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We propose a fuzzy expert system architeture for image classification, whose rules
are implemented through translation invariant mathematical morphology opera-
tors. The use of the architecture is illustrated by an expert system that classifies
an area of the Tapajés National Forest, in Brazil.

1 Introduction

The use of mathematical morphology has produced many applications in several
areas of image digital processing, particularly in what regards pattern recogni-
tion in binary images 3. Work on the classification of gray level images using
mathematical morphology is, still in its early stages, hut has already produced
some results 610,

This paper proposes the use of fuzzy sets and translation invariant oper-
ators of mathematical morphology to build expert systems for image classifi-
cation. Using such a methodology, it is possible to create simple and powerful
expert systems that leads to satisfactory classifications with only a small num-
ber of rules.

Section 2 presents the basic concepts of fuzzy sets theory, mathemati-
cal morphology and expert systems. Section 3 presents a general expert sys-
tem architecture for image classification using fuzzy sets theory as underlying
knowledge representation model and its implementation using mathematical
morphology. Section 4 presents a classifier developed by using this method-
ology, for an area in the National Forest of Tapajds, in the Brazilian state of
Para. Finally, Section 5 brings the conclusion.

2 Basic Concepts

Three research fields are relevant to understand this work: fuzzy sets theory,
expert systems and mathematical morphology.
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2.1 Fuzzy Sets Theory

In (classical) set theory, each subset A of an universe X can be expressed by
means of a membership function pg : X — {0,1}, where, for a given a € X,
pa(a) =1 and pa(a) = 0 respectively express the presence and absence of
a in relation to A. A fuzzy set 15 or fuzzy subset is used to model an ill-
known quantity. The membership function of a fuzzy set A is a mapping
pua s X — [0,1], where [0,1] can be any bounded scale. We say that a fuzzy set
Aof X is “precise” when d¢* € X such that p4(c*) = 1and Ve # ¢*, pa(c) = 0.
A fuzzy set A will be said to be “crisp” when Ve € X, pa(c) € {0,1}.

The intersection and union of two fuzzy sets are performed respectively
by t-norm and t-conorm operators, which are commutative, associative and
monotonic mappings from [0,1] to [0,1]. Moreover, a t-norm T (respec. t-
conorm 1) has 1 (respec. 0) as neutral element.

2.2 Mathematical Morphology

Mathematical morphology studies mappings between complete lattices. Map-
pings between bounded chains are particular cases. Bounded chains are very
important for our study because the elementary operators of mathematical
morphology (dilation, erosion, anti-dilation and anti-erosion) can be constructed
from elementary operators between bounded chains, the so called ELUT!.

Definition. Let be K; and K5 be two bounded chains and let ¥ be a
mapping from K; to K5. Then:

o U is a dilation < ¥ is increasing and ¥ (min K;) = min K».

e U is a erosion < ¥ is increasing and ¥(max K;) = max K.

e U is a anti-dilation < ¥ is decreasing and ¥(min K;) = max K>.

e U is a anti-erosion < ¥ is decreasing and ¥(max K;) = min K.

Furthermore, with the elementary operators of mathematical morphology

it is possible to construct new operators to solve image processing problems 2.

2.3 Expert Systems

Expert systems '2 use the knowledge of an expert in a given specific domain
to answer non-trivial questions about that domain. For example, an expert
system for image classification would use knowledge about the characteristics
of the classes present in a given region to classify a pixel in an image of that
region. This knowledge also includes the “how to do” methods used by the
human expert. Usually, the knowledge in an expert system is represented by
rules of the form:

IF (condition) THEN (conclusion).
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A simple rule of image processing could then be:

IF the gray level of a pixel is between 0 and 13 in band #4
THEN the class of the pixel is River.

Most rule-based expert systems allow for the use of connectives AND or
OR in the premise of a rule, and of connective AND in the conclusion.

3 An Expert System Architecture for Image Classification

Classifiers assisted by expert systems emerged as an alternative to reduce the
computational cost of numerical classifiers. A great advantage of these classi-
fiers is that the decision process can be sufficiently rich but involve only a few
pieces of information. Also, knowledge stored as rules is explainable, reusable,
and can be treated in a simple way 8. A disadvantage is that they will not
necessarily respond rightly when employed out of the context for which they
were designed, contrary to what generally happens with exclusively numerical
methods. Some practical implementations of such classifiers can be found in
the literature: the ICARE system* uses a fuzzy expert system that employs a
statistical pre-classifier, maps and old classifications of a region, to classify an
image; another classifier” combines heuristic and numerical methods to classify
ice on the sea using radar images; works derived from the ICARE system %14,
use neural networks in the pre-classification process. In those systems that use
numerical pre-classifiers, the expert system can be regarded as a post-classifier.

In the following subsections, we present a general expert system architec-
ture for image classification that uses fuzzy sets theory as knowledge represen-
tation model. Then we present how mathematical morphology operators can
be used to implement the rules in this architecture.

3.1 FExpert System Architecture

Let us suppose we want to classify the pixels of an image f into m classes.
Image f can be defined as a mapping of the rectangle E C Z? into a bounded
chain K. A binary image f is a mappring from E to K; = {0,1} and a gray
level image f is a mappring from E to K = {0,1,...,255}. Each ordered pair
p= (p, f(p)) is called a pixel, where p € E represents its position in the image
and f(p) is its gray level. Here we sometimes use the term information surface
to refer to a mappring from E to K; such a mapping may represent an image
as well as a fuzzy set membership function.

We propose here an image classifier having a fuzzy rule-based expert sys-
tem architecture, in which the premises of rules are translated throught the
compositions of mathematical morphology operators 1. The firing of a rule
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on an image f results in a set of n information surfaces g : E x K' — K',
k =1,...,n, where gi(p) corresponds to the degree of compatibility between
the pixel at position p with class ¢ and K’ is a bounded chain. The system is
implemented using two levels of abstraction: 1) rules provided by experts are
translated into sequences of mathematical morphology operators; and 2) the
n information surfaces g obtained by the application of these sequences are
aggregated to yield the classification for each pixel in image.

The expert system architecture proposed here is able to treat the whole
image at the same time. For the sake of simplicity, we will detail the treatment
as if the image was composed of a single pixel. Let us suppose that all the
rules in the knowledge base only employ the connective AND in the premise
(the treatment for connective OR can be found elsewhere !!):

R; : IF attr,(p) = A1; AND ... AND attry, (p) = An,; THEN class(p) = B;
where A;; and B;, i = 1,...,N;, j = 1,...,m are fuzzy sets, attr;(p) is an
attribute in the premise and class(p) is the attribute in the conclusion.

The universe of discourse of B; is C = {c,...,cp}, the set of possible
classes. The universe of discourse of each A;; depends on attribute attr;, and
is not necessarily discrete. Given p, its classification is made in three stages:

a) The compatibility of p in relation to the premise of each rule is verified.
This yields a preliminary classification of p in relation to the class in the
conclusion of each rule.

b) The preliminary classifications yielded by the rules are aggregated into
an imprecise global classification. Therefore p can be classified as belonging
to more than one class.

c) A precise class is assigned to the pixel, i.e. a decision is reached about
the classification of p.

In stage (a), the classification of p in relation to rule R; obeys the following
scheme:

a.1) The values of attributes attr; in relation to p are compared to fuzzy
sets A;j. This yields the compatibility degree of p in relation to each of the
premises of a rule R; and is calculated as

hij (p) = PAy; (attri (p))

a.2) The general compatibility degree of p in relation to rule R; is then
calculated as

hj (p) = T(hlj (p)a it thm(p))7

where T is a t-norm e. g. operator min.
a.3) The pixel classification is derived (according to rule R;) by applying
an implication function between the general compatibility degree h;(p) and
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the rule conclusion, given by B;. This value is given by fuzzy set Bj(p) in C:
py(p)(cr) = V(R (), s, (i) k= 1,..,m,

where v/ is an implication function. Although t-norms are not implication
function, they are the usual choice for 7. The fuzzy classification of p in
relation to rule R; is thus represented by Bj(p).

In stage (b), all fuzzy sets Bj(p) are aggregated into a single fuzzy set B,
given by

pBi(p)(cr) = (kB (p)(Ck); -5 kB, (p) (Ck));

where, the aggregation operator < is given by a t-conorm, when v/ is a t-norm.
Considering now the whole image, n information surfaces g : ExK' — K'
are derived, one for each ¢ in C:

9x(P) = ppr(p)(ck)
= Qj=t,miB;(p)(Ch)
= Qj=1,m V (hj(P), B, (ck))

Making m; = ps;(ck) and gr;(p) = V(h;(p), mx;), we have gr(p) =
¢ j=1,m3k; (P)-

Let us suppose that the conclusion of each rule R; classifies a pixel to
a single class ¢j, i.e. Bj is a precise fuzzy set. Let us further suppose that
V is a t-norm 1. Then, for cx = ¢}, mr; = p;p)(cj) = 1 and gx;(p) =
VT (hi(P),mk;) = VT (hi(P),1) = hj(p). For ¢t # cj, we then have gx;(p) =
vr(hs(p),0) = 0.

In this case, for ¢, = ¢} in rules which use only connective AND, we get:

gri(P) = Tiz1,N; pa,; (attr;(p)) (1)

gk(P) = Oj=1,m Ti=1,n; pa,; (attri(p)) (2)

In stage (¢), a “defuzzification” is performed, i.e. only one class is assigned
to each pixel. Here we choose for p the class for which p has the greatest
membership degree in information surfaces g;. We could also assign more
than one class to each pixel, e.g., a pixel classified by rules as belonging to
both ¢; and ¢, classes, could be classified as belonging to the “imprecise” class
c{1,2}, - In this case, one way to obtain the classification would be to apply a
pre-fixed threshold I, to each information surface gy.
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3.2 Implementation Using Mathematical Morphology

Mathematical morphology operators can treat the whole image at once, and
can be seen as first order logic functions. In our work, we use these operators
mostly to extract image attributes for the expert system and to implement
fuzzy characteristics such as “near”, “very near”, “distant”, “very distant”, etc.
For simplicity, the operator mainly used in the applications developed so far has
been the threshold operator of mathematical morphology, which transforms a
gray level image into a binary one. The use of such operator induces a loss
of information, which can be partially solved by a reconstruction operator. In
the cases for which the threshold operator gives reasonable results but with
some spurious points, the sup-generating operator can be used to eliminate
these points.

In what follows, we use three examples of rule implementations to illus-
trate the use of morphological operators. The result of the application of the
rules on a given image depends on the choice of the implication function, the
t-norms and the t-conorms. In the remaining of this text, we shall deal with
crisp fuzzy sets, mapping from a given domain to codomain {0,255}. We will
use the following conventions to specify the domain of a membership function:
ga denotes a mapping with domain Ej; A denotes a mapping with domain
{0, ...,255}; ba denotes a mapping with domain {y,n}; and ¢4 denotes a map-
ping with domain C', where C is the set of classes in a given application.

Let Haari Moergedark and y be defined respectively as
(5) = 255, if s <13 (5= 255, if s <10
Faark'®) =1 0, otherwise ’ Fvery“dark\®) =\ 0, otherwise ’

0, ify=no

briver

- )_{255,ify=yes

A rule in the system could then be:

Ry :  IF radiometry of band #4= dark
AND radiometry of band #5= very_dark THEN position € brjyer-

Membership functions [t and 4 — are LUTs of threshold oper-

very-dark

ators that applied to a gray level image (in this case, at bands #4 and #5)
yield binary images as result. These functions are dilations and erosions, in
conformity to the definitions in Section 2.3. All membership functions appear-
ing in R; are crisp, but any membership function could be equally used. Let us
suppose we have 7 = T = min and {) = max. Considering that the conclusion
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of R; represents a precise fuzzy set, using equations (1) and (2) we obtain the
information surface gy,,, ., (p) from Rj:

Gbriver (P) = min{p— (fa(P)), 1, o, (f5(P))}

Expression po~ (f4(p)) is by definition of the composition p-~ o fi(p)
and expression “verﬁark( f5(p)) is by definition Foergdark ° f5(p), where f4
and f5 denote bands #4 and #b5, respectively. Then:

o fs(p)}

The compositions used in gy,,,.,. are threshold operators of mathematical
morphology . Therefore gp,.... can be rewritten as

Gbriver (P) = min{p~ o fu(p), 1

verﬁark

boine. (D) = min{threshold[o,w] (f1)(p), threshold|g,10] (fs)»)}

Another example of rule is Rs:

Ry :  IF position € near_a_river AND position € ﬁb;;;;
THEN position € bpargin-

where near_a_river is a fuzzy set defined in terms of the distance function

()M

e = thresholdg 10) 4(g5,:,...);

near_a_river

ﬁb;;;r is the complement of fuzzy set b;;;r, calculated as By ) = 255 —

gt~ (p), and bynargin is defined by
— (y) = 255, if y = yes
1 0, ify=no

bmargin

With the same specifications used above for gy we obtain for g

river ) margin *

gmargin(P) = min{p  —.  (p); fos5(P) = b,iuer (P)}

near_a_river

where fo55 is a white image, i.e. Vp € E, fo55(p) = 255.
In terms of morphological operators, membership function p
a threshold operator on the distance function. We then have

near_a_river

Imargin(P) = min{thresholdjo 10] (¥a(9b,:,..)) (D)5 f255(P) = Gbriver (P)}
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Let criver be a class in a given application. Rule R3 relates fuzzy set criver
with fuzzy set byjyer:

R : IF position € b:;;r THEN class = Criper

255, if ¢ = ¢river
0, otherwise.
The implementation of rule R3 by equations (1) and (2), yields image
9erive, as Tesult, where gc,,,.. (P) = p (Criver)-

Criver

where ¢riyer 18 given by: p —~ (¢) = {

Criver ()

4 Application

An expert system constructed with the architecture proposed here has been
used for the classification of an area of the Tapajés National Forest, in the
north of Brazil. The application was developed using bands #3, #4, #5 and
#7 from Landsat TM images obtained in August 7th, 1995.

An already existing visual classification with eight classes for the area was
used as reference map to allow a comparison with the results obtained by the
system . Eight classes were found in the visual classification (see figure 1-

Left). Figure 1-Right brings the image classified by the expert system. For a
better comparison, the colors are the same in both classifications.

Figure 1: Left - Visual classification results; Right - Classification by the expert system.



According to the visual examination by an expert, the classification results
obtained by the system can be considered as quite satisfactory. A numerical
comparison between the two classifications has also been performed using the
Tau coefficient, considered to be the best coefficient to compare two classifica-
tion images®. The Tau results were 84,11% with variance 7,86 x10~7, and thus
the classification can be considered satisfactory also in statistical terms. It is
important to notice that the expert system classification was made using only
the expert knowledge modeled by the rules and the original image, without
any pre-classification.

5 Conclusion

We have presented a general expert system architecture for image classification
that uses fuzzy sets theory as knowledge representation model. The rules are
implemented using mathematical morphology operators.

The main contribution of this paper is the homogeneous application of
mathematical morphology and fuzzy sets theory for image classification. An
application was built with quite satisfactory results, using only the original
image and expert knowledge. The translation invariant property of the mor-
phological operators make it easy to extract the attributes from the image,
either by characteristics related to shape (mainly in binary images) or by ra-
diometry, independently of their localization in the image. This important
characteristic of translation invariant operators allows for the application of
the same sequence of operators, with small adjustments, to another image in
the same area.

As with any knowledge based system, this approach has the disadvantage
of requiring an expert to furnish the rules, in this case, someone with a good
knowledge about the region to be classified. Also, a minimum knowledge about
mathematical morphology operators is necessary to the application builder.
Although the results obtained so far are satisfactory in visual and statistical
terms, one can expect better results if the system is used with external data
(e.g. maps) or with a numerical pre-classification.
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