Close
Metadata

%0 Journal Article
%4 sid.inpe.br/mtc-m12@80/2006/08.03.18.23
%2 sid.inpe.br/mtc-m12@80/2006/08.03.18.23.07
%@issn 0103-8478
%A Rizzi, Rodrigo,
%A Rudorff, Bernado Friedrich Theodor,
%A Adami, Marcos,
%@affiliation Instituto Nacional de Pesquisas Espaciais (INPE)
%@affiliation Instituto Nacional de Pesquisas Espaciais (INPE)
%@electronicmailaddress
%@electronicmailaddress
%@electronicmailaddress marcos.adami@inpe.br
%T Estimativa da área de soja no estado do Rio Grande do Sul por um método de amostragem / Soybean crop area estimate in Rio Grande do Sul State through a sampling method
%B Ciência Rural
%D 2006
%V 36
%N 1
%8 jan.-fev.
%K sensoriamento remoto, estatísticas agrícolas, sistemas de informação geográfica, remote sensing, agricultural statistics, geographic information system, Glycine max.
%X Este trabalho objetivou avaliar um método de amostragem por segmentos regulares na estimativa da área plantada com soja no Estado do Rio Grande do Sul. Um mapa temático das áreas com soja, oriundo da classificação multitemporal de imagens do satélite Landsat, ano-safra 2000/01, foi utilizado como dado de referência para comparação dos resultados. A área de estudo foi dividida em segmentos regulares de 1 x 1km e estratificada em relação ao percentual de soja cultivado no município, em três extratos: a) 0-20; b) 20-40 e c) 40-67%. Um método probabilístico foi utilizado para definir quatro números amostrais, representando 0,06, 0,12, 0,24 e 0,48% da área de estudo, sendo cada um sorteado aleatoriamente cem vezes. A estimativa da área de soja para cada sorteio foi calculada analisando-se a área de cada segmento sorteado sobre o mapa temático e então comparada ao dado de referência. Os melhores resultados foram obtidos para o maior número amostral, o qual teve baixo Coeficiente de Variação (5,2%), indicando que o método, além de fornecer a área plantada com soja, em nível estadual, pode ser usado para prever a área plantada no início da safra ou nos anos em que não se dispõe de imagens de satélite livres de nuvens. Os três melhores sorteios para o maior número amostral tiveram sua área de soja também quantificada através do mapeamento de imagens adquiridas no ano-safra subseqüente (2001/02). Neste caso, foi observado um incremento entre 11,4 e 12,5% em relação ao ano-safra 2000/01, indicando que o incremento informado pelo IBGE (8,8%) está subestimado. ABSTRACT: This paper evaluates a sampling square method to estimate soybean crop area in Rio Grande do Sul State, Brazil. A soybean thematic map obtained from multitemporal Landsat images classification for the crop year of 2000/01 was used as reference data. The State area was divided into cells of 1 x 1km and stratified into three soybean area densities (0-20, 20-40 and 40-67%) at municipality level. A probabilistic technique was used to determine four sample rates representing 0.06, 0.12, 0.24 and 0.48% of the study area, being each one randomly sampled one hundred times. The soybean area for each sample was evaluated based on the reference data map. The one hundred estimates for each sample rate were then compared with the reference data for the entire study area. Best results were obtained for the highest sample rate with low Coefficient of Variation (5.2%), indicating that this method is not only suitable to accurate estimate soybean crop area, at State level, but it is also an appropriate alternative for early forecast or when cloud free satellite images are not available. The best three samples for the highest sample rate were selected to estimate soybean area over images acquired in the following crop year (2001/02). In this case, an increment between 11.4 and 12.5% in relation to 2000/01 was observed, indicating that the IBGE estimate (8.8%) is underestimated.
%P 30-35
%@language pt
%9 journal article
%3 a05v36n1.pdf


Close