1. Publicação n°
 INPE-2975-RPE/450

2. Versão
 Programa

3. Data
 Dez., 1983

4. Origem
 DME/DAM
 OCEMAR/PORTO

5. Distribuição
 □ Interna □ Externa
 □ Restrita

6. Palavras chaves - selecionadas pelo(s) autor(es)
 CORRENTE DO BRASIL
 SENSORIA MENTO REMOTO

7. C.D.U.:
 528.711.7:551.465.5(81)

8. Título
 INPE-2975-RPE/450
 ASPECTOS DO SISTEMA DA CORRENTE DO BRASIL
 SEGUNDO OS SATÉLITES SMS-2, NOAA-6 E
 TIROS-N, NOS ANOS 1979 e 1980

9. Autoria
 Héctor Manuel Inostroza Villagra
 Merritt Raymond Stevenson

10. Páginas:
 29

11. Última página:
 26

12. Revisada por
 [Assinatura]
 José Luís Steck

13. Autorizada por
 [Assinatura]
 Nelson de Jesus Parada
 Diretor Geral

14. Resumo/Notas

15. Observações
ABSTRACT

The Brazil Current System has been studied systematically in INPE from 1974 by utilizing THIR data of NIMBUS V and oceanographic data. With the regular reception of thermal and visible data from SMS-2, NOAA-6 and TIROS-N satellites it has been possible to study this Current System with greater detail. Images of these satellites have been interpreted by using the Image-100 System available in INPE. A more detailed and accurate description of the Current System has been obtained for 1979 and 1980. The comparison of satellite data with conventional oceanographic data has given reasonably good results in the limits of the precision of the satellites systems utilized.
AGRADECIMENTOS

Os autores agradecem à Diretoria de Hidrografia e Navegação, DHN, do Ministério da Marinha do Brasil, as providências relativas aos dados SHIPs; ao Comandante Emmanuel Gama de Almeida o estímulo e a ajuda para conseguir os dados SHIPs; e aos Srs. Edson Alves Ribeiro e José Carlos Moreira a ajuda nos processamentos dos dados no I-100.
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE FIGURAS</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>2. INSTRUMENTOS E MÉTODOS</td>
<td>2</td>
</tr>
<tr>
<td>3. RESULTADOS</td>
<td>3</td>
</tr>
<tr>
<td>4. DISCUSSÃO</td>
<td>23</td>
</tr>
<tr>
<td>5. CONCLUSÕES</td>
<td></td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>LISTA DE FIGURAS</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Região do estudo</td>
</tr>
<tr>
<td>2</td>
<td>Imagem do SMS-2 de 26 de junho de 1979, ampliada no I-100</td>
</tr>
<tr>
<td>3</td>
<td>Imagem do SMS-2 de 15 de janeiro de 1980, ampliada no I-100</td>
</tr>
<tr>
<td>4</td>
<td>Mapa temático da imagem do SMS-2 de 15 de janeiro de 1980, obtida no I-100</td>
</tr>
<tr>
<td>5</td>
<td>Carta da temperatura superficial do mar na semana de 14 a 20 de janeiro de 1980</td>
</tr>
<tr>
<td></td>
<td>(carta SHIP)</td>
</tr>
<tr>
<td>6</td>
<td>Carta da temperatura superficial do mar no período 2 do Atlas Oceanográfico</td>
</tr>
<tr>
<td>7</td>
<td>Fotografia do impresso da imagem do SMS-2 de 26 de junho de 1979</td>
</tr>
<tr>
<td>8</td>
<td>Imagem do canal visível do NOAA-6 de 13 de setembro de 1980.</td>
</tr>
<tr>
<td>9</td>
<td>Imagem do canal infravermelho do NOAA-6 de 13 de setembro de 1980</td>
</tr>
<tr>
<td>10</td>
<td>Mapa temático da imagem do NOAA-6 de 13 de setembro de 1980.</td>
</tr>
<tr>
<td>11</td>
<td>Imagem do canal infravermelho do TIROS-N de 20 de agosto de 1980</td>
</tr>
<tr>
<td>12</td>
<td>Carta da temperatura superficial do mar no período 8 do Atlas Oceanográfico</td>
</tr>
<tr>
<td>13</td>
<td>Carta da temperatura superficial do mar na semana de 18 a 24 de agosto de 1980.</td>
</tr>
<tr>
<td></td>
<td>(Carta SHIP)</td>
</tr>
<tr>
<td>14</td>
<td>Carta da temperatura superficial do mar no período 9 do Atlas Oceanográfico</td>
</tr>
<tr>
<td>15</td>
<td>Carta da temperatura superficial do mar na semana de 8 a 14 de setembro de 1980.</td>
</tr>
</tbody>
</table>
1 - INTRODUÇÃO

O Sistema da Corrente do Brasil está sendo estudado sistemáticamente no INPE desde 1974, utilizando dados oceanográficos e de satélites. Estudos anteriores a este sistema de correntes, feitos por instituições nacionais e internacionais, têm providenciado um esquema amplo de algumas de suas características, como a direção, a intensidade das correntes e também as massas d'água associadas (DHN, 1972; Reid et alii, 1977; Signorini, 1978; Inostroza e Maluf, 1978; Miranda e Castro Filho, 1979; Castro Filho, 1977).

O presente trabalho é uma continuação de um anterior feito no INPE para o estudo de frentes termais em regiões costeiras e oceânicas de conhecida e elevada produtividade biológica. Imagens de satélite SMS-2 têm sido obtidas regularmente no INPE desde 1979 até o presente. Os dados são obtidos em forma de fitas magnéticas compatíveis com o sistema Imagem-100 (I-100) da General Eletric. As datas de 26 de junho de 1979 e 15 de janeiro de 1980 foram selecionadas para este estudo e o processamento delas foi feito com a ajuda do I-100. Dados do satélite
NOAA-6 têm sido obtidos no INPE desde 1980, sendo selecionada a imagem de 13 de setembro. Os dados do satélite TIROS-N também foram recebidos no INPE desde 1980, tendo sido utilizada a imagem de 20 de agosto.

Em resumo, este trabalho é uma descrição qualitativa da região frontal do sistema da Corrente do Brasil e representa uma etapa preliminar antes da introdução de uma abordagem mais quantitativa. Esta abordagem mais quantitativa está sendo desenvolvida no INPE, no presente, e providenciará cartas de temperatura, obtidas através de satélites numa base de tempo semanal, nos próximos anos.

2 - INSTRUMENTOS E MÉTODOS

As imagens foram processadas no Sistema I-100, disponível no INPE. Foram preparadas cartas semanais de temperatura superficial utilizando dados enviados pelo Banco de Dados da Diretoria de Hidrografia e Navegação do Ministério da Marinha. Estes dados são denominados SHIP. Não foi possível gerar cartas diárias de temperatura com esses dados devido à escassez de observações. Cada Carta de Temperatura Superficial obtida (CTS) foi comparada com as imagens dos satélites SMS-2, NOAA-6 e TIROS-N para a semana correspondente a passagens destes satélites.

Fitas Magnéticas de 26 de junho de 1979 às 11:00 HL (Hora Local) e de 15 de janeiro de 1980 às 12:00 HL, do Satélite SMS-2 foram utilizadas. Estas imagens estão reproduzidas nas Figuras 2 e 3, e são uma ampliação das imagens originais contidas nas fitas, na região da Cor-
rente do Brasil, um mapa temático semiquantitativo, que mostra os aspectos principais do campo da temperatura, foi preparado para a imagem de 15 de janeiro de 1980, apresentado na Figura 4. A Figura 5 é uma carta térmica superficial (CTS) preparada com dados SHIP. A Figura 6 é a carta de temperatura correspondente ao segundo período do Atlas Oceanográfico feito por Inostroza e Tseng. Um mapa impresso do SMS-2 do dia 26 de junho de 1979 é mostrado na Figura 7. Ele é uma amostra de produtos que poderiam ser gerados com o I-100.

Os dados do NOAA-6 de 13 de setembro, transmitidos pelos canais visível e infravermelho (VIS e IV), foram utilizados. As Figuras 8 e 9 mostram, respectivamente, as imagens VIS e IV de 13 de setembro, com os programas STRETCH (Figura 8) e FILTRO (Figura 9). A Figura 10 apresenta um mapa temático da imagem de 13 de setembro.

Uma imagem IV, obtida pelo TIROS-N no dia 20 de agosto de 1980, é mostrada na Figura 11, com o programa STRETCH.

A resolução espacial para o visível do radiômetro VISSR do SMS-2 é variável e, no nadir, vai de 1 a 8 km; a precisão do canal termal IV do SMS-2 é de 0,5°C a uma precisão fixa, no nadir, de 8 km. O radiômetro VHRR do NOAA-6 e do TIROS-N têm uma resolução espacial de 1 km e uma exatidão que vai de 0,5°C até 3,0°C (Legeckis, 1978).

3 - RESULTADOS

A imagem de 26 de junho de 1979 do SMS-2 mostra claramente a separação entre as duas correntes, isto é, a corrente do Brasil e a Corrente das Malvinas. Para este dia, a "frente" oceanográfica aparece como uma característica linear extendendo-se das águas da Argentina até as águas do sul do Brasil. A Corrente do Brasil aparece na imagem em cor escura e a Corrente das Malvinas em cor branca. A Figura 7 é um impresso desta imagem (26 de junho), que mostra a posição da "frente" e os valores de dois de seus gradientes típicos através dela. Na área norte, o intervalo de temperatura através da "frente" foi de 14,5°C a 18,0°C com um gradiente de 3,5°C em 35 km. Na área sul, o intervalo de temperatura foi de 10,5°C a 14,0°C com um gradiente de 3,5°C em 40 km.
A seguir Figura 1.
Fig. 2 - Imagem do SMS-2 de 26 de junho de 1979, ampliada no I-100.
Fig. 3 - Imagem do SMS-2 de 15 de janeiro de 1980, ampliada no I-100.
Fig. 4 - Mapa temático da imagem do SMS-2 de 15 de janeiro de 1980, obtida no I-100.
A seguir Figura 5.
Fig. 7 - Fotografia do impresso da imagem do SMS-2 de 26 de junho de 1979.
Fig. 8 - Imagem do canal visível do NOAA-6 de 13 de setembro de 1980.
Fig. 9 - Imagem do canal infravermelho do NOAA-6 de 13 de setembro de 1980.
Fig. 10 - Mapa temático da imagem NOAA-6 de 13 de setembro de 1980.
Fig. 11 - Imagem do canal infravermelho do TIROS-N de 20 de agosto de 1980.
A imagem de 15 de janeiro de 1980 do SMS-2 apresenta uma situação mais complicada (Figura 3). Nesta data, as condições meteorológicas não foram tão favoráveis quanto as do dia 26 de junho, e a cobertura de nuvens foi mais pronunciada. A Figura 4 (também do SMS-2) mostra uma carta com temas do canal termal, onde a possível observação perto da costa, os valores mais altos da temperatura (18,0°C - 19,0°C). A carta SHIP (CTS) de temperatura (Figura 5) mostra que os valores da temperatura perto da costa são 22,0°C - 23,0°C. É interessante salientar que na região oceânica, defronte da Lagoa dos Patos, existe uma língua de água fria penetrando na Corrente do Brasil (Figura 3). A carta SHIP também mostra esta língua (Figura 5) com uma temperatura mínima de 21,0°C. A Figura 6 mostra a carta de Temperatura do Atlas, no mês de janeiro, onde se pode observar a ausência de gradientes pronunciados. Esta carta mostra que a temperatura na região toda varia entre 20,0°C a 25,0°C, e as temperaturas máximas da língua costeira atingem 24,0°C defronte da Lagoa dos Patos, Isto corresponde, sem dúvida, ao núcleo da Corrente do Brasil que também é observada na imagem de 15 de janeiro (Figura 3).

As Figuras 8 e 9 reproduzem as imagens VIS e IV do NOAA-6 do dia 13 de setembro de 1980 às 7:25 HL. Em ambas as imagens foi utilizado o programa "STRETCH" do I.100. É evidente que estas imagens são de melhor resolução que aquelas de SMS-2. Os vórtices e as formas de "Dentes de Serra" (que são mostrados principalmente na Figura 9) da "frente" oceanográfica são comuns na região que se estende da latitude de 40°S até as longitudes 50° - 53°W para norte, sendo mencionado por Tseng et alii (1977). A Figura 8 apresenta uma imagem VIS do dia 13 de setembro de 1980, onde foi utilizado o programa "STRETCH" que eliminou as nuvens mais frías. Esta figura mostra ainda as principais nuvens sobre o mar, sendo possível ver nuvens estratificadas de baixo nível.

A Figura 9 é uma imagem IV em "STRETCH", para a mesma data de 13 de setembro, que mostra a penetração, para o sul, da Corrente do Brasil e a presença de dois vórtices. A Figura 10 é uma composição colorida em falsa cor do mapa temático da imagem do dia 13 de setembro. Nesta imagem colorida, o vermelho-escuro é o núcleo principal da Corrente do Brasil e a cor azul representa a Corrente das Malvinas. A estrutura de "Dente de Serra" da "frente" é observada mais claramente nas ima

A Figura 11 mostra uma imagem IV do TIROS-N no dia 20 de agosto de 1980 às 07:14 HL. Esta imagem é uma ampliação e mostra uma complexidade na circulação comparável àquela da imagem do NOAA-6 de 13 de setembro de 1980. As cartas do Atlas Oceanográfico, apresentadas na Figura 12 e 14, mostram as isotermais nos períodos correspondentes às passagens dos satélites. A Figura 12 refere-se ao período 8 correspondente à passagem do TIROS-N de 20 de agosto de 1980. Esta figura mostra a existência de fortes gradientes na região oceânica do Mar do Prata e também uma língua de forma irregular de água mais fria perto da costa até a latitude de 30°S.

A Figura 13 mostra a temperatura na região, na semana de 18 a 24 de agosto de 1980. Esta carta mostra (ou sugere) a presença de fortes gradientes de temperatura estendendo-se da latitude de 35°C até a longitude 52°W, mais para leste. As temperaturas costeiras foram bem baixas (14,0° - 19,0°C).

A Figura 14 é uma carta de temperatura para o período 9 correspondente à passagem do NOAA-6 de 13 de setembro de 1980. Esta figura mostra a existência de fortes gradientes localizados principalmente na região oceânica do Mar do Prata e também defronte da Lagoa dos Patos. Numa direção geral norte-sul, os gradientes no Mar do Prata podem ser tão altos como, por exemplo, 10,0°C em 100 mn.

A Figura 15 é uma carta SHIP para a semana de 8 a 14 de setembro de 1980. Esta figura mostra a existência de fortes gradientes nessa semana, localizados principalmente a leste da longitude 052°W e na latitude 34°S aproximadamente. As cartas de temperatura do Atlas e as Cartas SHIP dão a posição da "frente" durante as passagens dos satélites. Devido a escassez de dados oceanográficos, as cartas de temperatura do Atlas e as cartas SHIP dão a posição aproximada dessa frente (posição parcial), e as imagens dos satélites dão sua posição instantânea.
A seguir Figura 12.
4 - DISCUSSÃO

Os resultados obtidos no presente trabalho mostram que importantes características da "frente" termal, associada com o Sistema da Corrente do Brasil, podem ser estudadas utilizando dados dos satélites SMS-2, NOAA-6 e TIROS-N. No caso de utilizar o satélite SMS-2, a "frente" termal pode ser detectada e cartografada com o sistema I-100 dentro dos limites da resolução do radiômetro VISSR (10 - 15 km) em latitudes sul do Brasil. As temperaturas medidas com sensores remotos foram 4,0°C mais baixas que as medidas com navios oceanográficos. Esta diferença é esperada devido ao fato de a camada atmosférica entre a superfície do mar e o satélite conter vapor d'água, o qual reduz a temperatura medida pelo sensor a essa quantia (Stevenson and Miller, 1975; e Maul et alii, 1978).

Os satélites NOAA-6 e TIROS-N têm uma melhor resolução espacial (1 km) que o satélite SMS-2, como mostram as Figuras 8 e 11. Infelizmente, para o NOAA-6 e para o TIROS-N, a calibração dos dados IV ainda não está disponível no INPE, mas está sendo desenvolvida. No caso das imagens reproduzidas, a conversão de valores digitais em temperaturas da superfície do mar é difícil, porque as correções radiométricas não têem sido feitas com os dados. Imagens de satélites semelhantes às que aqui são reproduzidas podem ser utilizadas de forma sinótica e possibilitam aos oceanógrafos observar rapidamente várias regiões a baixo custo.

5 - CONCLUSÕES

As principais conclusões deste trabalho podem ser resumidas como se segue:

2) As imagens dos satélites NOAA-6 e TIROS-N também podem ser utilizadas para detectar e monitorar o Sistema da Corrente do Brasil. A cobertura destes satélites pode ser até 4 vezes por dia. Estes satélites de órbita polar oferecem uma resolução de 1 Km, ou seja, cem vezes melhor, para as mesmas áreas, do que o SMS-2.

3) As estimativas de valores digitais na faixa do infravermelho através da frente subtropical, que separa a Corrente do Brasil da Corrente das Malvinas, mostram que os gradientes termais são da ordem de 3,5°C/40 km, o que concorda com as observações convencionais.

4) As cartas de temperatura superficial de dados medidos com sensores remotos possibilitam a obtenção de dados diários (ou aproximadamente diários), dos quais as cartas de temperatura superficial do mar podem ser obtidas. Para fornecer cobertura da verdade do mar com as observações oceanográficas, os dados deveriam ser compatibilizados num período de 7 dias. As temperaturas observadas convencionalmente foram de cobertura espacial suficiente para fazer comparações úteis de verdade do mar.
REFERÊNCIAS BIBLIOGRÁFICAS

