td>
<td>0,98329</td>
<td>0,01858</td>
<td>5530,33</td>
</tr>
<tr>
<td>13</td>
<td>0,96528</td>
<td>0,02692</td>
<td>1292,72</td>
</tr>
<tr>
<td>14</td>
<td>0,96240</td>
<td>0,02786</td>
<td>2406,23</td>
</tr>
</tbody>
</table>
ESTATÍSTICAS DAS EQUAÇÕES DE VOLUME COM CASCA PARA Pinus sp

<table>
<thead>
<tr>
<th>EQ</th>
<th>R²</th>
<th>Syx</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.98030</td>
<td>0.04184</td>
<td>965.17</td>
</tr>
<tr>
<td>02</td>
<td>0.98000</td>
<td>0.04194</td>
<td>1200.45</td>
</tr>
<tr>
<td>03</td>
<td>0.98010</td>
<td>0.04181</td>
<td>1207.97</td>
</tr>
<tr>
<td>04</td>
<td>0.97970</td>
<td>0.04199</td>
<td>1596.20</td>
</tr>
<tr>
<td>05</td>
<td>0.94280</td>
<td>0.06488</td>
<td>1664.19</td>
</tr>
<tr>
<td>06</td>
<td>0.97870</td>
<td>0.04264</td>
<td>4640.17</td>
</tr>
<tr>
<td>07</td>
<td>0.95960</td>
<td>0.00590</td>
<td>1186.65</td>
</tr>
<tr>
<td>08</td>
<td>0.95900</td>
<td>0.05914</td>
<td>2362.81</td>
</tr>
<tr>
<td>09</td>
<td>0.71450</td>
<td>0.00007</td>
<td>252.71</td>
</tr>
<tr>
<td>10</td>
<td>0.99030</td>
<td>0.00281</td>
<td>2496.87</td>
</tr>
<tr>
<td>11</td>
<td>0.98990</td>
<td>0.00283</td>
<td>4939.11</td>
</tr>
<tr>
<td>12</td>
<td>0.98970</td>
<td>0.00285</td>
<td>9663.71</td>
</tr>
<tr>
<td>13</td>
<td>0.97650</td>
<td>0.04336</td>
<td>2079.17</td>
</tr>
<tr>
<td>14</td>
<td>0.97380</td>
<td>0.04551</td>
<td>3764.35</td>
</tr>
</tbody>
</table>

ESTATÍSTICAS DAS EQUAÇÕES DE VOLUME SEM CASCA PARA Pinus sp

<table>
<thead>
<tr>
<th>EQ</th>
<th>R²</th>
<th>Syx</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.97705</td>
<td>0.03711</td>
<td>825.78</td>
</tr>
<tr>
<td>02</td>
<td>0.97667</td>
<td>0.03723</td>
<td>1025.60</td>
</tr>
<tr>
<td>03</td>
<td>0.97689</td>
<td>0.03705</td>
<td>1035.85</td>
</tr>
<tr>
<td>04</td>
<td>0.97643</td>
<td>0.03723</td>
<td>1367.14</td>
</tr>
<tr>
<td>05</td>
<td>0.93321</td>
<td>0.06204</td>
<td>1411.22</td>
</tr>
<tr>
<td>06</td>
<td>0.97477</td>
<td>0.03813</td>
<td>3902.60</td>
</tr>
<tr>
<td>07</td>
<td>0.95085</td>
<td>0.05349</td>
<td>967.35</td>
</tr>
<tr>
<td>08</td>
<td>0.95046</td>
<td>0.05343</td>
<td>1937.94</td>
</tr>
<tr>
<td>09</td>
<td>0.71855</td>
<td>0.00007</td>
<td>257.85</td>
</tr>
<tr>
<td>10</td>
<td>0.98412</td>
<td>0.02915</td>
<td>1622.12</td>
</tr>
<tr>
<td>11</td>
<td>0.94425</td>
<td>0.02906</td>
<td>3125.05</td>
</tr>
<tr>
<td>12</td>
<td>0.98365</td>
<td>0.02947</td>
<td>6423.32</td>
</tr>
<tr>
<td>13</td>
<td>0.96946</td>
<td>0.04046</td>
<td>1587.06</td>
</tr>
<tr>
<td>14</td>
<td>0.96651</td>
<td>0.04216</td>
<td>2914.59</td>
</tr>
</tbody>
</table>
APÊNDICE G

ESTATÍSTICAS DAS EQUAÇÕES DE REGRESSÃO PARA Araucaria angustifolia
<table>
<thead>
<tr>
<th>VAR DEP</th>
<th>VAR INDEP</th>
<th>FUNÇÃO</th>
<th>R</th>
<th>R2</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>TM1</td>
<td>LINEAR</td>
<td>0,3368</td>
<td>0,0988</td>
<td>5,271</td>
<td>7,80</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,3711</td>
<td>0,1235</td>
<td>5,198</td>
<td>9,74</td>
</tr>
<tr>
<td></td>
<td>TM3</td>
<td></td>
<td>0,4169</td>
<td>0,1602</td>
<td>5,088</td>
<td>12,83</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,6081</td>
<td>0,3593</td>
<td>4,443</td>
<td>35,80</td>
</tr>
<tr>
<td>AB</td>
<td>TM2</td>
<td>MULTIP</td>
<td>0,3576</td>
<td>0,1135</td>
<td>0,163</td>
<td>8,94</td>
</tr>
<tr>
<td></td>
<td>TM3</td>
<td></td>
<td>0,4293</td>
<td>0,1708</td>
<td>0,158</td>
<td>13,78</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,5552</td>
<td>0,2968</td>
<td>0,145</td>
<td>27,18</td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>EXPON</td>
<td>0,3252</td>
<td>0,0910</td>
<td>0,165</td>
<td>7,21</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,3570</td>
<td>0,1130</td>
<td>0,163</td>
<td>8,91</td>
</tr>
<tr>
<td></td>
<td>TM3</td>
<td></td>
<td>0,4204</td>
<td>0,1632</td>
<td>0,158</td>
<td>13,09</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,5757</td>
<td>0,3204</td>
<td>0,143</td>
<td>30,24</td>
</tr>
<tr>
<td>AB</td>
<td>TM2</td>
<td>RECIP</td>
<td>-0,3317</td>
<td>0,0954</td>
<td>0,005</td>
<td>7,54</td>
</tr>
<tr>
<td></td>
<td>TM3</td>
<td></td>
<td>-0,4108</td>
<td>0,1550</td>
<td>0,005</td>
<td>12,38</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>-0,5298</td>
<td>0,2688</td>
<td>0,004</td>
<td>23,81</td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>QUADRAT</td>
<td>0,3503</td>
<td>0,1083</td>
<td>5,286</td>
<td>4,19</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,3731</td>
<td>0,1250</td>
<td>5,237</td>
<td>7,85</td>
</tr>
<tr>
<td></td>
<td>TM3</td>
<td></td>
<td>0,4376</td>
<td>0,1547</td>
<td>5,075</td>
<td>7,10</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,6108</td>
<td>0,3516</td>
<td>4,469</td>
<td>17,85</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM3</td>
<td>LINEAR</td>
<td>0,3265</td>
<td>0,0919</td>
<td>2,577</td>
<td>7,28</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3380</td>
<td>0,1011</td>
<td>2,516</td>
<td>7,86</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM3</td>
<td>QUADRAT</td>
<td>0,3285</td>
<td>0,0932</td>
<td>2,546</td>
<td>3,63</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3416</td>
<td>0,1030</td>
<td>2,533</td>
<td>3,96</td>
</tr>
<tr>
<td>VCC</td>
<td>TM3</td>
<td>LINEAR</td>
<td>0,3281</td>
<td>0,0929</td>
<td>74,238</td>
<td>7,36</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3657</td>
<td>0,1194</td>
<td>73,145</td>
<td>9,42</td>
</tr>
<tr>
<td>VCC</td>
<td>TM3</td>
<td>QUADRAT</td>
<td>0,3289</td>
<td>0,0934</td>
<td>74,832</td>
<td>3,64</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3712</td>
<td>0,1235</td>
<td>73,579</td>
<td>4,79</td>
</tr>
<tr>
<td>VSC</td>
<td>TM3</td>
<td>LINEAR</td>
<td>0,3292</td>
<td>0,1083</td>
<td>59,516</td>
<td>7,41</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3809</td>
<td>0,1450</td>
<td>58,278</td>
<td>10,35</td>
</tr>
<tr>
<td>VSC</td>
<td>TM3</td>
<td>QUADRAT</td>
<td>0,3300</td>
<td>0,1089</td>
<td>59,992</td>
<td>3,66</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3873</td>
<td>0,1500</td>
<td>58,592</td>
<td>5,29</td>
</tr>
</tbody>
</table>

(Continua)
Conclusão

<table>
<thead>
<tr>
<th>VAR DEP</th>
<th>VAR INDEP</th>
<th>FUNÇÃO</th>
<th>R</th>
<th>R²</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VST</td>
<td>TM3</td>
<td>LINEAR</td>
<td>0,3281</td>
<td>0,1076</td>
<td>110,611</td>
<td>7,36</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3656</td>
<td>0,1336</td>
<td>108,988</td>
<td>9,41</td>
</tr>
<tr>
<td>VST</td>
<td>TM3</td>
<td>QUADRAT</td>
<td>0,3289</td>
<td>0,1081</td>
<td>111,496</td>
<td>3,64</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,3711</td>
<td>0,1377</td>
<td>109,634</td>
<td>4,79</td>
</tr>
<tr>
<td>HDOM</td>
<td>DN43</td>
<td>LINEAR</td>
<td>-0,3424</td>
<td>0,1172</td>
<td>2,072</td>
<td>8,10</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0,3423</td>
<td>0,1171</td>
<td>2,072</td>
<td>8,09</td>
</tr>
<tr>
<td>HDOM</td>
<td>R43</td>
<td>MULTIP</td>
<td>-0,3363</td>
<td>0,1130</td>
<td>0,129</td>
<td>7,78</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>-0,3382</td>
<td>0,1143</td>
<td>0,129</td>
<td>7,88</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0,3383</td>
<td>0,1144</td>
<td>0,129</td>
<td>7,88</td>
</tr>
<tr>
<td>HDOM</td>
<td>R43</td>
<td>EXPO</td>
<td>-0,3288</td>
<td>0,1081</td>
<td>0,129</td>
<td>7,39</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>-0,3385</td>
<td>0,1145</td>
<td>0,129</td>
<td>7,89</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0,338833</td>
<td>0,1147</td>
<td>0,129</td>
<td>7,88</td>
</tr>
<tr>
<td>HDOM</td>
<td>DN43</td>
<td>RECIP</td>
<td>0,3319</td>
<td>0,1101</td>
<td>0,0082</td>
<td>7,55</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,3315</td>
<td>0,1098</td>
<td>0,0082</td>
<td>7,53</td>
</tr>
<tr>
<td>HDOM</td>
<td>R43</td>
<td>QUADRAT</td>
<td>-0,3436</td>
<td>0,1180</td>
<td>2,088</td>
<td>4,01</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>-0,3438</td>
<td>0,1181</td>
<td>2,088</td>
<td>4,02</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0,3429</td>
<td>0,1175</td>
<td>2,089</td>
<td>3,99</td>
</tr>
</tbody>
</table>
APÊNDICE H

ESTATÍSTICAS DAS EQUAÇÕES DE REGRESSÃO SIMPLES PARA Pinus SP
<table>
<thead>
<tr>
<th>VAR DEP</th>
<th>VAR INDEP</th>
<th>FUNÇÃO</th>
<th>R</th>
<th>R2</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAV</td>
<td>TM1</td>
<td>LINEAR</td>
<td>0,4619</td>
<td>0,1861</td>
<td>4,427</td>
<td>7,86</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,4599</td>
<td>0,1843</td>
<td>4,432</td>
<td>7,78</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,4777</td>
<td>0,2014</td>
<td>4,385</td>
<td>8,57</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,6776</td>
<td>0,4404</td>
<td>3,671</td>
<td>24,61</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,6029</td>
<td>0,3414</td>
<td>3,982</td>
<td>16,56</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM2</td>
<td>MULTIP</td>
<td>0,4871</td>
<td>0,2108</td>
<td>0,170</td>
<td>9,02</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,5997</td>
<td>0,3375</td>
<td>0,155</td>
<td>16,28</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,5415</td>
<td>0,2688</td>
<td>0,163</td>
<td>12,03</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM2</td>
<td>EXPOP</td>
<td>0,4820</td>
<td>0,2058</td>
<td>0,170</td>
<td>8,78</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,6317</td>
<td>0,3782</td>
<td>0,151</td>
<td>19,26</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,5769</td>
<td>0,3097</td>
<td>0,159</td>
<td>14,47</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM2</td>
<td>RECIP</td>
<td>-0,4905</td>
<td>0,2143</td>
<td>0,0070</td>
<td>9,18</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>-0,5614</td>
<td>0,2914</td>
<td>0,0067</td>
<td>13,49</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>-0,5300</td>
<td>0,2561</td>
<td>0,0068</td>
<td>11,33</td>
</tr>
<tr>
<td>IMAV</td>
<td>TM1</td>
<td>QUADRAT</td>
<td>0,4628</td>
<td>0,1870</td>
<td>4,503</td>
<td>3,81</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,4848</td>
<td>0,2086</td>
<td>4,443</td>
<td>4,30</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,4938</td>
<td>0,2177</td>
<td>4,417</td>
<td>4,51</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,7124</td>
<td>0,4905</td>
<td>3,565</td>
<td>14,43</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,6036</td>
<td>0,3423</td>
<td>4,050</td>
<td>8,02</td>
</tr>
<tr>
<td>IMAG</td>
<td>TM4</td>
<td>LINEAR</td>
<td>0,5239</td>
<td>0,2493</td>
<td>0,544</td>
<td>10,97</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,5893</td>
<td>0,3246</td>
<td>0,516</td>
<td>15,43</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,5168</td>
<td>0,2427</td>
<td>0,547</td>
<td>10,57</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,5209</td>
<td>0,2641</td>
<td>0,546</td>
<td>10,80</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,5040</td>
<td>0,2282</td>
<td>0,552</td>
<td>9,87</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,5026</td>
<td>0,2268</td>
<td>0,553</td>
<td>9,80</td>
</tr>
<tr>
<td>IMAG</td>
<td>TM1</td>
<td>MULTIP</td>
<td>0,4712</td>
<td>0,1951</td>
<td>0,230</td>
<td>8,29</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,5317</td>
<td>0,2579</td>
<td>0,221</td>
<td>11,43</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,6003</td>
<td>0,3382</td>
<td>0,209</td>
<td>16,33</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,5205</td>
<td>0,2457</td>
<td>0,223</td>
<td>10,77</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,5335</td>
<td>0,2621</td>
<td>0,221</td>
<td>11,66</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,5237</td>
<td>0,2491</td>
<td>0,223</td>
<td>10,96</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,5279</td>
<td>0,2537</td>
<td>0,224</td>
<td>11,20</td>
</tr>
</tbody>
</table>

(Continua)
<table>
<thead>
<tr>
<th>VAR DEP</th>
<th>VAR INDEP</th>
<th>FUNÇÃO</th>
<th>R</th>
<th>R²</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG</td>
<td>TM1</td>
<td>EXPON</td>
<td>0.4710</td>
<td>0.1949</td>
<td>0.231</td>
<td>8.27</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0.5444</td>
<td>0.2720</td>
<td>0.219</td>
<td>12.22</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0.6212</td>
<td>0.3646</td>
<td>0.205</td>
<td>18.22</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0.5372</td>
<td>0.2639</td>
<td>0.220</td>
<td>11.76</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0.5410</td>
<td>0.2682</td>
<td>0.220</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0.5306</td>
<td>0.2566</td>
<td>0.221</td>
<td>11.36</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0.5296</td>
<td>0.2555</td>
<td>0.222</td>
<td>11.30</td>
</tr>
<tr>
<td>IMAG</td>
<td>TM1</td>
<td>RECIP</td>
<td>-0.4938</td>
<td>0.2177</td>
<td>0.099</td>
<td>9.35</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>-0.5598</td>
<td>0.2896</td>
<td>0.094</td>
<td>13.23</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>-0.6442</td>
<td>0.3947</td>
<td>0.094</td>
<td>20.57</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>-0.5475</td>
<td>0.2755</td>
<td>0.095</td>
<td>12.41</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>-0.5549</td>
<td>0.2840</td>
<td>0.095</td>
<td>12.90</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>-0.5517</td>
<td>0.2803</td>
<td>0.095</td>
<td>12.68</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0.5510</td>
<td>0.2795</td>
<td>0.095</td>
<td>12.65</td>
</tr>
<tr>
<td>IMAG</td>
<td>TM4</td>
<td>QUADRAT</td>
<td>0.5468</td>
<td>0.2571</td>
<td>0.545</td>
<td>5.97</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0.6090</td>
<td>0.3491</td>
<td>0.516</td>
<td>8.26</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0.5280</td>
<td>0.2538</td>
<td>0.552</td>
<td>5.41</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0.5270</td>
<td>0.2527</td>
<td>0.553</td>
<td>5.39</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0.5220</td>
<td>0.2473</td>
<td>0.555</td>
<td>5.24</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0.5224</td>
<td>0.2478</td>
<td>0.555</td>
<td>5.25</td>
</tr>
<tr>
<td>N</td>
<td>TM4</td>
<td>LINEAR</td>
<td>0.5304</td>
<td>0.2497</td>
<td>245.24</td>
<td>11.36</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0.5365</td>
<td>0.2632</td>
<td>244.13</td>
<td>11.72</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0.5063</td>
<td>0.2306</td>
<td>249.46</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0.5049</td>
<td>0.2292</td>
<td>249.71</td>
<td>9.92</td>
</tr>
<tr>
<td>N</td>
<td>TM4</td>
<td>MULTIP</td>
<td>0.5243</td>
<td>0.2497</td>
<td>0.291</td>
<td>10.99</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0.4854</td>
<td>0.2092</td>
<td>0.299</td>
<td>8.94</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0.5251</td>
<td>0.2507</td>
<td>0.291</td>
<td>11.04</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0.5081</td>
<td>0.2325</td>
<td>0.296</td>
<td>9.75</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0.5093</td>
<td>0.2337</td>
<td>0.294</td>
<td>10.16</td>
</tr>
<tr>
<td>N</td>
<td>TM4</td>
<td>EXPON</td>
<td>0.5432</td>
<td>0.2706</td>
<td>0.287</td>
<td>12.14</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0.4907</td>
<td>0.2145</td>
<td>0.298</td>
<td>9.20</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0.5397</td>
<td>0.2667</td>
<td>0.288</td>
<td>11.92</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0.5145</td>
<td>0.2393</td>
<td>0.295</td>
<td>10.44</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0.5127</td>
<td>0.2373</td>
<td>0.294</td>
<td>10.34</td>
</tr>
</tbody>
</table>

(Continua)
<table>
<thead>
<tr>
<th>VAR DEP</th>
<th>VAR INDEP</th>
<th>FUNÇÃO</th>
<th>R</th>
<th>R²</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>TM4</td>
<td>RECIP</td>
<td>-0,5262</td>
<td>0,2518</td>
<td>0,0003</td>
<td>11,10</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>-0,5040</td>
<td>0,2282</td>
<td>0,0004</td>
<td>9,89</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>-0,5139</td>
<td>0,2386</td>
<td>0,0003</td>
<td>10,40</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>-0,4934</td>
<td>0,2173</td>
<td>0,0004</td>
<td>9,33</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0,4913</td>
<td>0,2151</td>
<td>0,0004</td>
<td>9,22</td>
</tr>
<tr>
<td>N</td>
<td>TM4</td>
<td>QUADRAT</td>
<td>0,5548</td>
<td>0,2839</td>
<td>245,954</td>
<td>6,22</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,5583</td>
<td>0,2878</td>
<td>244,253</td>
<td>6,34</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,5537</td>
<td>0,2825</td>
<td>245,161</td>
<td>6,19</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,5584</td>
<td>0,2880</td>
<td>244,229</td>
<td>6,34</td>
</tr>
<tr>
<td>H</td>
<td>R43</td>
<td>LINEAR</td>
<td>-0,4590</td>
<td>0,1833</td>
<td>2,860</td>
<td>7,74</td>
</tr>
<tr>
<td>H</td>
<td>R43</td>
<td>EXPON</td>
<td>-0,4601</td>
<td>0,1844</td>
<td>0,138</td>
<td>7,79</td>
</tr>
<tr>
<td>H</td>
<td>R43</td>
<td>RECIP</td>
<td>0,4574</td>
<td>0,1819</td>
<td>0,0069</td>
<td>7,67</td>
</tr>
<tr>
<td>H</td>
<td>DN43</td>
<td>QUADRAT</td>
<td>0,4789</td>
<td>0,2027</td>
<td>2,876</td>
<td>4,16</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,4850</td>
<td>0,2088</td>
<td>2,866</td>
<td>4,30</td>
</tr>
<tr>
<td>IDA</td>
<td>TM5</td>
<td>QUADRAT</td>
<td>-0,4869</td>
<td>0,2106</td>
<td>3,162</td>
<td>4,35</td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>LINEAR</td>
<td>0,6443</td>
<td>0,3949</td>
<td>5,062</td>
<td>20,48</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,6169</td>
<td>0,3591</td>
<td>5,204</td>
<td>17,82</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,7322</td>
<td>0,5201</td>
<td>4,503</td>
<td>33,52</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,7777</td>
<td>0,5911</td>
<td>4,156</td>
<td>44,39</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,6446</td>
<td>0,3953</td>
<td>5,055</td>
<td>20,62</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,7027</td>
<td>0,4762</td>
<td>4,704</td>
<td>28,29</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,7395</td>
<td>0,5311</td>
<td>4,451</td>
<td>35,00</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,7448</td>
<td>0,5393</td>
<td>4,412</td>
<td>36,13</td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>MULTIP</td>
<td>0,6498</td>
<td>0,4024</td>
<td>0,131</td>
<td>21,20</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,6286</td>
<td>0,3742</td>
<td>0,134</td>
<td>18,94</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,7735</td>
<td>0,5844</td>
<td>0,109</td>
<td>43,20</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,8045</td>
<td>0,6350</td>
<td>0,102</td>
<td>53,22</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,6639</td>
<td>0,4214</td>
<td>0,129</td>
<td>22,86</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,7389</td>
<td>0,5302</td>
<td>0,116</td>
<td>34,88</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,7711</td>
<td>0,5805</td>
<td>0,109</td>
<td>42,54</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,7651</td>
<td>0,5710</td>
<td>0,111</td>
<td>40,96</td>
</tr>
</tbody>
</table>

(Continua)
Conclusão

<table>
<thead>
<tr>
<th>VAR</th>
<th>VAR</th>
<th>FUNÇÃO</th>
<th>R</th>
<th>R2</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td>INDEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>EXPON</td>
<td>0,6451</td>
<td>0,3959</td>
<td>0,138</td>
<td>20,67</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,6198</td>
<td>0,3628</td>
<td>0,135</td>
<td>18,09</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,7370</td>
<td>0,5273</td>
<td>0,116</td>
<td>34,39</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,7613</td>
<td>0,5650</td>
<td>0,111</td>
<td>39,99</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,6217</td>
<td>0,3653</td>
<td>0,135</td>
<td>18,27</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,7065</td>
<td>0,4818</td>
<td>0,122</td>
<td>28,91</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,7544</td>
<td>0,5542</td>
<td>0,113</td>
<td>38,30</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,7607</td>
<td>0,5640</td>
<td>0,111</td>
<td>39,85</td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>RECIP</td>
<td>-0,6380</td>
<td>0,3865</td>
<td>0,0036</td>
<td>19,91</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>-0,6104</td>
<td>0,3508</td>
<td>0,0037</td>
<td>17,23</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>-0,7300</td>
<td>0,5167</td>
<td>0,0032</td>
<td>33,08</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>-0,7334</td>
<td>0,5218</td>
<td>0,0032</td>
<td>33,76</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>-0,5883</td>
<td>0,3234</td>
<td>0,0038</td>
<td>15,35</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>-0,6995</td>
<td>0,4716</td>
<td>0,0033</td>
<td>27,78</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>-0,7575</td>
<td>0,5591</td>
<td>0,0030</td>
<td>39,04</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>-0,7649</td>
<td>0,5706</td>
<td>0,0030</td>
<td>40,89</td>
</tr>
<tr>
<td>AB</td>
<td>TM1</td>
<td>QUADRAT</td>
<td>0,7216</td>
<td>0,5041</td>
<td>4,658</td>
<td>15,21</td>
</tr>
<tr>
<td></td>
<td>TM2</td>
<td></td>
<td>0,6490</td>
<td>0,4012</td>
<td>5,114</td>
<td>10,23</td>
</tr>
<tr>
<td></td>
<td>TM3</td>
<td></td>
<td>0,4860</td>
<td>0,2097</td>
<td>5,880</td>
<td>4,33</td>
</tr>
<tr>
<td></td>
<td>TM4</td>
<td></td>
<td>0,7820</td>
<td>0,5981</td>
<td>4,192</td>
<td>22,07</td>
</tr>
<tr>
<td></td>
<td>TM5</td>
<td></td>
<td>0,8190</td>
<td>0,6593</td>
<td>3,861</td>
<td>28,52</td>
</tr>
<tr>
<td></td>
<td>TM7</td>
<td></td>
<td>0,6740</td>
<td>0,4353</td>
<td>4,970</td>
<td>11,66</td>
</tr>
<tr>
<td></td>
<td>R43</td>
<td></td>
<td>0,7540</td>
<td>0,5536</td>
<td>4,419</td>
<td>18,46</td>
</tr>
<tr>
<td></td>
<td>DN43</td>
<td></td>
<td>0,7670</td>
<td>0,5740</td>
<td>4,318</td>
<td>20,00</td>
</tr>
<tr>
<td></td>
<td>TVI43</td>
<td></td>
<td>0,7690</td>
<td>0,5772</td>
<td>4,294</td>
<td>20,37</td>
</tr>
</tbody>
</table>
APÊNDICE I

ESTATÍSTICAS DAS EQUAÇÕES DE REGRESSÃO MÚLTIPLA PARA
Araucaria angustifolia e Pinus sp
<table>
<thead>
<tr>
<th>ESP</th>
<th>VAR DEP</th>
<th>VAR INDEP</th>
<th>R</th>
<th>R²</th>
<th>ERRO PADRÃO</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>HDOM</td>
<td>TM5</td>
<td>-0,4843</td>
<td>0,2219</td>
<td>1,962</td>
<td>6,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa</td>
<td>VCC</td>
<td>TM3</td>
<td>0,5459</td>
<td>0,5384</td>
<td>67,528</td>
<td>6,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa</td>
<td>VSC</td>
<td>TM3</td>
<td>0,5463</td>
<td>0,5388</td>
<td>54,140</td>
<td>6,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa</td>
<td>VST</td>
<td>TM3</td>
<td>0,5458</td>
<td>0,5383</td>
<td>100,621</td>
<td>6,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>AB</td>
<td>TM5</td>
<td>0,8194</td>
<td>0,8131</td>
<td>3,856</td>
<td>28,62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DN43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>AB</td>
<td>TM5</td>
<td>0,8219</td>
<td>0,8127</td>
<td>3,832</td>
<td>29,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>AB</td>
<td>TM5</td>
<td>0,8580</td>
<td>0,8530</td>
<td>3,159</td>
<td>25,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DN43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVI43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>