APLICAÇÃO DA MORFOLOGIA MATEMÁTICA À ANÁLISE
DE IMAGENS DE SENSORIAMENTO REMOTO

Ana Lúcia Bezerra Candeias

Tese de Doutorado em Computação Aplicada, orientada pelo Dr. Gerald Jean Francis Banon, aprovada em fevereiro de 1997.

INPE
São José dos Campos
Fevereiro de 1997
MINISTÉRIO DA CIÊNCIA E TECNOLOGIA
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-6340-TDI/592

APLICAÇÃO DA MORFOLOGIA MATEMÁTICA À ANÁLISE
DE IMAGENS DE SENSORIAMENTO REMOTO

Ana Lúcia Bezerra Candeias

Tese de Doutorado em Computação Aplicada, orientada pelo Dr. Gerald Jean Francis Banon, aprovada em fevereiro de 1997.

INPE
São José dos Campos
Fevereiro de 1997
621.376.5

CANDEIAS, A.L.B.

188p. - (INPE-6340-TDI/592)

Aprovada pela Banca Examinadora em cumprimento a requisito exigido para a obtenção do Título de Doutor em Computação Aplicada

Dra. Sandra Aparecida Sandri
Dr. Gerald Jean Francis Banon
Dra. Corina da Costa Freitas Yanasse
Dr. Luciano Vieira Dutra
Dr. Roberto de Alencar Lotufo
Dr. Nelson Delfino d'Avila Mascarenhas

Presidente
Orientador
Membro da Banca
Membro da Banca
Membro da Banca
- Convidado -
Membro da Banca
- Convidado -

Candidata: Ana Lúcia Bezerra Candeias

São José dos Campos, 21 de fevereiro de 1997
"As coisas tangíveis
tornam-se insensíveis
à palma da mão.
Mas as coisas findas
muito mais que lindas
essas ficarão."

Carlos Drummond de Andrade.
Dedico este trabalho
ao meu marido Ediberto,
aos meus pais Zacharias e Teresa e
as minhas avós Antônia e Maria Messias,
com eterno carinho.
AGRADECIMENTOS

Gostaria de agradecer ao INPE (Instituto Nacional de Pesquisas Espaciais) pela oportunidade de realizar o curso de doutorado nesta instituição.

Um grande agradecimento vai para meu orientador Gerald J. F. Banon que me incentivou bastante durante este período e que contribui de forma impar na efetivação deste trabalho.

Agradeço também a todos colegas, amigos e bolsistas da DPI (Divisão de Processamento de Imagens) por terem me dado a honra de ser mais um membro da “família da DPI”. Agradeço, aos professores e aos meus colegas do curso de Computação Aplicada, em especial ao João Camargo e a Magdalena.

De forma especial agradeço ao Alejandro, Sandra, Edilberto, Mura, Dutra, Evlyn, Herman, Sérgio, Ronei, Miguel, Banon, Sidnei e Magdalena por terem desenvolvido trabalhos comigo, ou que gentilmente cederam imagens usadas neste trabalho.

Agradeço também ao meu guru da WWW Danton, Griselda, e ao Juan que com sua paciência resolveu vários problemas da rede.

Pela revisão geral deste trabalho agradeço ao Prof. Banon e Edilberto, agradeço ao Sidnei pela revisão na parte de radar, agradeço pela revisão do texto com relação as normas de publicação do INPE a Maria Tereza e a Suelena.

Agradeço de forma mais que especial aos meus queridos pais Zacharias e Tereza, ao meu marido Edilberto e aos meus irmãos Júnior, Armando, Tasso e Cezar pela paciência que tiveram e têm comigo, pelo incentivo que me dão e por acreditarem sempre na minha capacidade de conquista.

Sem o apoio de todos vocês este trabalho não teria sido realizado. Obrigada mesmo!
PREFÁCIO

A Morfologia Matemática começou a ser estudada, aqui no INPE, no ano de 1984 com a vinda de Christian Guichou, a partir de uma cooperação técnica INPE e França. Em 1986, desenvolveu-se na Divisão de Processamento de Imagens do INPE, o software denominado ANIMA (ANálise de IMagens) baseado na Morfologia Matemática.

A partir daí, com o empenho de Júnior Barrera e Gerald J. F. Banon, a área de Morfologia cresceu, aqui no Brasil, em termos de estudos teóricos, desenvolvimento de ferramentas e aplicações.

O projeto AnIMO Mat do ProTem–CC/CNPq veio nos anos 90 motivar a disseminação desta abordagem não linear para o processamento de imagens. Esta tese faz parte deste projeto e contribui com algumas aplicações na área de análise de imagens de Sensoriamento Remoto.

Eu entrei em contato com a Morfologia Matemática no segundo semestre de 1992, em uma disciplina ministrada pelo Prof. Banon, oferecida pela Computação Aplicada do INPE. Fiquei encantada com a potencialidade das ferramentas desta teoria e em 1993 comecei a minha dissertação nesta área.

Atualmente vários esforços vêm sendo direcionados para a construção de operadores morfológicos automáticos usando redes neurais, algoritmos genéticos e estatística. Porém eles não fazem parte deste trabalho.

Espero que o leitor perceba a riqueza e a beleza que é a Morfologia Matemática.

Ana Lúcia.
RESUMO

Este trabalho mostra por meio de exemplos, como as ferramentas da Morfologia Matemática podem ajudar na análise de imagens de Sensoriamento Remoto. Os exemplos são gerados a partir de problemas reais e mostra-se que mesmo aparentemente distintos eles têm algo em comum. Estes exemplos são armazenados em uma biblioteca digital (URLib) e podem ser acessados através de quatro tabelas via WWW. A primeira tabela fornece o acesso aos exemplos através dos seus títulos, a segunda através dos objetos extraídos das imagens tais como drenagem, nuvens, etc., e a terceira através dos atributos extraídos, tais como: alongado, quase arredondado, etc. A última tabela refere-se às ações sobre as imagens tais como: fusão, homogenização, extrapolação etc. Este conjunto de exemplos podem auxiliar na solução de outros problemas similares em análise de imagens de Sensoriamento Remoto.
MATHEMATICAL MORPHOLOGY APPLICATION TO
REMOTE SENSING IMAGE ANALYSIS

ABSTRACT

This work shows, through examples, how the Mathematical Morphology tools can help Remote Sensing image analysis. Some examples are chosen from real problems and show that their solutions have something in common. These examples are stored in a digital library (URLib) and can be accessed through four tables. The first table gives access to the examples by mentioning their titles. The second one by mentioning the extracted objects like drainage, clouds, etc. The third table gives access to the examples by mentioning the object attributes like, elongated, almost circular, etc. Finally, the last one by referring to some actions over the images like, fusion, homogenization, extrapolation, etc. This set of examples should help to find out the solution for similar image analysis problems.
SUMÁRIO

LISTA DE FIGURAS ... xix
LISTA DE TABELAS ... xxiii
LISTA DE SIGLAS E ABBREVIATURAS xxv

1 – INTRODUÇÃO .. 1
 1.1 – Considerações gerais .. 1
 1.2 – Objetivo ... 3
 1.3 – Conteúdo do trabalho .. 3

2 – CONCEITOS BÁSICOS DE MORFOLOGIA MATEMÁTICA 5
 2.1 – Introdução ... 5
 2.2 – Mapeamento entre reticulados 8
 2.3 – Nível 1 (ferramentas) .. 11
 2.4 – Nível 2 (operações) .. 11
 2.5 – Nível 3 (operadores elementares) 12
 2.6 – Nível 4 (operadores sup–geradores e inf–geradores) 16
 2.7 – Nível 5 (operadores baseados em sup–geradores e inf–geradores) .. 17
 2.8 – Nível 6 (filtros morfológicos) 19
 2.9 – Nível 7 (operadores baseados em subtração) 22
 2.10 – Exemplos de análise em imagens binárias 25
 2.11 – Exemplos de análise de imagens em níveis de cinza 30
 2.12 – Morfologia matemática em imagens coloridas 39

3 – ANÁLISE DE IMAGENS DE SENSORIAMENTO REMOTO 45
 3.1 – Introdução ... 45
 3.2 – Extração de objetos através de atributos e contexto 47
 3.2.1 – Extração de pivot central em Guaíra, SP por atributo de forma .. 47
 3.2.2 – Extração de corpos d’água por atributo de forma 54
 3.2.3 – Reconhecimento de nuvens e sombras em imagens TM .. 57
 3.3 – Homogenização de temas em uma imagem de radar segmentada por máxima verossimilhança 75
 3.4 – Homogenização de temas por uma filtragem morfológica nos planos de bits 76
 3.5 – Restauração de imagens .. 85
 3.5.1 – Eliminação de uma lista horizontal em uma imagem NOAA .. 85
 3.5.2 – Redução de ruído de fase em interferometria usando com exemplo uma imagem do vulcão Etna .. 91
 3.6 – Casamento de padrão em imagens multispectral e pan‐chromática do sensor SPOT 94
 3.7 – Extração de corpos d’água ... 99
 3.7.1 – Extração do reservatório Buritama 99
 3.7.2 – Extração de ilhas usando imagens dos sensores TM, JERS e RADAM 105
 3.7.3 – Extração automática da drenagem em uma imagem de radar .. 111
LISTA DE FIGURAS

2.1 – a) Perfil de f e g. b) Supremo entre f e g. c) Ínfimo entre f e g 8
2.2 – Operador ψ .. 8
2.3 – Exemplos de LUT’s. a) LUT para aumento de contraste (dilatação). b) LUT para aumento de
contraste e média (erosão). c) LUT para binarização (anti–erosão) ... 10
2.4 – Exemplo de um operador caracterizado por uma LUT ... 10
2.5 – Representação dos termos usados na imagem binária f ... 25
2.6 – Imagem original f_1. b) Dilatação de f_1 com relação a B. c) Erosão de f_1 com relação a B 26
2.7 – a) Imagem original f_1. b) Dilatação de f_1 com relação a B_1. c) Dilatação de f_1 com relação a
B_2. d) Erosão de f_1 com relação a B_1. e) Erosão de f_1 com relação a B_2 26
2.8 – a) Gradiente morfológico. b) Borda externa. c) Borda interna ... 27
2.9 – Imagem original f_1. b) Abertura de f_1 com relação a B. c) Fechamento de f_1 com relação B 28
2.10 – a) Imagem original f_1. b) Abertura de f_1 com relação a B_1. c) Abertura de f_1 com relação a
B_2. d) Fechamento de f_1 com relação a B_1. e) Fechamento de f_1 com relação a B_2 28
2.11 – a) Imagem original f_1. b) Abertura de f_1 com relação a B_1. c) Fechamento de f_1 com
relação a B_2 ... 29
2.12 – Imagem original f. b) Abertura de f com relação a B. c) Fechamento de f com relação a B
d) Cartola. e) Cartola dual .. 29
2.13 – Efeito da erosão e da dilatação f com relação a B ... 31
2.14 – Efeito da abertura de f com relação a B ... 32
2.15 – Efeito do fechamento de f com relação a B ... 33
2.16 – a) Imagem original f. b) Dilatação de f com relação a B. c) Erosão de f com relação a B 34
2.17 – a) Imagem original f. b) Abertura de f com relação a B. c) Fechamento de f com relação a B 34
2.18 – a) Imagem original f. b) Abertura de f seguida de fechamento f com relação a B
c) Fechamento de f seguido de uma abertura de f com relação a B 34
2.19 – a) Visualização em 3D da imagem f. b) Filtro de abertura com B perpendicular ao ruído 35
2.20 – Representação de uma imagem para aplicação do watershed ... 35
2.21 – Segmentação de um mapa scanneado ... 36
2.22 – Sobre–segmentação de uma imagem .. 37
2.23 – a) Imagem original f. b) Imagem de marcadores internos. c) Imagem f_2. Marcador externo.
d) Imagem f_2 representando a união dos marcadores ... 37
2.24 – Segmentação das sombras da imagem TM ... 38
2.25 – Representação do cubo RGB ... 40
2.26 – Modelo de cor HSV usando o hexágono .. 41
2.27 – Corte do Modelo de cor HSV usando o hexágono ... 42
2.28 – Representação gráfica da expansão e da contratura .. 43
3.1 – Solução de um problema de análise de imagens ... 46
3.2 – Transformação de um objeto quase arredondado ... 49
3.3 – Transformação de um objeto que não é quase arredondado .. 49
3.4 – Reconhecimento de um objeto quase arredondado em presença de ruído de borda 49
3.5 – Reconhecimento de um objeto que não é quase arredondado em presença de ruído de borda . 50

xix
3.6 – Reconhecimento de feições circulares em uma imagem ERS1/SAR, Guaíra .. 51
3.7 – Reconhecimento de um objeto alongado em uma imagem .. 55
3.8 – Reconhecimento de sombras e nuvens .. 58
3.9 – Interpolação condicional ... 60
3.10 – Extração das nuvens e das sombras da imagem \(f_i \) .. 61
3.11 – Extração das nuvens e das sombras da imagem \(f_{i_1} \) ... 61
3.12 – Perfil das imagens \(f_2 \) e \(\gamma(f_2) \) .. 62
3.13 – Geração dos marcadores da sombra .. 63
3.14 – Marcador externo ... 64
3.15 – Geração dos marcadores externo e internos ... 66
3.16 – Rotulação das sombras ... 67
3.17 – Localização de sombras ... 69
3.18 – Perfil da imagem \(h_3 \) e \(h_4 \) ... 70
3.19 – Geração dos marcadores de nuvens e sombras das imagens \(f_1 \) e \(f_2 \) .. 71
3.20 – Marcadores de nuvens de \(f_2 \) perto da sombra ... 72
3.21 – a) Imagem original: banda–L, polarização HH. b) Imagem adicional: banda–X, Polarização HH 75
3.22 – a) Segmentação por máxima verossimilhança para duas classes. b) Filtro Morfológico 76
3.23 – a) Decomposição da imagem \(f \) em oito planos de bits. b) Filtragem morfológica nos planos de bits antes da reconstrução da imagem \(f \) .. 77
3.24 – Imagem em níveis de cinza e seus oito planos de bits (com os planos mais significativos da esquerda para direita, de cima para baixo) ... 78
3.25 – Imagem original e sua versão de um look corrompida pelo ruído speckle 79
3.26 – Planos de informação \([b^1, b^2, ..., b^8]\) de uma imagem de um look corrompida por speckle 81
3.27 – Planos de informação filtrados \([F(b^1), ..., F(b^8)]\) da Figura 3.26 .. 81
3.28 – Imagem de um look corrompida pelo ruído speckle e o resultado após a filtragem dos três planos mais significativos ... 81
3.29 – Imagem JERS–1 (imagem \(g \)) sobre tapajós e seus oito planos de bits ... 82
3.30 – Três planos de bits mais significativos da imagem \(g \) filtrados ... 82
3.31 – Imagem original e sua versão filtrada ... 83
3.32 – Imagem SAR–580 sobre Freiburg, filtro \(F \) aplicado diretamente à imagem original e sua versão filtrada pelos três planos de bits mais significativos de bits ... 83
3.33 – a) Histograma da imagem original. b) Histograma da imagem original filtrada por \(F \) c) Histograma da imagem restaurada por filtragem nos três planos de bits mais significativo . .. 84
3.34 – Planos de bits \([b^7, b^6, b^5, b^4, b^3, b^2, b^1, b^0] \) de imagem SAR–580 sobre Freiburg. 84
3.35 – Imagem NOAA original \(f \) (com um defeito na forma de uma lista horizontal) 85
3.36 – Processo de restauração da imagem NOAA .. 86
3.37 – Geração da máscara ... 87
3.38 – Extração dos máximos locais ... 88
3.39 – Fusão ... 90
3.40 – Imagem NOAA restaurada pelo filtro da mediana (\(f_3 \)) .. 90
3.41 – Imagem NOAA restaurada por interpolação condicional (\(f_3 \)) ... 91
3.42 – a) Imagem original do interferograma. b) Imagem filtrada. c) Diferença entre a imagem original e a imagem filtrada ... 93
3.43 – Imagem SPOT. a) imagem pancromática. b) imagem multispectral banda 2 94

3.56 – Esquema da solução (dependendo da imagem de entrada, a LUT aplicada ao primeiro bloco pode ser alterado).

3.57 – a) Imagem original. b) Imagem binarizada. c) Resultado pela MM.

3.58 – a) Imagem original. b) Imagem filtrada com filtro passa-baixa. c) Resultado binário. d) Representação 3D da imagem original. e) Representação 3D do filtro passa-baixa. f) Representação 3D do resultado binário.

3.59 – Extração da drenagem.

3.60 – Representação do mapeamento ψ.

3.62 – Representação das imagens g4 g2 g1.

3.63 – Representação das imagens g5 g3 g1.

3.64 – Representação das imagens g4 g5 g1.

3.65 – Representação do mapeamento ψ_1.

3.66 – Diagrama de Venn.

3.67 – a) Imagem original f. b) Extração visual (imagem x). c) Extração automática (imagem y).

3.68 – Ligação de segmentos.

3.70 – a) Banda R. b) Banda G. c) Banda B. d) Banda H. e) Banda S. f) Banda V.

3.71 – Extração das isolinhas.

3.72 – a) Imagem f_1. b) Imagem f_2. c) Imagem f_3.

3.73 – a) Imagem em níveis de cinza do mapa colorido. b) Imagem vetorizada de isolinhas.

4.1 – Índice de um acervo local.

4.2 – URlib News.

4.3 – Topo da árvore de diretórios.

4.4 – Base da árvore de diretórios.

4.5 – Banco de exemplos.

4.6 – Exemplos de aplicações.

4.7 – Objetos tratados nos exemplos.
LISTA DE TABELAS

2.1 – Elementos estruturantes para operadores baseados em sup–geradores e inf–geradores

2.2 – Conteúdo da caixa de ferramentas MMach

3.1 – Estatísticas das imagens f_1, f_2 e f_3 da Figura 3.9

3.2 – Coeficiente de variação das imagens filtradas reconstruídas

3.3 – Estatísticas das imagens f, f_5 e f_6

3.4 – Percentagem de pixels

4.1 – Conteúdo da caixa de ferramentas MMach e exemplos

Pág.

19

23

70

80

89

122

142
LISTA DE SIGLAS E ABREVIATURAS

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnIMoMat</td>
<td>Análise de Imagens por ferramentas da Morfologia Matemática</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>CEFET</td>
<td>Centro Federal de Educação Tecnológico do Paraná</td>
</tr>
<tr>
<td>dpi</td>
<td>dot pitch inch</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsche Forschungsanstalt für Luft und Raumfahrt</td>
</tr>
<tr>
<td>DSG</td>
<td>Diretoria do Serviços Geográfico</td>
</tr>
<tr>
<td>ERS1</td>
<td>Earth Resource Satellite 1</td>
</tr>
<tr>
<td>HP IICX</td>
<td>Helwett Packward IICX</td>
</tr>
<tr>
<td>HH</td>
<td>Horizontal, Horizontal</td>
</tr>
<tr>
<td>HSV</td>
<td>Hue, Saturation and Value</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper Text Markup Language</td>
</tr>
<tr>
<td>IBGE</td>
<td>Instituto Brasileiro de Geografia e Estatística</td>
</tr>
<tr>
<td>INPE</td>
<td>Instituto Nacional de Pesquisas Espaciais</td>
</tr>
<tr>
<td>JERS–1</td>
<td>Japanese Earth Resource Satellite–1</td>
</tr>
<tr>
<td>LUT</td>
<td>Look Up Table</td>
</tr>
<tr>
<td>MMach</td>
<td>Morphological Machine</td>
</tr>
<tr>
<td>MM</td>
<td>Morfologia Matemática</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NP()</td>
<td>Número de Pixels</td>
</tr>
<tr>
<td>PAN</td>
<td>Pancromática</td>
</tr>
<tr>
<td>PROTEM–CC</td>
<td>Programa Temático Multiinstitucional em Ciência da Computação</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green and Blue</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SAR580</td>
<td>Synthetic Aperture Radar 580</td>
</tr>
<tr>
<td>SGI</td>
<td>Sistema Geográfico de Informação</td>
</tr>
<tr>
<td>SIG</td>
<td>Sistema de Informações Geográficas</td>
</tr>
<tr>
<td>SKIZ</td>
<td>Skeleton Influence Zone</td>
</tr>
<tr>
<td>SPOT</td>
<td>Système Probatoire de l’Observation de la Terre</td>
</tr>
<tr>
<td>SR</td>
<td>Sensoriamento Remoto</td>
</tr>
<tr>
<td>TM</td>
<td>Thematic Mapper</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
<tr>
<td>UFAL</td>
<td>Universidade Federal de Alagoas</td>
</tr>
<tr>
<td>UFPE</td>
<td>Universidade Federal de Pernambuco</td>
</tr>
<tr>
<td>UFSCAR</td>
<td>Universidade de São Carlos</td>
</tr>
<tr>
<td>UNICAMP</td>
<td>Universidade de Campinas</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>URLib</td>
<td>Uniform Repository Library</td>
</tr>
<tr>
<td>USP</td>
<td>Universidade de São Paulo</td>
</tr>
<tr>
<td>XS2</td>
<td>Banda Multispectral 2</td>
</tr>
<tr>
<td>3D</td>
<td>Três Dimensões</td>
</tr>
</tbody>
</table>
CAPÍTULO 1

INTRODUÇÃO

1.1 – CONSIDERAÇÕES GERAIS

Apesar dos grandes avanços científicos e tecnológicos que o homem já alcançou, o planeta Terra continua sendo um poço de mistérios a desvendar. Observar a Terra do alto é uma maneira de encontrar respostas para entender o nosso planeta. É nisto que se baseia o Sensoriamento Remoto (SR) que surge hoje em dia como uma ferramenta poderosa para o monitoramento de mudanças globais.

O SR estuda o ambiente terrestre através da análise dos dados fornecidos pelas imagens que representam as interações entre a radiação eletromagnética e os alvos presentes em uma parte da superfície terrestre (cena) (Lillesand e Kiefer, 1994; Novo, 1992; Crósta, 1992).

A partir do lançamento do Landsat–1 em 1972, as imagens digitais tornaram-se largamente utilizadas em diversas aplicações tais como: monitoramento ambiental, estudos urbanos, ocenográficos, geológicos, florestais, agrícolas, cartográficos etc.

Para extrair visualmente informações espaciais de uma imagem, o usuário detecta, identifica e mede o(s) objeto(s) ou o(s) padrão(ões) de interesse na imagem. Portanto, ele aplica uma transformação na imagem original e extrai apenas as informações de interesse. O resultado pode vir na forma de uma imagem mais simplificada que a imagem original (classificação de tipos de desmatamento, extração de estradas, etc.) ou na forma de uma medida sobre a imagem original (contagem de área desmatada, percentagem de crescimento urbano, etc.). A utilização do processamento de imagens automatiza a extração destas informações.

A Morfologia Matemática (MM) é uma abordagem não linear em processamento de imagens. Ela surgiu da década de sessenta com George Matheron e Jean Serra na Escola de Minas de Paris, em Fontainebleau. O objetivo era a extração de informações a partir da análise de estruturas geométricas de amostras de rochas ou metais obtidas por imagens de microscópio. Como consequência deste estudo surgiu uma teoria de análise espacial de estruturas que foi denominada de MM: Morfologia, por ajudar na análise de formas e objetos, e Matemática, por esta análise se basear na teoria de conjuntos, topologia, reticulados, funções randômicas, etc.
A MM foi inicialmente desenvolvida para análise de imagens binárias, onde a abordagem linear não se mostrava eficiente, e depois foi estendida para níveis de cinza. Alguns estudos estão sendo desenvolvidos para imagens coloridas, dentre os quais, um resultado interessante é mostrado no Capítulo 3.

Banon e Barrera (1991 e 1993) supõem como ideia central da MM, a decomposição de mapeamentos entre reticulados completos em termos de quatro classes de transformações elementares: dilatações, erosões, anti-dilatações e anti-erosões.

Uma analogia entre a MM e o jogo de armar LEGO pode ser vista em Banon e Barrera (1994). As peças a serem encaixadas são: dilatações, erosões, anti-dilatações e anti-erosões e os operadores são os objetos criados a partir destas peças. Com a MM, é possível supor uma teoria unificada para problemas de processamento de imagens, ou seja, é possível gerar metodologias para diversos estudos da extração de informação sobre imagens de SR usando as mesmas ferramentas da MM.

Barrera (1992) e Banon e Barrera (1994) descrevem um ótimo histórico do crescimento desta teoria que hoje é intensivamente estudada em vários centros de pesquisas e universidades em todo mundo. Aqui no Brasil, alguns institutos e universidades estão atualmente trabalhando com MM, tais como INPE, USP, UNICAMP, UFPE, UFAL, UFSCAR e CEFET e participam do projeto PROTEM–CC AnIMoMat (Banon, 1995b). Estas instituições estão difundindo a MM e suas aplicações em várias áreas do conhecimento. Estas aplicações têm em comum a extração de informações de imagens, ou seja, a análise espacial de estruturas.

Atualmente, acessando a URL: http://www.cwi.nl/projects/morphology/ é possível obter várias informações atualizadas sobre eventos anuais e literatura da área de MM. Além disto, existe lá uma lista eletrônica editada por Henk Heijmans que traz as últimas novidades nesta área.
Um passo importante no desenvolvimento das metodologias para extração de informação foi a utilização da plataforma KHOROS (Rasure et al., 1990; Konstantinides e Rasure, 1994 e Khoral, 1995) e de uma caixa de ferramentas denominada MMach (Morphological Mach) mostrada em Barrera et al. (1995). No apêndice I são mostrados alguns detalhes da plataforma KHOROS e da MMach onde as metodologias deste trabalho foram desenvolvidas.

1.2 – OBJETIVO

O objetivo deste trabalho é mostrar como a MM pode resolver eficientemente problemas de extração de informações de imagens em SR e que problemas distintos tais como a extração de uma drenagem e uma restauração de imagem podem se utilizar das mesmas ferramentas básicas. Este fato é uma característica única da MM, pois na literatura, cada tipo de problema de análise de imagens é resolvido por uma técnica distinta e não são em geral úteis para outros problemas. Os exemplos mostrados no Capítulo 3 estão armazenados em um banco de exemplos que é descrito no Capítulo 4. Este banco foi incorporado a WWW, e pode ser acessado pelo browser Netscape. Foi utilizado para isto o paradigma de uma biblioteca digital (Banon, 1995c). A vantagem é o acesso rápido e estável de todos os dados da metodologia desenvolvida, tais como: “workspaces”, artigos, mapas digitalizados, imagens, programas, etc.

1.3 – CONTEÚDO DO TRABALHO

Este trabalho é composto por 5 capítulos e um apêndice. No próximo capítulo, tem-se algumas definições de transformações sobre imagens binárias, sobre imagens em níveis de cinza e algumas considerações sobre imagens coloridas. O Capítulo 3 trata de alguns exemplos de extração de informação em análise de imagens de SR usando MM. No Capítulo 4 mostra-se o banco de exemplos desenvolvido através de tabelas e no Capítulo 5 têm-se as conclusões e as considerações finais. O Apêndice 1 mostra a plataforma KHOROS onde foi desenvolvida a metodologia.
CAPÍTULO 2

CONCEITOS BÁSICOS DE MORFOLOGIA MATEMÁTICA

2.1 – INTRODUÇÃO

“... Por que o LEGO é o brinquedo mais genial do mundo?” perguntava o filósofo em uma carta para Sofia. Então ela pensou: “É fácil construir coisas com as peças de LEGO. Embora elas sejam de diferentes tamanhos e formas, todos podem ser combinados entre si”. “... Com as peças de LEGO, ela podia construir qualquer coisa e depois podia desmontar tudo e construir outra coisa, completamente diferente”. Então o filósofo respondeu: “... Justamente por possibilitarem seu reaproveitamento é que as peças de LEGO se tornaram tão populares. A mesma peça de LEGO pode servir hoje para a construção de um carro, amanhã para um castelo.”

Da mesma forma que em um jogo de armar onde as peças são usadas para construir módulos e os módulos são integrados para formar os objetos, na MM, as dilatações e erosões são de maneira metafórica “as peças a serem encaixadas” para criar operadores mais complexos.

A MM pode ser vista como uma teoria unificada (Barrera, 1992) para problemas de processamento de imagens. Existem transformações básicas que adequadamente arranjadas geram novas transformações úteis para a extração de informação de imagem.

Neste capítulo são vistas as definições de conjunto parcialmente ordenado, reticulado, imagem digital e pixel, transformações morfológicas e exemplos de análise em imagens binárias e em níveis de cinza. A lista das transformações morfológicas é mostrada na Tabela 2.1, onde são identificados o nome da transformação, seu símbolo e o número da equação. As transformações apresentadas são as implementadas na MMach e foram extraídas de Barrera et al. (1995), Banon (1995b) e Banon (1996a).
Toda a teoria da MM é construída a partir da noção de ordem parcial, isto é, a partir de três axiomas (reflexividade, anti–simetria, transitividade). Em MM consideram-se os conjuntos providos por uma relação de ordem parcial que são também reticulados. Neste caso, pode–se definir duas operações: união e interseção que, por sua vez, tem as propriedades de comutatividade, associatividade e absorção.

Definição 2.1 – Seja \(L \) um conjunto não vazio. \(L \) provido de uma relação de ordem parcial denotada \(\leq \) é chamado de **conjunto parcialmente ordenado**, isto é, para todo \(a, b, c \in L \)

\[
\begin{align*}
 a & \leq a & \text{Reflexividade} \\
 a & \leq b & b \leq a & \Rightarrow & a = b & \text{Anti–simetria} \\
 a & \leq b & b \leq c & \Rightarrow & a \leq c & \text{Transitividade}
\end{align*}
\]

Definição 2.2 – \(L \) é uma **cadeia** se e somente se \(\forall a, b \in L \) tem–se que \(a \leq b \) ou \(b \leq a \).

Um exemplo de cadeia é \((K, \leq)\) onde \(K = \{0, ..., k - 1\} \subset \mathbb{Z} \) e \(\leq \) é a ordem habitual de \(\mathbb{Z} \) induzida em \(K \).

Definição 2.3 – Seja \(E \) uma coleção de quadrados adjacentes e dispostos ao longo de linhas e colunas formando uma superfície retangular. Uma vez escolhida a escala de níveis de cinza \(K \), então o modelo matemático para uma **imagem digital** \(f \) é uma função que mapeia cada posição (quadrado) de \(E \) em um nível de cinza em \(K \). O conjunto \(K \) pode ser modelado como um intervalo de \(\mathbb{Z} \) (números inteiros). Denota–se por \(K^E \) o conjunto das imagens de \(E \) em \(K \). As imagens binárias possuem \(K = \{0,1\} \) e são vistas como um caso particular do caso em níveis de cinza. Portanto, uma imagem binária é um elemento de \(\{0,1\}^E \).

Definição 2.4 – Denota–se uma imagem com todos níveis de cinza iguais a \(k \) por \(k^E \).

Por exemplo:

\(0^E \) é uma imagem com todos os níveis de cinza iguais a zero.

Definição 2.5 – Seja \(f \) uma imagem digital. Define–se por **pixel** de \(f \), na posição \(x \), o par \((x, f(x)) \).

A seguir são apresentadas as definições do ínfimo e supremo. Estas definições são a base para a construção das quatro transformações elementares: dilatação, erosão, anti–dilatação e anti–erosão.

Definição 2.6 – Seja \(X \subset L \) \(a \) é um **limitante superior** de \(X \) se e somente se \(x \leq a \) para todo \(x \in X \). \(a \) é um **limitante inferior** de \(X \) se e somente se \(a \leq x \) para todo \(x \in X \).

Definição 2.7 – Se \(a \) é um limitante superior de \(X \) e \(a \in X \) então \(a \) é único e chamado de **maior elemento** de \(X \). Se \(a \) é um limitante inferior de \(X \) e \(a \in X \) então \(a \) é único e chamado de **menor elemento** de \(X \).
Definição 2.8 – Seja \(X \subseteq L \). Se existir um menor elemento para o conjunto dos limitantes superiores de \(X \), então este elemento é chamado de supremo de \(X \) e denotado \(\sup X \). De uma outra forma, tem–se que para todo \(a \in L \):

\[
a \text{ limitante superior de } X \iff \sup X \leq a
\]

Definição 2.9 – Seja \(X \subseteq L \). Se existir um maior elemento para o conjunto dos limitantes inferiores de \(X \), então este o elemento é chamado de ínfimo de \(X \) e denotado \(\inf X \). Tem–se que para todo \(a \in L \):

\[
a \text{ limitante inferior de } X \iff a \leq \inf X
\]

Definição 2.10 – \((L, \leq)\) é um reticulado se e somente se qualquer subconjunto de \(L \) possuir um ínfimo e um supremo.

Tem–se a seguir outra definição de reticulado:

Definição 2.11 – \((L, \lor, \land)\) é um de reticulado se e somente se as duas operações \(\lor, \land \) em \(L \) verificam que, \(\forall a, b, c \in L \),

1) \(a \lor b = b \lor a ; \ a \land b = b \land a \) \hspace{1cm} \text{comutatividade}

2) \((a \lor b) \land c = a \lor (b \land c) ; \ (a \land b) \land c = a \land (b \land c) \) \hspace{1cm} \text{associatividade}

3) \(a \lor (a \land b) = a ; \ a \land (a \lor b) = a \) \hspace{1cm} \text{absorção}

Proposição – Seja \((L, \leq)\) um reticulado e seja \(\lor, \land \) as operações em \(L \) definidas por:

\[
a \lor b = \sup \{ x \in L : x = a \ ou \ x = b \}
\]

\[
a \land b = \inf \{ x \in L : x = a \ ou \ x = b \}
\]

Então \((L, \lor, \land)\) é um reticulado, e

\[
a \leq b \iff a \lor b = b ; \ a \leq b \iff a \land b = a \ (a, b \in L)
\]

Existe uma relação estreita entre \((L, \lor, \land)\) e \((L, \leq)\) que não será demonstrada aqui. Em Birkoff (1967), Heijmans e Ronse (1990), Barrera (1992) e Banon (1996a) existe um estudo detalhado sobre a teoria dos reticulados.

O exemplo a seguir mostra o ínfimo e o supremo de duas funções.

Exemplo: Sejam \(f \) e \(g \) os dois perfis de imagens em níveis de cinza em \(K^E \) mostradas na Figura 2.1 (a). As Figura 2.1 (b) e Figura 2.1 (c) representam união e interseção de \(f \) e \(g \) em relação a ordem parcial \(\leq \) definida por \(f \leq g \iff f(x) \leq g(x) \) para \(x \in E \).
Fig. 2.1 – a) Perfil de f e g. b) União entre f e g. c) Interseção entre f e g.

No caso de um reticulado finito ($L \leq$), L possui um maior e um menor elemento, denotados por (i) e (o) respectivamente. Então:

$$o \leq a \leq i ; \quad (a \in L)$$

Em processamento de imagens de Sensoriamento Remoto, existem casos onde não é possível usar uma relação de ordem parcial. Dois exemplos onde isto ocorre são: imagens de fase em interferometria e o matiz de uma imagem colorida no espaço HSV. Em ambos os casos, os valores assumidos pelos pixels estão arranjados de maneira circular. Estes casos serão vistos no Capítulo 3.

2.2 – MAPEAMENTO ENTRE RETICULADOS

Um dos problemas de análise de imagens em SR é transformar uma imagem f em K^E em uma nova imagem g em K^E, que em geral é mais simples que f.

Um mapeamento ψ entre reticulados L_1 e L_2 é chamado de operador.

O operador ψ de L_1 em L_2 que transforma uma imagem f em uma imagem g é mostrado na Figura 2.2.

Fig. 2.2 – Operador ψ.
Definição 2.12 – Sejam \((L_1 \leq)\) e \((L_2 \leq)\) dois conjuntos parcialmente ordenados. A transformação \(\psi\) de \(L_1\) em \(L_2\)

\[
\begin{align*}
\text{é crescente se } a \leq b & \implies \psi(a) \leq \psi(b), \\
\text{é decrescente se } a \leq b & \implies \psi(b) \leq \psi(a)
\end{align*}
\]

Propriedade – Definição equivalente para \(\psi\) crescente e decrescente. Se \((L_1 \leq)\) e \((L_2 \leq)\) são dois reticulados então:

\[
\begin{align*}
\psi \text{ é crescente } & \iff \psi(a) \lor \psi(b) \leq \psi(a \lor b) \\
& \iff \psi(a \land b) \leq \psi(a) \land \psi(b) \\
\psi \text{ é decrescente } & \iff \psi(a) \land \psi(b) \\
& \iff \psi(a) \lor \psi(b) \leq \psi(a \land b)
\end{align*}
\]

Definição 2.13 – Sejam \(L_1\) e \(L_2\) dois reticulados finitos. \(\psi\) de \(L_1\) em \(L_2\) é uma dilatação \((L_1 \leq)\) em \((L_2 \leq)\) se somente se \(\psi(a \lor b) = \psi(a) \lor \psi(b)\) e \(\psi(a) = a. (a, b \in L_1)\)

Definição 2.14 – Sejam \(L_1\) e \(L_2\) dois reticulados finitos. \(\psi\) de \(L_1\) em \(L_2\) é uma erosão \((L_1 \leq)\) em \((L_2 \leq)\) se somente se \(\psi(a \land b) = \psi(a) \land \psi(b)\) e \(\psi(i) = i. (a, b \in L_1)\)

Definição 2.15 – Sejam \(L_1\) e \(L_2\) dois reticulados finitos. \(\psi\) de \(L_1\) em \(L_2\) é uma anti–dilatação \((L_1 \leq)\) em \((L_2 \leq)\) se somente se \(\psi(a \lor b) = \psi(a) \lor \psi(b)\) e \(\psi(a) = i. (a, b \in L_1)\)

Definição 2.16 – Sejam \(L_1\) e \(L_2\) dois reticulados finitos. \(\psi\) de \(L_1\) em \(L_2\) é uma anti–erosão \((L_1 \leq)\) em \((L_2 \leq)\) se somente se \(\psi(a \land b) = \psi(a) \land \psi(b)\) e \(\psi(i) = a. (a, b \in L_1)\)

A abordagem não linear apresentada pela MM exibe as quatro classes de mapeamento vistos anteriormente (Definições 2.13 a 2.16). Já para o caso da abordagem linear, existe apenas uma classe definida pelos seguintes axiomas:

\[
\begin{align*}
\psi(a + b) &= \psi(a) + \psi(b), \\
\psi(\beta a) &= \beta \psi(a),
\end{align*}
\]

o que torna a MM mais rica do ponto de vista da diversidade de classes de mapeamento.

A transformação de realce em uma imagem \(f\) é dada por uma LUT (Look Up Table). Uma LUT é um mapeamento entre duas escalas de cinza, ou seja, é definida sobre uma cadeia limitada. A LUT de \(K_1\) em \(K_2\) é uma dilatação se satisfizer a Definição 2.13. A LUT de \(K_1\) em \(K_2\) é uma erosão se satisfizer a Definição 2.14. A LUT de \(K_1\) em \(K_2\) é uma anti–dilatação se satisfizer a Definição 2.15 e a LUT de \(K_1\) em \(K_2\) é uma anti–erosão se satisfizer a Definição 2.16. A Figura 2.3 mostra alguns exemplos de LUT’s. Maiores detalhes sobre cadeia limitada e LUT’s ver Banon (1995a).
Fig. 2.3 – Exemplo de LUT’s. a) LUT para aumento de contraste (dilatação). b) LUT para aumento de contraste e média (erosão). c) LUT para binarização (anti–erosão).

Exemplo: Seja \(\psi : K^E \rightarrow K^E \) tal que \(\psi(f) = h \circ f \). Onde \(h : K_1 \rightarrow K_2 \). Se a LUT \(h \) é uma dilatação então \(\psi \) é uma dilatação. A Figura 2.4 mostra uma representação esquemática do operador \(\psi \) que é uma dilatação.

Fig. 2.4 – Exemplo de um operador caracterizado por uma LUT.

As sete próximas seções mostram mapeamentos entre reticulados de \(K^E \) em \(K^E \) que fazem parte da M Mach. Estas transformações são usadas no Capítulo 3. As definições vistas nestas seções foram extraídas de Barrera et al. (1995). Este tipo de apresentação em sete níveis foi sugerida por Banon.

As próximas definições supõem que \(f, g, f_1 \) e \(f_2 \) sejam imagens digitais genéricas em \(K^E \), onde \(K = [0, k − 1] \subset \mathbb{Z} \).
2.3 – NÍVEL 1 (FERRAMENTAS)

A igualdade entre \(f_1 \) e \(f_2 \), denotada \(f_1 \equiv f_2 \), é a função em \(K^E \) dada por, para todo \(x \) em \(E \),

\[
(f_1 \equiv f_2)(x) = \begin{cases}
 k & \text{se } f_1(x) = f_2(x) \\
 0 & \text{c.c.}
\end{cases}
\] (2.1)

A moldura (frame) \(m \) de uma imagem nula \(f \) é a função em \(K^E \) dada por:

\[
m(f) = \varepsilon_{B_1}(f) \lor \varepsilon_{B_2}(f) \lor \varepsilon_{B_3}(f) \lor \varepsilon_{B_4}(f).
\] (2.2)

Onde \(B_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \), \(B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \), \(B_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \), \(B_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \). \(\varepsilon_{B_1} \) é dada pela Equação 2.13 e a união pela Equação 2.4. Supõe-se que \(\min(\emptyset) = k \). A representação em negrito dos elementos estruturantes \(B_1, B_2, B_3 \) e \(B_4 \) indica os respectivos centros.

A comparação entre \(f_1 \) e \(f_2 \), denotada por \(f_1 \preceq f_2 \), é a função em \(K^E \) dada por, para qualquer \(x \) em \(E \),

\[
(f_1 \preceq f_2)(x) = \begin{cases}
 k & \text{se } f_1(x) \leq f_2(x) \\
 0 & \text{c.c.}
\end{cases}
\] (2.3)

A operação binária \(\preceq \) de \(K^E \times K^E \) em \(K^E \) é chamada de operação de comparação. As operações unárias \(\preceq f \) e \(f \preceq \) de \(K^E \) em \(K^E \) são chamados de limiares adaptativos com relação a \(f \). Estas operações unárias são respectivamente uma anti-dilatação e uma erosão.

2.4 – NÍVEL 2 (OPERAÇÕES)

A união de \(f_1 \) e \(f_2 \), denotada \(f_1 \lor f_2 \), é a função em \(K^E \) dada por, para todo \(x \) em \(E \),

\[
(f_1 \lor f_2)(x) = \max \{ f_1(x), f_2(x) \}.
\] (2.4)

e a interseção de \(f_1 \) e \(f_2 \), denotada \(f_1 \land f_2 \), é a função em \(K^E \) dada por, para todo \(x \) em \(E \),

\[
(f_1 \land f_2)(x) = \min \{ f_1(x), f_2(x) \},
\] (2.5)
Estas duas operações binárias \(\vee \) e \(\wedge \) de \(K^E \times K^E \) em \(K^E \) aplicadas a \(f_1 \) e \(f_2 \) produzem respectivamente o ínfimo e o supremo de \(f_1 \) e \(f_2 \) com relação a ordem parcial \(\leq \) dada por:

\[
f_i \leq f_j \iff (f_i(x) \leq f_j(x)) \ (x \in E).
\]

Por esta razão as duas operações binárias \(\vee \) e \(\wedge \) são também chamadas de supremo e ínfimo.

O complementar (ou negativo) de \(f \), denotado \(\sim f \), é a função em \(K^E \) dada por, para todo \(x \) em \(E \),

\[
(\sim f)(x) = k - f(x).
\]

A operação unária \(\sim \) de \(K^E \) em \(K^E \) é chamada de operação complementar (ou negação). Esta operação unária é tanto uma anti–dilatação como uma anti–erosão.

A soma entre \(f_1 \) e \(f_2 \), denotada por \(f_1 + f_2 \), é a função em \(K^E \) dada por, para todo \(x \) em \(E \),

\[
(f_1 + f_2)(x) = \begin{cases} f_1(x) + f_2(x) & \text{se } f_2(x) + f_1(x) \leq k \\ k & \text{c.c.} \end{cases}
\]

A operação binária \(+ \) de \(K^E \times K^E \) em \(K^E \) é chamada de adição.

A diferença entre \(f_1 \) e \(f_2 \), denotada por \(f_1 - f_2 \), é a função em \(K^E \) dada por, para todo \(x \) em \(E \),

\[
(f_1 - f_2)(x) = \begin{cases} f_1(x) - f_2(x) & \text{se } f_2(x) \leq f_1(x) \\ 0 & \text{c.c.} \end{cases}
\]

A operação binária \(- \) de \(K^E \times K^E \) em \(K^E \) é chamada de subtração.

2.5 – NÍVEL 3 (OPERADORES ELEMENTARES)

As definições seguintes baseiam–se na estrutura de grupo Abelian de \((Z^2, +) \).

Seja \(B \) um subconjunto de \(Z^2 \). Denota–se por \(B_h \) o translado de \(B \) por um vetor \(h \) em \(Z^2 \), isto é,

\[
B_h = \{ x + h : x \in B \}.
\]

Denota–se por \(B^t \) o transposto de \(B \), isto é,

\[
B^t = \{ - x : x \in B \}.
\]
A *dilatação* de f com relação a B é a função $\delta_B(f)$ em K^E dada por, para todo $x \in E$,

$$(\delta_B(f))(x) = \max \{ f(y) : y \in B \cap E \};$$ (2.12)

a *erosão* de f com relação a B é a função $\varepsilon_B(f)$ em K^E dada por, para todo $x \in E$,

$$(\varepsilon_B(f))(x) = \min \{ f(y) : y \in B \cap E \}.$$ (2.13)

A transformação t de K^E em K^E, dada para qualquer $f \in K^E$,

$$t(f) = f.$$ (2.14)

é chamada de *operador identidade*. Este operador é tanto uma erosão como uma dilatação pelo conjunto $\{o\}$, onde o é a origem de Z^2, que é, $o = (0, 0)$.

\[A soma de Minkowski para dois subconjuntos A e B de Z^2 é o subconjunto A \oplus B de Z^2, dado por:\]

$$A \oplus B = \bigcup \{ A_b : b \in B \}.$$ (2.15)

Seja n um inteiro maior que zero, denota-se por nB o subconjunto de Z^2 dado pelas seguintes $n - 1$ sucessivas composições.

$$nB = (\ldots (B \oplus B) \ldots \oplus B) \oplus B.$$ (2.16)

Seja X uma imagem binária e B um subconjunto de E. As propriedades da dilatação são dadas a seguir.

1) $\delta_B(X) = \delta_X(B)$; \hspace{1cm} comutatividade

2) $\delta_{B_1 \oplus B_2} = \delta_{B_2} \circ \delta_{B_1} = \delta_{B_1} \circ \delta_{B_2}$ \hspace{1cm} composição

3) $\delta_B(X) = \bigcup_{b \in B} X_b = \bigcup_{x \in X} B_x$ \hspace{1cm} decomposição por translação

4) $\delta_B(\{0\}) = B$ \hspace{1cm} borrão

5) $o \in B$, \hspace{1cm} onde o é a origem, então $X \subset \delta_B(X)$

6) $X_1 \subset X_2$, \hspace{1cm} então $\delta_B(X_1) \subset \delta_B(X_2)$ \hspace{1cm} dilatação é crescente

\hspace{1cm} $B_1 \subset B_2$, \hspace{1cm} então $\delta_{B_1}(X) \subset \delta_{B_2}(X)$

7) $\delta_B(\cap X) \subset \cap \delta_B(X)$ \hspace{1cm} a ordem das operações é importante!

8) $\delta_B(\cup X) = \cup \delta_B(X)$ \hspace{1cm} dilatação com relação a B é uma dilatação

A partir das propriedades 2 e 8 é possível realizar a dilatação com relação a qualquer elemento estruturante a partir dos elementos estruturantes 3x3.
Seja \(X \) uma imagem binária e \(B \) um subconjunto de \(E \). As propriedades da erosão são dadas a seguir.

1) \(\varepsilon_{B_1 \cup B_2}(X) = \varepsilon_{B_2}(\varepsilon_{B_1}(X)) \)

2) \(\varepsilon_B(X) = \bigcap_{b \in B} X_b = \bigcap_{x \in X} B_x \) \hspace{1cm} identidade

3) \(\varepsilon_{B(0)}(X) = X \) \hspace{1cm} i.t.

4) \(\varepsilon_B(X) = \bigcap \{ X_b : b \in B' \} \)

5) \(o \in B, \) \quad \text{então} \quad \varepsilon_B(X) \subseteq X \) \hspace{1cm} anti–extensiva

6) \(X_1 \subseteq X_2, \) \quad \text{então} \quad \varepsilon_B(X_1) \subseteq \varepsilon_B(X_2) \) \hspace{1cm} erosão é crescente

\(B_1 \subseteq B_2, \) \quad \text{então} \quad \varepsilon_B(X) \subseteq \varepsilon_B(1)(X) \)

7) \(\varepsilon_B(\bigcap X) = \bigcap \varepsilon_B(X) \) \hspace{1cm} erosão por \(B \) é uma erosão

8) \(\bigcup \varepsilon_B(X) \subseteq \varepsilon_B(\bigcup X) \) \hspace{1cm} existe a inclusão

\(\varepsilon_{B_1 \cup B_2} = \varepsilon_{B_1 \cup B_2} \) \hspace{1cm} conjunto inf–fechado

9) \(\varepsilon_B(X) = \{ y \in E : B_y \subseteq X \} \) \hspace{1cm} definição equivalente

10) \(\varepsilon_B(\emptyset) = \begin{cases} \emptyset & \text{se} \quad B \neq 0 \\
E & \text{se} \quad B = \emptyset \end{cases} \hspace{1cm} (2.17) \)

Observação: \(\varepsilon_B(E) = E \) \quad e \quad \varepsilon_B(B) = \{0\}

Seja \(B \) um subconjunto de \(Z^2 \). As duas transformações \(\delta_B \) e \(\varepsilon_B \) de \(K^E \) em \(K^E \) são dadas pelas seguintes composições:

\[\delta_B = \sim B \quad \text{and} \quad \varepsilon_B = \sim B. \quad (2.18) \]

são chamadas, respectivamente, anti–dilatação e anti–erosão com relação a \(B \).

Seja \(g \) um elemento de \(K^E \), as transformações \(\delta_{B,g} \) e \(\varepsilon_{B,g} \) de \(K^E \) em \(K^E \), dadas por:

\[\delta_{B,g} = \delta_B \wedge g \quad \text{e} \quad \varepsilon_{B,g} = \varepsilon_B \vee g. \quad (2.19) \]

são chamados, respectivamente, dilatação e erosão condicional (ou geodésica) com relação a \(B \) dado \(g \).

Seja \(B \) um subconjunto de \(Z^2 \). As duas transformações \(\delta^n \) e \(\varepsilon^n \) de \(K^E \) em \(K^E \) são dadas, para \(n > 0 \), por \(n - 1 \) composições successivas:

\[\delta^n_B = \delta_B \cdots \delta_B \quad \text{e} \quad \varepsilon^n_B = \varepsilon_B \cdots \varepsilon_B \quad (2.20) \]
e, para \(n = 0 \),
\[
\delta^n_B = 1 \quad \text{e} \quad \varepsilon^n_B = 1, \tag{2.21}
\]
são chamadas, respectivamente, \(n \)-dilatação e \(n \)-erosão com relação a \(B \).

Seja \(g \) um elemento de \(K^E \), as transformações \(\delta^n_{B,g} \) e \(\varepsilon^n_{B,g} \) de \(K^E \) em \(K^E \), dadas por \(n - 1 \) composições sucessivas.
\[
\delta^n_{B,g} = \delta_{B,g} \ldots \delta_{B,g} \in \varepsilon^n_{B,g} = \varepsilon_{B,g} \ldots \varepsilon_{B,g}, \tag{2.22}
\]
são chamadas, respectivamente, \(n \)-dilatações e \(n \)-erosões condicionais com relação a \(B \) dado \(g \).

A distância \(d \) é uma função definida de \(E^2 \) em \(\mathbb{R} \) tal que, para qualquer \(u, v, w \in E \), satisfaça as propriedades a seguir (Barrera et al. 1995):
\[
\begin{align*}
 d(u, v) &\geq 0 \quad (d(u, v) = 0 \iff u = v) \tag{2.23} \\
 d(u, v) &= d(v, u) \tag{2.24} \\
 d(u, v) &\leq d(u, w) + d(w, u). \tag{2.25}
\end{align*}
\]
O valor \(d(u, v) \) é chamado de distância entre \(u \) e \(v \).

Sejam \(u \) e \(v \) dois elementos de \(E \) representados, respectivamente, por \((u_1, u_2)\) e \((v_1, v_2)\). A distância euclidiana é dada por:
\[
d_e(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}. \tag{2.26}
\]

Seja \(x \) um elemento de \(E \) e, \(r \) um inteiro positivo. Um disco digital, com relação a distância \(d \), de centro \(x \) e raio \(r \) é um subconjunto de \(E \) dados por:
\[
D_d(x, r) = \{y \in E : d(x, y) \leq r\}. \tag{2.27}
\]

Seja \(x \) um elemento de \(E \), \(X \) um subconjunto de \(E \) e \(d \) uma distância. A distância entre o ponto \(x \) e o subconjunto \(X \), com relação a distância \(d \), é dada por:
\[
d(x, X) = \min \{d(x, y) : y \in X\}. \tag{2.28}
\]

Seja \(k \) um inteiro positivo tal que:
\[
k > \max \{d(x, y) : x, y \in E\}. \tag{2.29}
\]
A função distância, sob a distância \(d \), é a função de \(\{0, k\}^E \) em \(K^E \) dada por, para qualquer \(x \in E \),
\[
\psi_d(f)(x) = d(x, \{y \in E : f(y) = 0\}). \tag{2.30}
\]

Seja \(\mathbb{N} \) um conjunto de inteiros positivos e seja \(\mathbb{N}^+ \) um conjunto de inteiros não negativos. Seja \((n_1, n_2) \in \mathbb{N}^2 \) e \(E = [0, 1, \ldots, n_1 - 1] \times [0, 1, \ldots, n_2 - 1] \) um retângulo de \(\mathbb{Z}^2 \). Seja \(s = (s_1, s_2) \in \mathbb{N}^2 \) e \(o = (o_1, o_2) \in \mathbb{N}^2 \) tal que \(o_1 < s_1 \) e \(o_2 < s_2 \).
Seja $sE = [0, 1, \ldots, (s_3 n_1) - 1] \times [0, 1, \ldots, (s_2 n_2) - 1]$ e $B \subseteq sE \oplus (sE)'$.

Seja $f \in K^E$, define-se f e \overline{f} em K^E por, para qualquer $y \in sE$,

$$f(y) = \begin{cases} f((y - o)/s) & \text{se } \exists x \in E : y = sx + o \\ 0 & \text{c.c.} \end{cases}$$

(2.31)

e

$$\overline{f}(y) = \begin{cases} f((y - o)/s) & \text{se } \exists x \in E : y = sx + o \\ k & \text{c.c.} \end{cases}$$

(2.32)

A expansão por dilatação de f em K^E com relação a B, fator de escala s e offset o é uma função $\text{expan} - \delta_{B,s,o}(f)$ in K^E, dada por, para qualquer x em sE (Barrera et al., 1995):

$$\text{expan} - \delta_{B,s,o}(f)(x) = \max \{ f(y) : y \in (B' + x) \cap sE \};$$

(2.33)

a expansão pela erosão de f em K^E pelo elemento estruturante B, o fator de escala s e offset o é a função $\text{expan} - \varepsilon_{B,s,o}(f)$ in K^E, dada por, para qualquer x em sE,

$$\text{expan} - \varepsilon_{B,s,o}(f)(x) = \min \{ \overline{f}(y) : y \in (B + x) \cap sE \}.$$ (2.34)

Os dois operadores $\text{expan} - \delta_{B,s,o}$ e $\text{expan} - \varepsilon_{B,s,o}$ de K^E em K^E são chamados, respectivamente, expansão por dilatação e erosão pelo elemento estruturante B, o fator de escala s e offset o.

2.6 – NÍVEL 4 (OPERADORES SUP–GERADORES E INF–GERADORES)

Sejam A e B dois subconjuntos de Z^2 tal que $A \subseteq B$. As duas transformações $\lambda_{A,B}$ e $\mu_{A,B}$ de K^E em K^E dados por:

$$\lambda_{A,B} = \varepsilon_A \wedge \delta^*_{B^c} \quad \text{e} \quad \mu_{A,B} = \delta_A \vee \varepsilon^*_{B^c},$$

(2.35)

são chamados, respectivamente, operador sup–geradora e inf–geradora dos parâmetros A e B. O operador da sup–geradora de parâmetros A e B^c é também chamado de transformação Hit–Miss dos parâmetros A e B.

O limiar adaptativo de f com relação a f_1 e f_2, denotado por $f_1 \preceq f \preceq f_2$, é uma função em $\{0, k\}^E$ dado por qualquer x em E,

$$(f_1 \leq f \leq f_2)(x) = \begin{cases} k & \text{se } f_1(x) \leq f(x) \leq f_2(x) \\ 0 & \text{c.c.} \end{cases}$$

(2.36)
2.7 – NÍVEL 5 (OPERADORES BASEADOS EM SUP–GERADORES E INF–GERADORES)

As duas transformações \(\psi_{A, B} \) e \(\omega_{A, B} \) de \(K^E \) em \(K^E \), dadas por \(n - 1 \) operações:
\[
\psi_{A, B} = \bigvee \{ \lambda_{A_i, B_i} : i = 1, \ldots, n \} \quad \text{e} \quad \omega_{A, B} = \bigwedge \{ \mu_{A_i, B_i} : i = 1, \ldots, n \},
\]
são chamadas, respectivamente, transformação n–canônica e dual n–canônica de parâmetros \(A \) e \(B \). Os subconjuntos:
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} \quad \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \quad \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]
são os elementos estruturantes direcionais, com a origem no centro e denotada por um caracter em negrito.

As duas transformações \(\sigma_{A, B} \) e \(\tau_{A, B} \) de \(K^E \) em \(K^E \), dadas pelas composições:
\[
\sigma_{A, B} = \tau \rhd \lambda_{A, B} \quad \text{e} \quad \tau_{A, B} = \tau \lor \lambda_{A, B},
\]
são chamadas, respectivamente, afinamento e espessamento de parâmetros \(A \) e \(B \).

Seja \(g \) um elemento de \(K^E \). As transformações \(\sigma_{A, B, g} \) e \(\tau_{A, B, g} \) de \(K^E \) em \(K^E \), dadas por:
\[
\sigma_{A, B, g} = \sigma_{A, B} \lor g \quad \text{e} \quad \tau_{A, B, g} = \tau_{A, B} \land g,
\]
são chamadas, respectivamente, afinamento e espessamento condicional por \((A, B) \) dado \(g \).

Definição 2.17 – (Poda de uma imagem binária \(f \)). Em uma dada transformação é possível gerar uma imagem binária com algumas ramificações não desejadas. Usando os n–afinamentos \(\sigma^*_A(f) \) e supondo \(n \) tamanho máximo das ramificações a serem eliminadas, \(A = \begin{bmatrix} 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{bmatrix} \) e \(B = \begin{bmatrix} 0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \end{bmatrix} \), tem-se a poda destas ramificações.

Sejam \(A \) e \(B \) duas sequências finitas de \(n \) subconjuntos em \(Z^2 \), respectivamente, com elementos \(A_i \) e \(B_i \) tal que \(A_i \subseteq B_i \). As duas transformações \(\Sigma_{A, B} \) e \(T_{A, B} \) de \(K^E \) em \(K^E \), dadas por composições sucessivas infinitas.
\[\Sigma_{A,B} = \sigma_{A_1,B_1} \cdots \sigma_{A_i,B_i} \cdots \quad \text{e} \quad T_{A,B} = \tau_{A_1,B_1} \cdots \tau_{A_i,B_i} \cdots, \]

são chamadas, respectivamente, \textit{esqueleto por afinamento} e \textit{exoesqueleto por espessamento de parâmetros} \(A \) e \(B \).

Sejam \(g \) um elemento de \(K^E \). As transformações \(\Sigma_{A,B,g} \) e \(T_{A,B,g} \) de \(K^E \) em \(K^E \), dadas pelas seguintes composições sucessivas infinitas

\[\Sigma_{A,B,g} = \sigma_{A_1,B_1,g} \cdots \sigma_{A_i,B_i,g} \cdots \quad \text{e} \quad T_{A,B,g} = \tau_{A_1,B_1,g} \cdots \tau_{A_i,B_i,g} \cdots, \]

são chamadas, respectivamente, \textit{esqueleto condicional por afinamento} e \textit{exoesqueleto condicional por espessamento de parâmetros} \(A \) e \(B \) dado \(g \).

Definição 2.18 – Sejam \(A, B, C \) e \(D \) elementos estruturantes primitivos. Sejam \(A, B, C \) e \(D \) sequências infinitas de elementos estruturantes primitivos, respectivamente, com elementos \(A_i, B_i, C_i \) e \(D_i \), tais que \(A_i = A^i, B_i = B^i, C_i = C^i, D_i = D^i \), \(A \subset B \subset C \subset D \), e com índice \(i = 0, 90, 180, 270, \ldots \). O operador \(\sigma_{A,B,C,D} \) sobre \(\mathcal{P}(E) \), dado pela seguinte sucessão infinita de composições (Banon e Barrera, 1994).

\[\sigma_{A,B,C,D} = (\sigma_{A_0,B_0} \wedge \sigma_{A_0,B_0} \wedge \sigma_{C_0,D_0}) \cdots (\sigma_{A_0,B_0} \wedge \sigma_{A_0,B_0} \wedge \sigma_{C_0,D_0}) \cdots \]

é chamado \textit{esqueleto por afinamento filtrado de parâmetros} \(A, B, C \) e \(D \), onde

\[
A = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad C = \begin{bmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{bmatrix}, \quad D = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]

Este esqueleto é baseado em afinamentos com múltiplos elementos estruturantes (Jang e Chin, 1990). Ele sempre gera curvas simples e é menos ruído que os outros esqueletos homotópicos.

A Tabela 2.1 mostra alguns pares de elementos estruturantes para o afinamento e para os operadores canônicos.
TABELA 2.1 – ELEMENTOS ESTRUTURANTES PARA OPERADORES BASEADOS SUP–GERADORES E INF–GERADORES.

<table>
<thead>
<tr>
<th>Elemento estruturante A</th>
<th>Elemento estruturante B</th>
<th>Afinamento</th>
<th>Operador canônico</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td>Esqueleto Homotópico</td>
<td>–</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>1 0 0</td>
<td>Marcador Homotópico</td>
<td>–</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td>Esqueleto homotópico</td>
<td>pontos de extremidade</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 1 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FONTE: Adaptada de Barrera et al. (1995), p. 15.

Baseados nos operadores sup e inf–geradores temos também o algoritmo de *watershed ou divisor d’água* implementado na MMach. Ele é o mesmo que o apresentado por Soille e Vincent (1990). A sua definição encontra-se também em (Barrera et al., 1995).

2.8 – NÍVEL 6 (FILTROS MORFOLÓGICOS)

As transformações γ_B e ϕ_B de K^E em K^E, dadas por:

$$
\gamma_B = \delta \rho_B \quad \text{e} \quad \phi_B = \varepsilon \rho_B,
$$

(2.44)

são chamadas, respectivamente, *abertura* e *fechamento (morfológica)* com relação a B.

Definição 2.19 – Uma transformação \(\psi \) de \(L \) em \(L \) é idempotente se e somente se \(\psi \circ \psi = \psi \).

Esta propriedade é desejável para um filtro pois isto significa que o filtro converge em um único passo.

Definição 2.20 – Uma transformação \(\psi \) é um filtro morfológico se e somente se:

i) \(\psi \) é idempotente

ii) \(\psi \) é crescente.

Definição 2.21 – Seja \(\psi \) um filtro morfológico, de \(L \) em \(L \):

i) \(\psi \) é uma abertura se e somente se \(\psi \) é anti-estensiva, isto é, \(\psi(X) \subseteq X \) para \(X \in L \)

ii) \(\psi \) é um fechamento se e somente se \(\psi \) é estensiva, isto é, \(X \subseteq \psi(X) \) para \(X \in L \)

A síntese de filtros morfológicos é feita pela composição destes filtros. Nestas composições é necessário observar se o novo filtro obedece a idempotência e se é crescente. Supõe-se que abertura e \(\theta \) fechamento. \(\psi \theta \) e \(\theta \psi \) são composições se \(\psi \leq \theta \psi \leq \theta \). Então:

1) \(\psi \theta \psi \), \(\psi \theta \), \(\theta \psi \), \(\theta \psi \theta \) são filtros morfológicos

2) \(\psi \theta \psi \) é o maior filtro inferior para \(\psi \theta \wedge \theta \psi \) e \(\theta \psi \theta \) é o menor filtro superior a \(\psi \theta \vee \theta \psi \)

3) \(\theta \psi \leq \psi \theta \iff \psi \theta \psi = \psi \theta \) e \(\theta \psi \iff \theta \psi \theta = \theta \psi \)

Se a abertura é \(\psi \) e o fechamento é \(\theta \), então estas quatro proposições acima se verificam, mesmo com elementos estruturantes diferentes. A composição com mais de três filtros será igual a uma das composições de filtros de menor composição. Portanto, as possibilidades de novos filtros fica bem restrita.

Exemplo: \(\psi \theta \psi \theta = \psi \theta \).

Para resolver o caso anterior utilizam-se os filtros alternados sequenciais (Equação 2.49). Estes filtros são muito importantes na homogenização de temas. Uma aplicação prática em um pós-processamento de classificação por máxima verosimilhança é vista no Capítulo 3.

Seja \(B \) um subconjunto de \(\mathbb{Z}^d \) e seja \(f \) um elemento de \(KE \). As transformações \(\gamma_{B,f} \) e \(\phi_{B,f} \) de \(KE \) em \(KE \), dada por, para qualquer \(g \in KE \),

\[
\gamma_{B,f}(g) = \bigvee \{ \delta_{B,f}(f) : n = 1, \ldots \} \quad \text{e} \quad \phi_{B,f}(g) = \bigwedge \{ \tau_{B,f}(f) : n = 1, \ldots \},
\]

são chamadas respectivamente, abertura e fechamento por reconstrução a partir de um marcador \(f \). Estas transformações são bastante utilizadas em diversas aplicações pois reconstrói as componentes conexas que possuem marcadores.
As duas transformações \(\gamma^n_B \) e \(\phi^n_B \) de \(K^E \) em \(K^E \), dadas por:

\[
\gamma^n_B = \delta^n_B \delta^n_B \quad \text{e} \quad \phi^n_B = \epsilon^n_B \delta^n_B .
\]

(2.46)
são chamadas, respectivamente, \(n \)-aberturas e \(n \)-fechamentos por \(B \). \(\gamma^n_B \) e \(\phi^n_B \) são, respectivamente, equivalentes a abertura e fechamento com relação a \(nB \).

As duas transformações \(\theta \) e \(\psi \) de \(K^E \) em \(K^E \), dadas por:

\[
\theta = \phi^n_B \gamma^n_B \quad \text{e} \quad \psi = \gamma^n_B \phi^n_B .
\]

(2.47)
são chamadas, respectivamente, filtro \(n \)-\(\phi \gamma \) e \(n \)-\(\gamma \phi \) (por \(B \)).

As duas transformações \(\theta \) e \(\psi \) de \(K^E \) em \(K^E \), dadas por:

\[
\theta = \gamma^n_B \phi^n_B \gamma^n_B \quad \text{e} \quad \psi = \phi^n_B \gamma^n_B \phi^n_B .
\]

(2.48)
são chamadas, respectivamente, filtros \(n \)-\(\gamma \phi \gamma \) e \(n \)-\(\phi \gamma \phi \) (com relação a \(B \)).

Denota-se os filtros \(n \)-\(\phi \gamma \), \(n \)-\(\gamma \phi \), \(n \)-\(\phi \gamma \phi \) e \(n \)-\(\gamma \phi \gamma \) por \(B \) genericamente por \(\psi^n_B \). Seja \(\mathcal{B} \) uma sequência finita de \(N \) subconjuntos em \(\mathbb{Z}^2 \), com elementos \(B_i \) tal que \(B_i \subset B_{i+1} \). A transformação \(\psi^n_B \) de \(K^E \) em \(K^E \), dada por:

\[
\psi^n_B = \psi^n_B \psi^{n-1}_B \psi^{-1}_B ... \psi^{-1}_{B_1} ,
\]

(2.49)
é chamada de um filtro alternado \(n \) sequencial de parâmetro \(\mathcal{B} \).

A transformação \(\beta_B \), de \(K^E \) em \(K^E \), dada por:

\[
\beta_B = (\psi^n_B \phi^n_B) \lor \gamma^n_B \phi^n_B .
\]

(2.50)
é chamada de \(\text{primitiva do filtro de centro} \).

Composições sucessivas são dadas por:

\[
\alpha_B = \beta_B \beta_B ... \beta_B ..., \quad \text{onde} \ \beta_B \ \text{é a última transformação definida na seção 2.3, é chamada de \(\text{filtro de centro} \).}
\]

O operador \(\Phi_B \) de \(\{0,k\}^E \) em \(\{0,k\}^E \), dado por, para qualquer \(g \in \{0,k\}^E \),

\[
\Phi_B(g) = \sim \gamma_B.(\sim g),
\]

(2.52)
é chamado de \(\text{fechamento de buracos em} \ g \).

Além dos operadores citados anteriormente, a MMach possui outros operadores tais como mudança de homotopia, skiz, etc. que se encontram em (Barrera et al., 1995).
2.9 – NÍVEL 7 (OPERADORES BASEADOS EM SUBTRAÇÃO)

A transformação \(\psi_B \) de \(K^E \) em \(K^E \), dada pela seguinte composição

\[
\psi_B = \delta_B - \varepsilon_B, \tag{2.53}
\]

é chamada de \textit{gradiente morfológico}.

Seja \(B \) um subconjunto de \(\mathbb{Z}^2 \), a transformação \(\sigma_B \) de \(K^E \) em \(K^E \), dada por:

\[
\sigma_B = \bigvee \{ \varepsilon'_B(q) \sim \gamma_{\mathbb{Z}^2}(q) : i = 0, 1, \ldots \}, \tag{2.54}
\]

é chamada de \textit{esqueleto morfológico de parâmetro} \(B \).

A transformação \(q_B \) de \(K^E \) em \(K^E \), dada por:

\[
q_B = \bigvee \{ \varepsilon'_B(q) \sim \gamma_{\mathbb{Z}^2}(q) : i = 0, 1, \ldots \}, \tag{2.55}
\]

é chamada \textit{erosão última de parâmetro} \(B \).

A transformação \(\eta_B \) de \(K^E \) em \(K^E \) de parâmetro \(B \), dada por:

\[
\eta_B = \iota - \gamma_B, \tag{2.56}
\]

é chamada de \textit{transformação cartola}, ou transformação \textit{top–hat}.

A transformação \(\mu_B \) de \(K^E \) em \(K^E \) de parâmetro \(B \), dada por:

\[
\mu_B = \phi_B - \iota, \tag{2.57}
\]

é chamada de \textit{transformação cartola dual}, ou transformação \textit{top–hat dual}.
Tabela 2.2 – Conteúdo da Caixa de Ferramentas MMach

<table>
<thead>
<tr>
<th></th>
<th>Nome</th>
<th>Expansão</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nível 1 (Ferramentas)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Igualdade (Equal)</td>
<td>2.1</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>Moldura (Frame)</td>
<td>2.2</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Menor que (Less Than)</td>
<td>2.3</td>
<td>≤</td>
</tr>
<tr>
<td>Nível 2 (Operações)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>supremo (supremum)</td>
<td>2.4</td>
<td>∨</td>
</tr>
<tr>
<td></td>
<td>infimo (infimum)</td>
<td>2.5</td>
<td>∧</td>
</tr>
<tr>
<td></td>
<td>complementar ou negação (negation)</td>
<td>2.7</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>adição (addition)</td>
<td>2.8</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>subtração (subtraction)</td>
<td>2.9</td>
<td>–</td>
</tr>
<tr>
<td>Nível 3 (Operadores Elementares)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dilatação (dilation)</td>
<td>2.12</td>
<td>δ</td>
</tr>
<tr>
<td></td>
<td>erosão (erosion)</td>
<td>2.13</td>
<td>ε</td>
</tr>
<tr>
<td></td>
<td>anti–dilatação (anti–dilation)</td>
<td>2.18</td>
<td>δ^a</td>
</tr>
<tr>
<td></td>
<td>anti–erosão (anti–erosion)</td>
<td>2.18</td>
<td>ε^a</td>
</tr>
<tr>
<td></td>
<td>dilatação condicional (cond. dilation)</td>
<td>2.19</td>
<td>δ_{B,g}</td>
</tr>
<tr>
<td></td>
<td>erosão condicional (cond.erosion)</td>
<td>2.19</td>
<td>ε_{B,g}</td>
</tr>
<tr>
<td></td>
<td>n–dilatações (n–dilation)</td>
<td>2.20</td>
<td>δ_{B}^n</td>
</tr>
<tr>
<td></td>
<td>n–erosões (n–erosion)</td>
<td>2.20</td>
<td>ε_{B}^n</td>
</tr>
<tr>
<td></td>
<td>n–dilatações condicionais (n–cond. dilation)</td>
<td>2.22</td>
<td>δ_{B,g}^n</td>
</tr>
<tr>
<td></td>
<td>n–erosões condicionais (n–cond. erosion)</td>
<td>2.22</td>
<td>ε_{B,g}^n</td>
</tr>
<tr>
<td></td>
<td>transformação de distância (distance transform)</td>
<td>2.30</td>
<td>ψ/d</td>
</tr>
<tr>
<td></td>
<td>expansão por dilatação (expansion by dilation)</td>
<td>2.33</td>
<td>expand_δ_{B,A,o}</td>
</tr>
<tr>
<td></td>
<td>expansão por erosão (expansion by erosion)</td>
<td>2.34</td>
<td>expand_ε_{B,A,o}</td>
</tr>
<tr>
<td>Nível 4 (Operadores sup–gerador e inf–gerador)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sup–gerador (sup–generating)</td>
<td>2.35</td>
<td>λ_{B,g}</td>
</tr>
<tr>
<td></td>
<td>inf–gerador (inf–generating)</td>
<td>2.35</td>
<td>μ_{B,g}</td>
</tr>
<tr>
<td></td>
<td>limiar (threshold)</td>
<td>2.36</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>n–canônico (n–canonical)</td>
<td>2.37</td>
<td>ψ_{A,B}</td>
</tr>
<tr>
<td></td>
<td>n–canônico dual (n–can. dual)</td>
<td>2.37</td>
<td>ω_{A,B}</td>
</tr>
<tr>
<td>Nível 5 (Operadores baseados em sup–geradores e inf–geradores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>afinamento (thinning)</td>
<td>2.38</td>
<td>σ_{B,g}</td>
</tr>
<tr>
<td></td>
<td>espessamento (thickening)</td>
<td>2.38</td>
<td>τ_{A,B}</td>
</tr>
<tr>
<td></td>
<td>afinamento condicional (cond. thinning)</td>
<td>2.39</td>
<td>σ_{A,B,g}</td>
</tr>
<tr>
<td></td>
<td>espessamento condicional (cond. thickening)</td>
<td>2.39</td>
<td>τ_{A,B,g}</td>
</tr>
<tr>
<td></td>
<td>n–afinamentos (n–thinning)</td>
<td>2.40</td>
<td>σ_{A,B}^n</td>
</tr>
<tr>
<td></td>
<td>n–espessamentos (n–thickening)</td>
<td>2.40</td>
<td>τ_{A,B}^n</td>
</tr>
<tr>
<td></td>
<td>esqueleto por afinamento (skel. by thin.)</td>
<td>2.41</td>
<td>Σ_{A,B}</td>
</tr>
</tbody>
</table>

(continua)
Tabela 2.3 – Conclusão.

<table>
<thead>
<tr>
<th>MMach</th>
<th>Nome</th>
<th>Expressão</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nível 5 (operadores baseados em sup–geradores e inf–geradores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>expresso por espessamento (exoskel. by thick.)</td>
<td>$T_{A,B}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>esqueleto condicional por afinamento (cond. skel. by thin.)</td>
<td>$T_{A,B,g}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expresso por espessamento (cond. exoskel. by thick.)</td>
<td>$T_{A,B,g}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>poda (pruning)</td>
<td>Definição 2.17</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>divisor d’água (watershed)</td>
<td>...</td>
<td>w</td>
</tr>
<tr>
<td></td>
<td>esqueleto por afinamento filtrado de parâmetro A, B, C e D</td>
<td>2.43</td>
<td>$\sigma_{A,B,C,D}$</td>
</tr>
<tr>
<td>Nível 6 (Filtros Morfológicos)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>abertura (opening)</td>
<td>2.44</td>
<td>γ</td>
</tr>
<tr>
<td></td>
<td>fechamento (closing)</td>
<td>2.44</td>
<td>ϕ</td>
</tr>
<tr>
<td></td>
<td>abertura por reconstrução (open. by rec.)</td>
<td>2.45</td>
<td>$\gamma_{B,f(g)}$</td>
</tr>
<tr>
<td></td>
<td>fechamento por reconstrução (clos. by rec.)</td>
<td>2.45</td>
<td>$\phi_{B,f(g)}$</td>
</tr>
<tr>
<td></td>
<td>n–aberturas (n–opening)</td>
<td>2.46</td>
<td>γ_B^n</td>
</tr>
<tr>
<td></td>
<td>n–fechamentos (n–closing)</td>
<td>2.46</td>
<td>ϕ_B^n</td>
</tr>
<tr>
<td></td>
<td>n–fechamentos/aberturas (n–close/open)</td>
<td>2.47</td>
<td>$\gamma\phi_B^n$</td>
</tr>
<tr>
<td></td>
<td>n–fechamentos/aberturas (n–op./cl./op.)</td>
<td>2.48</td>
<td>$\gamma\phi\gamma_B^n$</td>
</tr>
<tr>
<td></td>
<td>centro primitivo (center primitive)</td>
<td>2.50</td>
<td>β_B</td>
</tr>
<tr>
<td></td>
<td>filtro de centro (center filter)</td>
<td>2.51</td>
<td>α_B</td>
</tr>
<tr>
<td>Nível 7 (Operadores baseados em subtração)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gradiente (gradient)</td>
<td>2.53</td>
<td>Ψ_B</td>
</tr>
<tr>
<td></td>
<td>esqueleto morfológico (morph. skel.)</td>
<td>2.54</td>
<td>σ_B</td>
</tr>
<tr>
<td></td>
<td>erosão última (last erosion)</td>
<td>2.55</td>
<td>θ_B</td>
</tr>
<tr>
<td></td>
<td>cartola (top–hat)</td>
<td>2.56</td>
<td>η_B</td>
</tr>
<tr>
<td></td>
<td>cartola dual (top–hat dual.)</td>
<td>2.57</td>
<td>μ_B</td>
</tr>
</tbody>
</table>

2.10 – EXEMPLOS DE ANÁLISE EM IMAGENS BINÁRIAS

A abordagem linear não é bem adaptada para o caso com imagens binárias. Por exemplo: a soma de duas imagens binárias pode não gerar como resultado uma imagem binária. A MM possui transformações que tratam de forma mais eficiente a análise de \(f \) em \(\{0, 1\}^E \).

Seja \(f \) a imagem binária em \(\{0, 1\}^E \) mostrada na Figura 2.5. Nesta figura são indicados alguns termos que na sequência do capítulo serão utilizados tais como: baia, lagoa, istmo, etc.

Fig. 2.5 – Representação dos termos usados na imagem binária \(f \).

O Princípio básico da MM em imagens binárias é a comparação do objeto a ser analisado com um objeto de forma conhecida chamado elemento estruturante \(B \). Maiores detalhes no Capítulo 4 do livro de Banon e Barrera (1994).

Um objeto dilatado é o conjunto de todos os pontos \(x \) tais que \(B \) toquem neste objeto. Na imagem dilatada, as lagoas com tamanho inferior a \(B \) são preenchidas, e pequenas ilhas com distância ao continente inferior à largura de \(B \) são aglutinadas, formando assim um único objeto (Figura 2.6 (b)).

Um objeto erodido é o conjunto de todos os pontos \(x \) tais que \(B \) estejam contidos neste objeto.

Na imagem erodida, pequenos objetos (ilhas) de tamanho inferior a \(B \) são eliminados; as lagoas são aumentadas de tamanho, criam-se canais e geram-se ilhas (Figura 2.6 (c)).

Na Figura 2.6 o conjunto \(B \) usado tanto para a dilatação como a erosão é dado por:

\[
B = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
Fig. 2.6 – Imagem original \(f_1 \). b) Dilatação de \(f_1 \) com relação a \(B \). c) Erosão de \(f_1 \) com relação a \(B \).

A Figura 2.7 (a) mostra um exemplo de uma imagem binária resultante de uma classificação por máxima verossimilhança de uma imagem de radar. Esta imagem denotada por \(f_1 \) mostra problemas na classificação devido à presença de textura e de ruído speckle. A Figura 2.7 (b) mostra uma dilatação da imagem \(f_1 \) com relação a \(B_1 \) e a Figura 2.7 (c) mostra uma dilatação da imagem \(f_1 \) com relação a \(B_2 \). A Figura 2.7 (d) mostra uma erosão da imagem \(f_1 \) com relação a \(B_1 \) e a Figura 2.7 (e) mostra uma erosão da imagem \(f_1 \) com relação a \(B_2 \), onde

\[
B_1 = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\quad e \quad
B_2 = \begin{bmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

são elementos estruturantes.

Fig. 2.7 – a) Imagem original \(f_1 \). b) Dilatação de \(f_1 \) com relação a \(B_1 \). c) Dilatação de \(f_1 \) com relação a \(B_2 \). d) Erosão de \(f_1 \) com relação a \(B_1 \). e) Erosão de \(f_1 \) com relação a \(B_2 \).

É interessante notar que o resultado da dilatação e da erosão de uma imagem binária (exemplo: Figura 2.7) está intimamente relacionado com a escolha de \(B \). Dependendo da aplicação, um conjunto \(B \) pode ser mais adequado que outro.

No caso da Figura 2.7, observa–se, por exemplo, que aplicar apenas uma dilatação ou uma erosão não é suficiente para homogenizar as regiões. A Figura 2.10 mostra um resultado usando uma aber-
tura e um fechamento. No Capítulo 3 mostra-se um melhor resultado para homogenização de temas por meio de um filtro alternado sequencial.

A partir da dilatação e da erosão de imagens binárias é possível extrair contornos de objetos. A seguir são mostrados três diferentes tipos de contornos que podem ser extraídos de uma imagem binária.

O **gradiente morfológico** como foi visto na Equação 2.53 é dado pela subtração da dilatação de f_1 com relação a B e a erosão de f_1 com relação a B. A **borda externa** é dada pela subtração da dilatação de f_1 com relação a B e f_1 e a **borda interna** é dada pela subtração entre f_1 e a erosão de f_1 com relação a B. A Figura 2.8 mostra um resultado da aplicação destas transformações sobre uma imagem binária.

Fig. 2.8 – a) Gradiente morfológico. b) Borda externa. c) Borda interna

A transformação de abertura é composta por uma erosão seguida de uma dilatação (Equação 2.44). Na Figura 2.9 (b) mostra-se um exemplo em que uma pequena ilha e um cabo desaparecem, e onde uma lagoa próxima ao oceano torna-se uma baía devido a aplicação desta transformação sobre a imagem f_1.

A transformação de fechamento é composta por uma dilatação seguida de uma erosão com relação a B. Na Figura 2.9 (c) tem-se um exemplo em que regiões separadas por uma área menor que o elemento estruturante são unidas devido à aplicação da transformação de fechamento sobre a imagem f_1. Portanto uma pequena lagoa pode desaparecer, uma baía pode se tornar uma lagoa e uma ilha próxima ao continente pode unir-se ao continente.
A Figura 2.10 (a) mostra um exemplo de uma parte de uma imagem de radar denotada por $f_1 \in \{0, 1\}^E$ e gerada a partir de uma classificação por máxima verossimilhança. A imagem f_1 mostra problemas na classificação devido à textura e ao speckle. A Figura 2.10 (b) mostra uma abertura da imagem f_1 com relação a B_1 e a Figura 2.10 (c) mostra uma abertura da imagem f_1 com relação a B_2. A Figura (d) mostra um fechamento da imagem f_1 com relação a B_1 e a Figura 2.10 (c) mostra um fechamento da imagem f_1 com relação a B_2. Dependendo da imagem e da aplicação, um elemento estruturante pode ser mais adequado que outro. Os elementos estruturantes são dados por:

$$B_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{e} \quad B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

A Figura 2.11 mostra um exemplo de separação de linhas horizontais e de linhas verticais em uma imagem original f. Aplica-se neste caso uma abertura de f com relação a B_1 e extrai-se as linhas verticais como é mostrado na Figura 2.11 (b). No caso da Figura 2.11 (c) aplica–se uma abertura de f com relação a B_2, para extrair apenas as linhas horizontais.

$$B_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{e} \quad B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$
Uma aplicação prática do exemplo anterior (Figura 2.11) em análise de imagens de SR é a separação de lineamentos segundo uma dada direção em estudos de geologia.

Duas transformações bastante utilizadas em MM são a transformação cartola (top–hat) e a transformação cartola dual (top–hat dual).

Para o caso binário, a *transformação cartola* gera como resultado pequenos objetos que foram eliminados pela transformação de abertura (Figura 2.12 (d)). Para a *transformação cartola dual* é mostrado como resultado os pequenos buracos e/ou canais que foram fechados pela transformação do fechamento (Figura 2.12(e)).

A transformação de abertura seguida de uma transformação de fechamento irá eliminar pequenos ruídos brancos (ilhas) e pretos (lagoas) de uma imagem binária. A abertura irá eliminar os pontos brancos e o fechamento irá eliminar os pontos pretos. Se houver uma sequência de aberturas seguidas de fechamentos, filtro sequencial (Equação 2.49), tem-se uma homogenização de temas. Este tipo de filtro é importante na redução da textura da imagem. É mostrado no Capítulo 3 um exemplo da aplicação de um pós-processamento na classificação por máxima verossimilhança de duas classes em uma imagem de radar.
A granulometria em MM pode ser vista como um processo de peneiramento de solos. O diâmetro da malha da primeira peneira é o maior entre todas as outras, e sucessivamente as peneiras possuem malhas cada vez mais finas. Com isto, é possível separar grãos de diferentes tamanhos, selecionando os grãos de tamanho maior até os grãos de tamanho menor. As malhas das peneiras são vistas aqui como elementos estruturantes. Este procedimento é importante quando se deseja, em uma imagem binária, separar objetos pelo seu tamanho.

A metodologia para a seleção dos objetos (componentes conexas) é vista aqui como a subtração entre o “peneiramento” de \(f \) em uma malha mais fina \(B_i \) e o “peneiramento” de \(f \) em uma malha \(B_{i-1} \) mais grossa, onde \(B_{i-1} > B_i \). Com isto, tem-se um intervalo de tamanhos de grãos que serão selecionados maiores que \(B_i \) e menores que \(B_{i-1} \). Pela MM, tem-se então uma subtração entre a abertura por reconstrução da abertura de \(f \) com relação a \(B_i \) e a imagem \(f_{i-1} \) obtida no passo anterior. Supõe-se que \(B_1 > B_2 \ldots > B_n \), \(i = 1, 2, \ldots, n \) e \(f_0 = 0_E \) (imagem com todos os níveis de cinza iguais a zero).

\[
 f_i = \gamma_{B_i}f_{B_i}(f) - f_{i-1}
\]

(2.58)

Banon e Barrera (1994) mostram outros exemplos aplicação de transformações sobre imagens binárias tais como: esqueleto, erosão última etc, que são interessantes para o desenvolvimento de metodologias de extração de informação em imagens binárias.

2.11 – EXEMPLO DE ANÁLISE DE IMAGENS EM NÍVEIS DE CINZA

Na seção anterior foi visto o comportamento de algumas transformações morfológicas sobre imagens binárias. Estas definições podem ser estendidas para o caso de imagens em níveis de cinza (Sternberg, 1986; Heijmans, 1991). Nesta seção será abordado inicialmente o comportamento de algumas transformações Morfológicas sobre uma linha da imagem \(f \) (perfíl ou análise em uma dimensão), depois serão mostradas algumas transformações usando a imagem \(f \) (análise em duas dimensões). Serão vistos apenas exemplos com elementos estruturantes planares. O termo planar vem do fato de que o elemento estruturante não possui pesos diferentes de 0’s e 1’s.

Na análise do perfil, tem-se que \(f \) é dada por \(K^E \) onde \(E \) é representado apenas por uma linha. Supõe-se \(B = [1 \ 1 \ 1] \) e \(f \) uma imagem reduzida a apenas uma linha. Neste caso tem-se uma transformação sobre imagens em níveis de cinza do ponto de vista uni-dimensional. Este tipo de análise é importante quando se deseja gerar uma metodologia usando transformações em uma direção preferencial. Por exemplo, deseja-se aplicar a transformação \(\psi \) na direção horizontal e/ou direção vertical, etc.

A dilatação de \(f \) com relação a \(B \) (Equação 2.12) e a erosão de \(f \) com relação a \(B \) (Equação 2.13) são mostradas na Figura 2.13. Observa-se que na dilatação, o perfil possui valores de cinza mais altos enquanto que para a erosão o perfil possui valores de cinza mais baixos.
A seguir são vistos alguns problemas de identificação de áreas de máximo, mínimo e regiões homogêneas.

Exemplo 1: Deseja-se identificar pontos de máximo e áreas homogêneas na imagem \(f \) (perfil). Uma transformação \(\psi_1 \) que compare a igualdade pixel a pixel:

\[
(\psi_1)(x) = \begin{cases}
k & \text{se } \delta_\mu(f)(x) = f(x) \\
0 & \text{c.c.} \end{cases}
\]

irá identificar estes pontos de máximo e as regiões homogêneas. Aplicando esta transformação na Figura 2.13 obtém-se como resultado um perfil com apenas dois picos de máximo.

Exemplo 2: Deseja-se agora localizar pontos de mínimo e áreas homogêneas na imagem (perfil). Uma transformação \(\psi_2 \) que compare pixel a pixel a igualdade:

\[
(\psi_2)(x) = \begin{cases}
k & \text{se } f(x) = \varepsilon_\mu(f)(x) \\
0 & \text{c.c.} \end{cases}
\]

irá identificar estes pontos de mínimo e as regiões homogêneas. Aplicando esta transformação na Figura 2.13 obtém-se como resultado um perfil com apenas um único ponto representando o vale.

![Fig. 2.13 – Efeito da erosão e da dilatação \(f \) com relação a \(B \).](image)

Exemplo 3: Deseja-se finalmente, encontrar áreas homogêneas na imagem \(f \) (perfil). O ínfimo entre as transformações \(\psi_1 \) e \(\psi_2 \) definidas anteriormente fornecem o resultado desejado.
Exemplo 4: As áreas de máximo são encontradas pela subtração, dada pela Equação 2.9, entre a transformação ψ_1 e ψ_2. As áreas de mínimo são encontradas pela subtração, dada pela Equação 2.9, entre a transformação ψ_2 e ψ_1.

A abertura de f é dada segundo a Equação 2.44 e é mostrada na Figura 2.14. O fechamento de f é dado segundo a Equação 2.44 é mostrada na Figura 2.15. Para o primeiro caso tem-se que picos inferiores ao tamanho do elemento estruturante B são eliminados enquanto que para o caso do fechamento os vales de dimensão menor que B são eliminados.

A transformação cartola (top–hat) já mencionada para o caso binário, possui uma aplicação muito interessante em imagens em níveis de cinza, pois identifica os picos da imagem. Esta transformação é dada pela subtração de f pela abertura de f com relação a B. A transformação cartola dual (top–hat dual) também já mencionada para o caso binário, identifica vales de dimensões inferiores a B supondo a subtração do fechamento pela imagem f.

As duas transformações anteriormente mencionadas, cartola e cartola dual, podem identificar pequenos ruídos presentes na imagem com valores de níveis de cinza altos ou baixos, respectivamente.

![Fig. 2.14 – Efeito da abertura de f com relação a B.](image)
Supõe–se agora que f seja uma imagem em níveis de cinza dada em K^E onde E é um retângulo $n \times m$. A dilatação de f com relação a B gera uma imagem mais clara (maior valor de média que f) e mais borrada que f. Por sua vez, a erosão de f por B gera uma imagem mais escura e borrada (menor valor de média que f). Um exemplo é visto Figura 2.16.

A transformação de abertura suprime pequenos picos claros na imagem f enquanto que a transformação de fechamento suprime pequenos vales na imagem f. A Figura 2.17 mostra visualmente o efeito destas duas transformações sobre uma imagem f.

A Figura 2.18 mostra dois resultados. O primeiro é um filtro morfológico dado pela abertura seguida de um fechamento e o segundo é um filtro morfológico dado pelo fechamento seguido de abertura. Observa–se que para estes dois casos o ruído horizontal presente na imagem original foi eliminado porém existe uma grande perda da informação de bordas e a aparência geral da imagem é borrada. O rio que está bem definido na Figura 2.18 (a) fica bastante borrado na Figura 2.18(b) e Figura 2.18(c). Dependendo da aplicação, um filtro com estas características, pode–se gerar uma boa homogenização de áreas.

Uma sequência de abertura e fechamento suaviza uma imagem reduzindo a sua textura. No Capítulo 3 utiliza–se este tipo de abordagem para redução do speckle de uma imagem pré–classificada.
Fig. 2.16 – a) Imagem original f. b) Dilatação de f com relação a B. c) Erosão de f com relação a B.

Fig. 2.17 – a) Imagem original f. b) Abertura de f com relação a B. c) Fechamento de f com relação a B.

Fig. 2.18 – a) Imagem original f. b) Abertura de f seguida de fechamento f com relação a B. c) Fechamento de f seguido de uma abertura de f com relação a B.

Uma boa forma de solucionar problemas de análise de imagens usando as ferramentas da MM é supor estas imagens como um modelo em três dimensões (posição do pixel (x,y) e valor de nível de cinza z) visto na Figura 2.19 (a), ou seja, supor a imagem como um modelo numérico de terreno. Nesta configuração, um ruído na imagem pode ser visualizado por apresentar espacialmente níveis próximos a 255
(picos) e com uma dada largura de um pixel. A solução para eliminação do ruído é usar a transformação de abertura com um elemento estruturante perpendicular ao sentido do ruído. A Figura 2.19 (b) mostra um resultado aplicando uma abertura na imagem original \(f \) com relação a \(B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \).

Fig. 2.19 – a) Visualização em 3D da imagem \(f \). b) Filtro de abertura com \(B \) perpendicular ao ruído.

No algoritmo de *watershed* ou *divisor d’água*, uma imagem é também vista como um modelo de elevação de terreno. A metodologia consiste em simular o enchimento progressivo deste modelo (*water level*) a partir de regiões de mínimo (*minima*) e demarcar as linhas de divisão de água, ou seja, as linhas de máximo que dividem duas regiões de mínimo (*dam*) (Figura 2.20).

Fig. 2.20 – Representação de uma imagem para aplicação do watershed
A transformação watershed é bastante importante na segmentação de imagens. A seguir são mostrados dois exemplos: uma segmentação de uma imagem obtida a partir de um mapa de solos e uma segmentação das sombras das nuvens de uma imagem TM.

A Figura 2.21 mostra uma segmentação por watershed de uma imagem do mapa de solos de Campinas, São Paulo, digitalizado pelo scanner HP IICX com 300 dpi (dot per inch). Como parâmetro de entrada desta transformação foi utilizada a negação da imagem do mapa de solos para que as linhas que dividam os solos sejam as linhas de máximo. Como resultado tem-se as divisões dos solos e algumas partes do mapa sobre-segmentadas. Isto é devido à textura presente na imagem scanneada do mapa de solos.

A sobre-segmentação usando a transformação de watershed \((\psi_{0_E})\) é bem mais acentuada para as imagens de satélites pois cada alvo possui uma textura característica. Um exemplo pode ser visto na Figura 2.22 onde o parâmetro de entrada da transformação é o gradiente morfológico \((\psi_{1_B})\) (Equação 2.53) da imagem \(f\).

A Figura 2.23 mostra os marcadores internos e o marcador externo para as sombras das nuvens da imagem \(f\). De posse destes marcadores é possível aplicar uma mudança homotópica \((\psi_{2_{B,f}})\) de forma a segmentar apenas os objetos de interesse (ver Figura 2.24). Detalhes sobre homotopia podem ser vistos em Sternberg (1986).
Fig. 2.22 – Sobre-segmentação de uma imagem.

Fig. 2.23 – a) imagem original \(f \). b) imagem dos marcadores internos. c) imagem do marcador externo. d) imagem \(f_2 \) representando a união dos marcadores.
Fig. 2.24 – Segmentação das sombras da imagem TM.
No Capítulo 3 mostra–se como encontrar os marcadores internos e o marcador externo de sombras de nuvens apresentados na Figura 2.23. Eles fazem parte da metodologia para identificação de nuvens e suas sombras em imagens TM de uma mesma região e com duas datas de passagens distintas.

Um exemplo de aplicação da transformação \textit{watershed} pode ser vista também no trabalho de Soille e Ansoult (1990) que trata do delineamento automático de bacias a partir de um modelo de elevação.

\section*{2.12 – MORFOLOGIA MATEMÁTICA EM IMAGENS COLORIDAS}

O olho humano consegue distinguir melhor a cor que o nível de cinza, e este é um dos motivos pela qual a cor é um recurso bastante utilizado na análise visual de imagens multispectrais de SR. Nesta Seção são vistas algumas considerações sobre cor e se as transformações da MM são bem adaptadas para este caso. O Capítulo 13 de Foley et al. (1990) é voltado para o estudo de imagens coloridas. Lá existem definições de cromaticidade de cor e vários modelos de sua representação. Aqui são apresentados os modelos RGB e HSV.

O modelo RGB é utilizado em monitores e usa coordenadas cartesianas em sua representação. A Figura 2.25 mostra o cubo unitário que define a palheta \(C \). Este modelo é orientado para o hardware e não apresenta uma idéia intuitiva da percepção de cor com relação de seu matiz, saturação e brilho. Existem outros modelos que foram desenvolvidos usando esta segunda abordagem, um destes é o modelo HSV que possui três atributos: o matiz (H) que distingue as cores, a saturação (S) que representa o quão longe está uma cor do seu nível de cinza (grau de pureza da cor) e o brilho (V) que mostra como a intensidade de luminosidade do objeto é percebida.

No espaço RGB, supõe–se que \(E \) seja uma coleção de quadradinhos adjacentes dispostos ao longo de linhas e colunas e formando uma superfície retangular, e \(C \) uma palheta (LUT) de cores, onde \(C = K^3 \) e \(K = [0, k − 1] \), \(K \) em geral está contido nos números inteiros.

Supõe–se um cubo unitário para representar a palheta unitária (Figura 2.25). Cada extremidade deste cubo é dada por uma cor. A diagonal principal deste cubo, que é dada a partir do ponto (0, 0, 0) ao ponto (1, 1, 1), representa os níveis de cinza.

\textbf{Definição 2.22} – Define–se \textit{imagem colorida} \(f \) no espaço \textit{RGB} como uma trípla de imagens digitais. Então \(f \) é dada por \(f = (f_1, f_2, f_3) \). Cada pixel de \(f \) é caracterizado por uma posição \(p \) em \(E \) e por uma única cor \(f(p) \) na palheta \(C \). A imagem, ou banda, \(f_i \) é um mapeamento de \(E \) em \(K \), onde \(i = 1, 2, 3 \) e \(f(p) = (f_1(p), f_2(p), f_3(p)) \) é um pixel na posição \(p \) e com valor igual a uma cor na palheta \(K \). A representação do valor do pixel de uma imagem colorida, no espaço \textit{RGB}, \(f(p) = (f_1(p), f_2(p), f_3(p)) \) é dada pela associação de cada \(f_i(p) \) a um canal \(i \), onde \(i = 1 \) é associado ao canal vermelho ou \(R \), \(i = 2 \) é associado ao canal verde ou \(G \), \(i = 3 \) é associado ao canal azul ou \(B \). □
As imagens multispectrais são bastante utilizadas em SR e podem ser vistas como uma extensão das imagens coloridas.

Definição 2.23 – Define-se *imagem multispectral* f com n bandas como a n–úpla de imagens digitais. Então $f = (f_1, \ldots, f_n)$. Cada banda pertence a uma faixa específica do espectro eletromagnético e cada pixel de f é caracterizado por uma posição p em E e por uma única cor $f(p)$ na palheta M, onde $M = K^n$, $K = [0, k - 1]$ e K em geral está contido nos números inteiros.

Para o caso do sensor TM, n é igual a 7 bandas. Porém a visualização no espaço RGB é feita usando no máximo 3 bandas.

![Representação do cubo RGB](image)

Fig. 2.25 – Representação do cubo RGB.

A MM em imagens binárias e em níveis de cinza são amplamente usadas em diversas aplicações e já existem sólidas definições para elas na literatura. Assim como no caso binário e em níveis de cinza, as transformações morfológicas em imagens coloridas devem ser definidas entre reticulados.

No espaço RGB, visto como espaço produto de espaço de imagens em níveis de cinza, só existe uma ordenação por partes: ao longo de uma mesma aresta, mas não entre pontos de arestas diferentes. Surge então o problema de ordenação do matiz: o matiz azul é menor que o matiz vermelho? Não é possível responder a esta pergunta pois não há uma ordenação natural de matizes. A Definição 2.24 apresenta a dilatação da imagem colorida f com relação a B no espaço RGB. O que se questiona é a utilidade prática desta ordenação por não possuir coerência visual.

Definição 2.24 – A dilatação de f com relação a B no espaço RGB é definida como a dilatação de cada banda f_i por B onde $i = 1, 2, 3$ e o resultado é apresentado por: $\delta_B(f) = (\delta_B(f_1), \delta_B(f_2), \delta_B(f_3))$.

Será que é possível usar as ferramentas da MM e gerar resultados no espaço de cores naturais para a visão humana? Sim. Na seção anterior foi mencionado que o modelo HSV é mais intuitivo que o modelo RGB. A partir deste primeiro modelo, é possível obter resultados com maior coerência visual.

Fig. 2.26 – Modelo de cor HSV usando o hexágono.
FONTE: Foley et al. (1990), p. 590.

Definição 2.25 – Define-se imagem colorida \(f \) no espaço HSV como uma tripla de imagens digitais
\[f = (H, S, V). \]
As bandas \(H, S \) e \(V \) são mapeamentos de \(E \) no intervalo \([0,1]\) em \(\mathbb{R} \),
\[f(p) = (H(p), S(p), V(p)) \]
a cor de um pixel na posição \(p \) com matiz \(H(p) \), saturação \(S(p) \) e valor \(V(p) \).

Observa-se pela Figura 2.27 que a saturação respeita a ordenação habitual do intervalo [0,1]. O valor também respeita a ordenação habitual do intervalo [0,1], e portanto é possível aplicar as transformações morfológicas a estas bandas. Porém o matiz não possui uma ordenação pois está definida em um hexágono. Neste caso não é possível definir uma ordem parcial para toda a imagem (Candeias et al., 1995). Portanto, para o caso do Matiz, a MM não é bem adaptada. É necessário definir uma ordem parcial para cada posição de pixel e com isto definir no lugar da dilatação, uma transformação chamada de expansão e definir no lugar da erosão, uma transformação chamada de contração. No Capítulo 3, Seção 3.5.2 tem-se a definição destes novos operadores.

A utilização destes novos operadores sobre o espaço HSV pode resultar em uma melhor homogenização de temas, classificação pela cor e extração de bordas.
A seguir comentam-se os resultados visuais da aplicação da dilatação e da erosão sobre a banda da saturação e a banda do valor. Também comenta-se a aplicação da transformação de expansão e contração sobre a banda do matiz no espaço HSV sugerida por Banon (1996b) e apresentadas na Seção 3.5.2.

Resultado 1 – A *saturação*, banda S, é um mapeamento de E no intervalo $[0,1]$ em \mathbb{R}. Para respeitar as sensações naturais que são vistas em transformações Morfológicas para níveis de cinza, considera-se que o menor valor do intervalo é ‘1’ e o maior é ‘0’, ou seja, o reticulado é reticulado dual dado por (L, \geq).

A *dilatação planar* definida sobre este reticulado dual gera cores, no espaço HSV, mais pastéis tendendo para nível de cinza por estar mais próxima do eixo da pirâmide.

A *erosão planar* de S com relação a B gera cores mais puras tendendo ao valor máximo de saturação por estarem mais longe do centro do hexágono.

Resultado 2 – O valor, banda V, é um mapeamento de E no intervalo $[0,1]$ em \mathbb{R}.

A *dilatação planar* de V com relação a B resulta em uma imagem com maior brilho, tendendo ao branco.

A *erosão planar* de V com relação a B resulta em uma imagem com menor brilho, tendendo ao preto.

Resultado 3 – O matiz, banda H, é um mapeamento de E no intervalo $[0,1]$ em \mathbb{R}. Porém neste intervalo o menor e o maior valor representam a mesma cor.

A *expansão* em H com relação a B altera a cor em sentido anti–horário da representação do hexágono, ou seja um conjunto de cores avermelhadas passa para uma cor amarelada.

A *contração* de H com relação a B altera a cor no sentido horário, ou seja, um conjunto de cores amareladas passa para uma cor mais avermelhada.
Fig. 2.28 – Representação gráfica da expansão e da contração.
FONTE: Adaptada de Foley et al. (1990), p. 591.
CAPÍTULO 3

ANÁLISE DE IMAGENS DE SENSORIAMENTO REMOTO

3.1 – INTRODUÇÃO

O olho humano é um sensor muito sofisticado e detecta muito bem as informações provenientes de uma imagem. Estas informações são passadas para o cérebro que as processa e as identifica na imagem segundo propriedades ou atributos de forma, tamanho, volume, cor, textura e localização com as características ambientais que se encontram (contexto). Maiores detalhes ver Novo (1992, p. 250–265).

A interpretação visual é dividida em procedimentos de análise (teste de hipóteses, convergência de evidências, etc.), técnicas (modelos de percepção, material adicional, visão estereoscópica) e elementos (tonalidade/cor, tamanho, forma, etc.). Na interpretação visual são avaliados elementos foto–interpretativos enquanto que, na análise automática estes elementos em geral não são incluídos. Porém a primeira é bastante tediosa, sujeita a erros e vinculada a um certo grau de subjetividade do especialista que necessita de um bom treinamento. Para maiores detalhes sobre a comparação entre a análise visual e a análise quantitativa consultar Richards (1986).

Quando um especialista analisa uma imagem de SR, ele se utiliza de atributos e de contexto para extrair os objetos de interesse da imagem e obter um produto que em geral é uma imagem mais simplificada: através da segmentação, classificação da imagem, ou da extração de medidas sobre os objetos da imagem tais como: perímetro, área de objetos. Comparando a análise visual com a análise por MM, tem–se que na análise visual de imagens há uma avaliação qualitativa da imagem enquanto que a análise de imagens por MM existe em uma avaliação quantitativa. Nos dois tipos de análise, a extração de informação se baseia em um conjunto de atributos e contexto que são identificados na imagem. Coster e Chermant (1989) mostram um ótimo estudo de análise de imagens com abordagem matemática.

Haralick et al. (1987) utiliza as transformações da MM de maneira adequada para obter uma simplificação da imagem e uma preservação das formas desejadas eliminando objetos que não são de interesse para a imagem resultante.

Neste capítulo apresenta-se uma dúzia de exemplos sobre a análise de imagens em SR. No Capítulo 4, estes exemplos são arranjados de formas diferentes para facilitar a consulta dos exemplos.
A solução de um problema de análise de imagens de SR por MM pode ser representado por um operador, isto é, por um mapeamento \(\psi \) entre reticulados (Figura 3.1) que transforma uma imagem \(f \) em \(L_1 \) em uma nova imagem \(g \) em \(L_2 \) (segmentação, classificação, etc.) ou no resultado de uma medida. Por sua vez os operadores ou as medidas podem ser decompostos em termos de outros operadores mais simples que podem ser reutilizados em outras decomposições.

\[
\begin{array}{c}
 f \\
 \in L_1 \\
 \psi \\
 g \\
 \in L_2
\end{array}
\]

Fig. 3.1 – Solução de um problema de análise de imagens.

Para resolver um problema de análise de imagens em SR usando as ferramentas da MM é necessário que este problema esteja bem definido. Os passos para solução de um dado problema estão embutidos em sua definição. Quanto mais preciso for a definição de um problema, mais fácil será de encontrar ferramentas adequadas da MM para solucioná-lo. Um exemplo da definição de um problema e sua solução são vistos a seguir.

Exemplo: Supõe–se que uma imagem digital apresente um ruído e deseja–se restaurar esta imagem.

A descrição deste problema não é clara e/ou precisa. Reformula–se então o problema descrevendo as características do ruído:

Supõe–se que uma imagem digital \(f \) apresente um ruído horizontal de largura de um pixel com níveis de cinza próximos a 255. Deseja–se restaurar esta imagem.

A partir desta definição do problema já é possível gerar uma solução. A abertura de \(f \) com relação a \(B \) (Equação 2.46) elimina picos claros da imagem. Como o ruído é horizontal e de largura de um pixel, o elemento estruturante deve ser vertical para eliminar o ruído (ver Figura 2.19). Portanto \(B \) é dado por:

\[
B = \begin{bmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\]

Uma forma mais eficiente de tratar um problema da redução deste ruído é filtrá–lo de forma local e não global como foi acima proposto. A abordagem local para resolver este problema é mostrada na Seção 3.5.1.

Os problemas de análise de imagens discutidos aqui são dados pelos seguintes exemplos: extração de pivô central em Guaíra por um atributo de forma, extração de corpos d'água por atributo de
forma, reconhecimento de nuvens e sombras em imagens TM, homozenização de temas em uma imagem de radar segmentada por máxima verossimilhança, homozenização de temas por uma filtragem nos planos de bits, eliminação de listras horizontais em uma imagem NOAA, redução do ruído de fase em interferometria em uma imagem do vulcão Etna, casamento por seleção de feições em imagens SPOT multispectral e panchromática do sensor SPOT, extração do reservatório buritama, extração de ilhas em imagens dos sensores TM, JERS e ERS–1, extração automática da drenagem em uma imagem de radar, extração de isolinhas de uma carta topográfica.

3.2 – EXTRAÇÃO DE OBJETOS ATRAVÉS DE ATRIBUTOS E CONTEXTO

O especialista utiliza atributos de forma, cor, textura etc. quando está desenvolvendo uma análise visual sobre a imagem. Portanto, conceitos de forma do tipo alongado, arredondado, poligonal ou sem-forma, cor e contexto tais como: perto de ou longe de, são importantes quando se deseja gerar uma classificação automática ou semi-automática que se aproximem de uma interpretação visual.

Esta seção apresenta transformações invariantes por translação e rotação que reconhecem automaticamente em uma imagem segmentada, formas do tipo alongada e arredondada. Com isto, pode-se extrair objetos alongados tais como uma estrada, um rio. Uma região agrícola usando pivô central pode ser extraída por sua forma arredondada. Além disto, é visto o contexto perto de ou longe de que podem auxiliar na classificação de alguns tipos de alvos como, por exemplo, classificação de mata ciliar. Neste caso, o especialista sabe a priori que este tipo de alvo só existe perto de rios. Um outro exemplo, seria eliminar da classificação pequenas áreas desmatadas longe de estrada.

Na Seção 3.2.1 é vista a extração do pivô central pelo atributo objeto arredondado, na Seção 3.2.2 tem-se a extração de um rio através do atributo objeto alongado e na Seção 3.2.3 tem-se a extração de nuvens e sombras de nuvens usando o contexto perto de.

3.2.1 – EXTRAÇÃO DE PIVÔ CENTRAL EM GUAÍRA POR ATRIBUTO DE FORMA

A partir da identificação de pivôs centrais é possível fazer um levantamento, monitoramento e controle de áreas irrigadas (Silva, 1994). Este controle é feito em função da água drenada e da quantidade de água do rio utilizada por cada pivô. Com isto evita-se o comprometimento do desabastecimento.

A cultura que usa a técnica de irrigação de pivô central pode ser identificada na imagem por sua forma arredondada (Figura 3.6). Taud e Parrot (1992) apresentam uma detecção de estruturas circulares em imagens de satélites e fazem uma breve revisão de literatura sobre a extração deste tipo de estrutura. Nesta seção, o problema é a identificação de objetos com forma arredondada usando a MM.

Em seguida, é dada uma definição de uma componente conexa e sem buracos quase arredondada, posteriormente aplica-se esta definição para algumas imagens sintéticas e para uma imagem de

Definição 3.1 – Seja \(f \) em \(\{0, 1\}^E \) uma imagem com uma só componente conexa tal que:

\[
\gamma_{ab}(f) \neq 0_E \text{ e } \gamma_{(n+1)b}(f) = 0_E,
\]

onde \(0_E \) é a imagem nula em \(\{0, 1\}^E \), \(nB \) é o octógono de apótema \(n \), com \(n \) inteiro e positivo. Se \(n \) é par, o octógono é dado pela soma de Minkowski de \(n/2 \) cruzes de tamanho 3x3 e \(n/2 \) quadrados de tamanho 3x3. Se \(n \) é ímpar, o octógono é dado pela soma de Minkowski de \((n + 1)/2 \) cruzes de tamanho 3x3 e \((n - 1)/2 \) quadrados de tamanho 3x3 (Banon e Vilela, 1996).

Esta componente seá chamada de **arredondada e sem buracos** se após uma transformação cartola de parâmetros \(nB \) seguida de uma erosão com relação ao octógono de apótema 2, a imagem resultante for nula.

O octógono foi usado na Definição 3.1 como aproximação digital do disco. Existem outras aproximações melhores para o disco, porém a primeira foi utilizada por já estar implementada no KHOROS. A erosão aplicada após a transformação cartola quantifica o resíduo aceitável para que o objeto seja classificado como arredondado.

Se a componente conexa em \(f \) possui a forma de um disco então o resíduo \(\eta_{ab}(f) \) será formado por pequenas regiões menores que o octógono de apótema 2. A erosão desta imagem com relação ao octógono de apótema 2 resultará em uma imagem nula. Caso a componente não seja aceita como arredondada isto indica que \(\eta_{ab}(f) \) será formada por regiões maiores que o octógono de apótema 2. Portanto, a quantificação do resíduo é dada pela sua erosão com relação ao octógono de apótema 2 como mostrado nas Figuras 3.2, 3.3, 3.4 e 3.5.

A Figura 3.2 mostra o operador \(\psi \) sobre uma imagem binária \(f \), onde \(f \) é composta por um disco. A imagem \(f \) satisfaz a Definição 3.1 com \(n = 18 \). Usando este valor, o operador \(\psi \) detecta a presença do disco já que a imagem de saída é nula. A Figura 3.3 mostra o mesmo operador \(\psi \) da Figura 3.2 quando \(f \) é composta por uma componente conexa retangular. Observa–se, neste último caso que, a imagem de saída não é nula. As Figuras 3.3 e 3.5 possuem quadradinhos pretos para facilitar a identificação da região onde se encontra o resíduo.
Fig. 3.2 – Transformação de um objeto quase arredondado.

Fig. 3.3 – Transformação de um objeto que não é quase arredondado.

Em Sensoriamento Remoto, não é muito comum que as formas das componentes conexas sejam exatamente as de um disco, de um retângulo, etc.. É necessário então desenvolver uma metodologia
mais robusta para o reconhecimento destes objetos. Apresenta–se a seguir como reconhecer uma componente conexa que se assemelha a um disco (Figura 3.4).

Para o caso do reconhecimento de componentes que se assemelham a um disco (disco com ruído de borda), aplica–se um filtro $\gamma \phi$ com relação ao octógono para suavizar um pouco suas bordas (ver Figura 3.4 e Figura 3.5). Em seguida, utiliza–se ψ para o caso da Figura 3.4 e 3.5. O elemento estruturante usado no filtro $\gamma \phi$, para estes dois casos, possui apótema 2. Para o caso da Figura 3.4, o resíduo é pequeno, então a forma é aceita como quase arredondada. Isto já não ocorre para o caso da Figura 3.5.

Fig. 3.4 – Reconhecimento de um objeto quase arredondado em presença de ruído de borda.

No exemplo a seguir mostra–se o reconhecimento de feições circulares na imagem ERS1/SAR, da cidade de Guaíra no estado de São Paulo (Figura 3.6), onde os pivôs centrais possuem um tamanho maior que nB onde $n = 18$. A solução é decomposta em termos de quatro transformações. A primeira transformação ψ_1 binariza a imagem de entrada. A segunda transformação ψ_2 homogeniza as regiões binarizadas. Em seguida, transformação ψ_1 reduz o espaço de busca das componentes conexas candidatas a objetos arredondados. Finalmente aplica–se a transformação ψ_4 que reconhece objetos que são aceitos como quase arredondados.
Fig. 3.5 – Reconhecimento de um objeto que não é quase arredondado em presença de ruído de borda.

Fig. 3.6 – Reconhecimento de feições circulares em uma imagem ERS1/SAR, Guaíra.
A seguir são mostradas as transformações ψ_1, ψ_2, ψ_3 e ψ_4 de forma mais detalhada (Figura 3.6).

Transformação ψ_1

A transformação ψ_1 consiste em aplicar uma LUT h, com propriedades de dilatação, sobre a imagem de entrada f. O limiar selecionado é igual a 120. f_1 é dada por:

$$f_1 = h \circ f.$$ \hspace{1cm} (3.1)

Transformação ψ_2

A imagem binária f_1 possui regiões não homogêneas. Isto ocorre devido a presença do *speckle* e da textura na imagem de entrada. A transformação ψ_2 consiste em unir regiões de f_1 que estejam próximas e remover da imagem pequenas regiões por meio de um filtro ϕ_f. Para evitar que ocorra algum buraco após esta filtragem é utilizada a transformação Φ (fechamento de buracos). E finalmente, obtém–se a imagem f_2 que possui regiões mais homogêneas que f_1:

$$f_2 = \Phi_B(\phi_f(y_B(f_1))),$$ \hspace{1cm} (3.2)

onde $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Transformação ψ_3

A imagem f_2 possui muitas componentes conexas e com diversos tamanhos. Sabe–se a priori que os pivôs centrais são maiores que nB, onde $n = 18$ e $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. A partir daí é possível excluir do espaço de busca objetos pequenos da imagem. A imagem resultante f_3 é dada por:

$$f_3 = \gamma_{\gamma_B nB}(f_2).$$ \hspace{1cm} (3.3)

Transformação ψ_4

A transformação ψ_4 consiste em avaliar cada componente conexas de f_3 e verificar se a mesma é quase arredondada. A imagem resultante é a união de todas as componentes que foram aceitas como arredondadas.

Observando a imagem f_4 apresentada na Figura 3.6 tem–se o reconhecimento de dois pivôs. Caso a binarização da imagem de entrada fosse menos ruída, a imagem final seria composta com
mais pivôs. A seguir mostra-se em linguagem algorítmica o reconhecimento de cada componente conexas,

onde $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

1. BEGIN
2. $f_{3,1} = \text{Rotulação} (f_3)$ /* Rotulação das componentes conexas da imagem binária f_3 */
3. $g = 0_E$ /* g é a imagem dos marcadores não arredondados */
4. $k = 1$ /* k é o rótulo da componente conexas de f_3 */
5. $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
6. $B_1 = \text{oct} (2)$
7. $f_{3,2} = (f_{3,1} \equiv K_E)$ /* Inicialização da imagem com apenas uma componente conexas a partir do rótulo k */
8. WHILE $f_{3,2} = 0_E$ /* Cálculo para cada componente conexas */
9. $f_{3,3} = \gamma_{n_1} \Phi_{n_1} (f_{3,2})$ /* Filtragem da borda da componente conexas com tamanho */
2. */
10. $f_{3,4} = \Phi_B (f_{3,3})$ /* Fechamento de buracos */
11. $n = 0$ /* Inicialização do contador do tamanho do octógono */
12. WHILE $\gamma (n+1, n) (f_{3,4}) \neq 0_E$ /* Verificação do octógono a ser usado a partir da def. 3.1 */
13. $n = n + 1$
14. ENDWHILE
15. $f_{3,5} = f_{3,4} - \gamma_{ab} (f_{3,4})$ /* Resíduo por transformação cartola */
16. $f_{3,6} = \tau_m (f_{3,5})$ /* Erosão do Resíduo, onde $m = 2$ */
17. $g = g \lor f_{3,6}$ /* União dos marcadores de obj. não arredondados */
18. $k = k + 1$
19. $f_{3,2} = (f_{3,1} \equiv K_E)$ /* Geração nova imagem binária com apenas uma componente conexas */
20. ENDWHILE
21. $f_4 = f_3 - \gamma_B (f_3)$ /* Extração de objetos que são arredondados */
22. END
Esta metodologia mostrou–se útil na extração de um objeto a partir de sua forma arredondada. Observa–se que a partir da imagem binária \(f_1 \) (Figura 3.6) é possível avaliar a área plantada com um certo tipo de cultura, monitorar e controlar áreas irrigadas com pivô central.

3.2.2 – EXTRAÇÃO DE CORPOS D’ÁGUA POR ATRIBUTO DE FORMA

A extração de corpos d’água é de grande importância para vários tipos de estudo em SR, tais como: qualidade da água, extração de plano de informação em um SIG, estudo de áreas inundadas, etc..

Um exemplo visto na Figura 3.7 mostra a extração de um rio a partir do atributo de forma chamado de alongado em uma imagem previamente binarizada. Este rio está localizado próximo a região de Manaus, e é afluentes do rio Negro. A imagem utilizada corresponde a banda 5 do sensor TM, órbita ponto 231x62 e data de passagem 27/07/91.

Na análise visual, um especialista detecta um rio a partir de características espectrais e espaciais. Na imagem vista na Figura 3.7, o rio aparece com níveis de cinza baixos (característica espectral) e possui uma forma alongada (característica espacial). Utilizando–se uma LUT para a classificação da água, obtém–se como resultado o rio e outros objetos. Aplicando–se a definição de componente conexa alongada sobre a imagem obtém–se apenas o rio como resultado.

Define–se a seguir o conceito de componente conexa alongada e posteriormente aplica–se esta definição sobre a imagem apresentada na Figura 3.7.

Definição 3.2 – Seja \(f_1 \) uma imagem binária em \(\{0, 1\}^E \). Uma componente 8–conexa contida em \(f_1 \) sem buracos será chamada de alongada se depois de uma poda \((\sigma_{a_2,b_2}) \) sobre o esqueleto por afinamento filtrado \((\sigma_{a,b,c,d}) \) de \(f_1 \) com conexidade 4, restar um marcador de componentes 8–conexas.

Exemplo: Seja \(f \) uma imagem em \(K^E \) que apresente um rio e outros objetos com a mesma responsividade espectral (ver Figura 3.7). Deseja–se reconhecer o rio a partir do atributo de forma do tipo alongado. Utiliza–se para encontrá–lo, a Definição 3.2.
Fig. 3.7 – Reconhecimento de um objeto alongado em uma imagem.

A transformação \(\psi_1 \) de \(K^E \) em \(\{0, 1\}^E \) é dada por uma limiarização seguida por um fechamento de buracos para garantir que as componentes conexas sejam sem buracos. De forma mais detalhada:

\[
f_1 = \psi_1(f) = \Phi_\beta(0 \leq f \leq 55)
\]

A imagem \(f_2 \) em \(\{0, 1\}^E \) é dada pela transformação de esqueleto \(\sigma_{A,B,C,D} \) aplicada a \(f_1 \).

\[
f_2 = \sigma_{A,B,C,D}(f_1).
\]

onde

\[
A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]
Para garantir a 4–conexidade das componentes 8–conexas, faz–se uma união de espessamentos em 8 direções. De forma mais detalhada tem–se que \(f_3 \) é dada por:

\[
f_3 = \psi_2(f_2) = f_2 \lor \psi_{A_1 A_2}(f_2),
\]

(3.6)

onde \(A_1 = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}_{45} \) e \(B_1 = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{bmatrix}_{45} \). O índice \(i = 1, \ldots, 8 \). A rotação em torno do centro da máscara é dada por \(i \times \text{ângulo} = i \times 45 \) graus. Por exemplo para \(i = 2 \) e ângulo 45 graus, tem–se:

\[
A_2 = \begin{bmatrix}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix} \quad \text{e} \quad B_2 = \begin{bmatrix}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{bmatrix}.
\]

O marcador dos objetos alongados \(f_4 \) é obtido a partir da poda \((\sigma_{A_2 A_2}^\alpha)\) sobre \(f_3 \). No caso estudado, utilizou–se \(n = 250 \). Em outros termos,

\[
f_4 = \sigma_{A_2 A_2}^\alpha(f_3),
\]

(3.7)

onde \(A_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}_{45} \) e \(B_2 = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}_{45} \).

Finalmente obtém–se a imagem \(f_5 \) com apenas o rio aplicando a \(f_1 \) uma abertura por reconstrução com relação a \(B_3 = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \). Usando \(f_4 \) como marcador. Portanto:

\[
f_5 = \gamma_{f_4 A_1}(f_1),
\]

(3.8)

Em geral, a maioria dos sistemas comercializados em processamento digital de imagens não fornece a opção de classificar um objeto por atributo de forma, no caso objeto alongado. O uso desta metodologia para identificar rios mostra–se bastante útil na extração de plano de informação dos rios de uma imagem em um SIG, estudo de áreas inundadas, etc. Esta metodologia pode ser também utilizada para extração de outros objetos alongados tal como estradas.
3.2.3 – RECONHECIMENTO DE NUVENS E SOMBRAS EM IMAGENS TM

Nas seções anteriores foram mostrados como atributos de forma podem auxiliar na extração de informação. A seguir é vista uma definição para o contexto perto de e longe de e um exemplo para encontrar nuvens e suas sombras usando esta definição em uma imagem de Manaus banda 4 do sensor TM. Tem-se também um outro exemplo de extração de nuvens e sombras baseado em imagens TM de mesma área e de diferentes datas de passagem onde também se utiliza o contexto perto de.

Definição 3.3 – Sejam \(f \) e \(g \) duas imagens em \(\{0, 1\}^E \). A componente em \(f \) está perto de uma componente em \(g \) se e somente se a imagem dilatada de \(f \) com relação a \(B \) tocar a componente em \(g \). Caso contrário, a componente \(f \) é considerada longe de \(g \).

A seguir é visto o primeiro exemplo onde se utiliza apenas uma imagem (banda TM4).

Seja \(f \) uma imagem em \(K^E \) que contém nuvens e sombras além de outros alvos. Deseja-se obter uma imagem binária que represente a localização das nuvens e das sombras.

Neste exemplo utiliza-se dois limiares (LUT’s): um para as nuvens e um outro para a sombra. Mostra-se que é possível encontrar sombras a partir do contexto perto de nuvens.

Sejam \(f_1 \) e \(f_2 \) duas imagens em \(\{0, 1\}^E \) onde \(f_1 \) é uma imagem binária que contém as nuvens e \(f_2 \) é uma imagem binária que contém as sombras, além de outros alvos que possuem resposta espectral baixa. Estas imagens são obtidas a partir das equações a seguir, supondo que o elemento estruturante \(B \) é o quadrado \(3 \times 3 \):

\[
\begin{align*}
 f_1 &= (100 \leq \delta_B(f) \leq 255). \\
 f_2 &= (0 \leq \varepsilon_B(f) \leq 48).
\end{align*}
\]

(3.9) (3.10)

Na geração das imagens \(f_1 \) e \(f_2 \) foram aplicadas respectivamente uma dilatação e uma erosão para realçar as nuvens e a sombra.

Além das sombras, \(f_2 \) contém outros objetos que possuem a mesma resposta espectral nesta banda que a sombra. Sabe-se a priori que a sombra está perto das nuvens. Aplicando a Definição 3.3,
dilata-se relativamente a B_1 a imagem f_1 com relação a $B_1 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ gerando a imagem f_3. A intersecção entre as imagens f_2 e f_3 gera a imagem f_4 que é um marcador das possíveis sombras. Aplicando uma abertura por reconstrução $\psi_{1,2}$ sobre f_2, onde o elemento estruturante B é o quadrado 3×3, obtém-se a imagem f_5 que representa apenas a sombra (Figura 3.8). A imagem f_6 representa a localização das nuvens e da sombra a partir da união de f_1 com f_3 e a imagem f_7 mostra uma sobreposição da localização da imagem original e f_6.

Fig. 3.8 – Reconhecimento de sombras e nuvens.
Este algoritmo é de fácil implementação porém ele necessita que o usuário forneça dois limiares um para nuvem e um outro para sombra além do tamanho e direção do elemento estruturante B_1. Isto nem sempre é fácil de se definir e não se garante que toda a nuvem ou sombra seja mapeada.

A utilização de duas imagens com datas de aquisição próximas facilita no reconhecimento automático das nuvens e sombras além disto, a partir destas imagens é possível gerar um produto sintético com menor cobertura de nuvens.

Tem-se a seguir um outro algoritmo baseado desta vez em imagens adquiridas em datass distintas e registradas entre si. O problema é detectar as nuvens e as suas sombras. As Figuras 3.10 e 3.11 apresentam um esquema geral da extração destes objetos. Este método foi desenvolvido supondo que não existe grandes alterações dos objetos presentes na área representada pelas imagens f_1 e f_2.

Sejam f_1 e f_2 duas imagens TM de uma mesma região ao sul de Santarém, Tapajós (FLONA) e registradas entre si e com data de passagem 29/07/1992 e 29/05/1993, respectivamente. Deseja-se extrair nuvens e suas sombras, usando o contexto perto de e gerar uma nova imagem sintética com menor ou nenhuma cobertura de nuvens. Portanto deseja-se encontrar uma operação que transforme as imagens registradas entre si e com datas de passagem diferentes em uma imagem sintética a partir de uma interpolação condicional. A Figura 3.9 mostra o resultado da aplicação desta operação. Para este caso foi utilizado apenas a transferência de níveis de cinza de uma imagem para outra onde há problema de nuvens e sombras. É importante mencionar que as imagens utilizadas não devem ser de datas de passagem muito diferentes, para evitar problemas mudança dos objetos presentes na cena. Um algoritmo mais refinado deveria observar as estatísticas das imagens para adequar melhor os níveis de cinza que serão repostos nos locais das sombras e nuvens.

A transformação ψ_{m_1}, da Figura 3.9, gera a imagem máscara das nuvens e sombras. Esta transformação tem como parâmetros de entrada as imagens f_1 e f_2 e é dada pela união das imagens c_1 e b_1 mostradas na Figura 3.10.

A seguir mostra-se como encontrar de forma automática, a localização das nuvens e das sombras (imagem m_1) que servirá de marcador na interpolação condicional (Figura 3.9).

Na metodologia desenvolvida, supôe-se que as nuvens sejam apresentadas na imagem com níveis de cinza altos e a sombra com níveis de cinza baixos e que sombra esteja perto de nuvem e vice versa. É necessário impor que as médias globais das duas imagens f_1 e f_2 sejam iguais ou próximas para que os passos desenvolvidos a seguir sejam válidos. Supõe-se também a hipótese de que as nuvens das imagens f_1 e f_2 não se tocam.
As Figuras 3.10 e 3.11 mostram diagramas de blocos da extração de nuvens e sombras a partir das imagens \(f_2 \) e \(f_1 \) respectivamente.

A transformação \(\psi_1^* \) gera uma imagem binária que localiza as sombras. A operação \(\psi_2^* \) gera uma imagem binária que é o marcador de sombras e de nuvens das duas imagens de entrada. A transformação \(\psi_3^* \) gera uma imagem binária que localiza as nuvens da primeira imagem (\(f_2 \) da Figura 3.10 e \(f_1 \) da Figura 3.11) para isto se utiliza das informações de saída de \(\psi_2^* \) e de \(\psi_1^* \). Supõe–se também que as nuvens estão perto de sombra. A transformação \(\psi_4^* \) gera uma imagem binária que localiza as sombras perto de nuvens. A seguir são apresentadas estas transformações de forma mais detalhada.
Fig. 3.10 – Extração das nuvens e das sombras da imagem f_2.

Fig. 3.11 – Extração das nuvens e das sombras da imagem f_1.
a) A transformação ψ_1^*

A transformação ψ_1^* localiza a sombra através da transformação divisor d’água (watershed). Para evitar uma sobre-segmentação aplica-se uma mudança de homotopia no gradiente da imagem f_2 por meio de marcadores internos e externos das sombras. O ponto crítico é definir estes marcadores automaticamente, pois o resultado da segmentação é fortemente dependente destes marcadores. A seguir são mostrados os passos que levam à localização das sombras.

i) Identificação dos marcadores de sombras

Para obter um marcador interno que identifique bem os contornos das sombras é necessário que ele marque quase que inteiramente o objeto para evitar que a textura dos objetos interfiram na segmentação por divisor de água, portanto, é aplicada à imagem de entrada f_2 uma abertura não planar (ver Heijmans (1991)). Com resultado, tem-se que quase toda a sombra da nuvem será mapeada para nível de cinza zero. A Figura 3.12 mostra um perfil e o resultado da transformação de abertura não planar aplicadas à imagem f_2. Observa-se que na região onde existe sombra em f_2 tem-se, para a abertura não planar, um patamar com níveis de cinza iguais a zero. A partir deste resultado é possível gerar marcadores destes objetos na imagem.

A abertura não planar mapeia parte das sombras das nuvens para nível de cinza zero.

$$g_1 = \gamma_{B_1}(f_2).$$

onde B_1 é não planar com diâmetro 5 e offset 20.
A imagem resultante dos marcadores das sombras é dada por:

$$g_3 = (g_1 \equiv g_2).$$

(3.12)

onde $g_2 \equiv 0_e$.

A geração dos marcadores de sombras g_3 da imagem de entrada f_2 é mostrada na Figura 3.13.

Fig. 3.13 – Geração dos marcadores da sombra.

ii) Marcadores internos

Para que o algoritmo divisor d’água possua um bom desempenho elimina–se os marcadores da imagem g_3 que tocam em sua moldura M.

$$g_4 = g_3 - \gamma_{B,M}(g_3),$$

(3.13)

onde $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ e M é a imagem da moldura de g_3.

iii) Marcadores externos

Os marcadores externos para as sombras de f_2 são vistos na Figura 3.14 e são obtidos por meio dos seguintes passos: a partir da transformação SKIZ (Banon e Barrera, 1994) sobre a imagem g_4 encontra–se o esqueleto do fundo da imagem g_3, retira–se a moldura M desta imagem resultante e aplica–se o esqueleto por afinamento que poda as ramificações. As equações são mostradas a seguir.
A aplicação do SKIZ é dada por:

$$g_5 = \psi(g_4).$$ \hspace{1cm} (3.14)

Retira-se a moldura da imagem g_5:

$$g_7 = g_5 - g_6.$$ \hspace{1cm} (3.15)

$g_6 = M(g_5)$ é a moldura de g_5.

Em seguida, poda-se as ramificações pelo esqueleto:

$$g_8 = a_{b_1, b_2}(g_7).$$ \hspace{1cm} (3.16)

onde $B_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
iv) União dos marcadores internos e externos

Neste ítem tem–se a união dos marcadores internos e externos. É imposto que eles não se toquem para evitar problema na segmentação. Portanto, é feita a verificação se existem marcadores internos que tocam em marcadores externos. Caso este problema ocorra, afina–se os marcadores internos. A Figura 3.15 mostra estes marcadores com a restrição acima descrita. A seguir mostra–se as equações que definem esta restrição.

Interseção dos objetos de g_4 com g_8 para verificar quais deles tocaram os marcadores externos:

$$g_{11} = \gamma_{2B,g_8}(g_4).$$ \hspace{1cm} (3.17)

Dilatação dos marcadores externos g_8:

$$g_{12} = \delta_{g_8}(g_8).$$ \hspace{1cm} (3.18)

Redução de tamanho dos objetos de g_4 que tocam o marcador externo dilatado:

$$g_{13} = g_{11} - g_{12}.$$ \hspace{1cm} (3.19)

Remoção dos objetos de g_4 que tocam o marcador externo:

$$g_{14} = g_4 - g_{11}.$$ \hspace{1cm} (3.20)

Faz–se a união dos novos marcadores internos com os marcadores internos que não foram alterados:

$$g_{15} = g_{14} \lor g_{13}.$$ \hspace{1cm} (3.21)

A união entre os marcadores internos e o marcador externo com a restrição de que eles não se tocam é mostrada a seguir:

$$g_{16} = g_{15} \lor g_8.$$ \hspace{1cm} (3.22)

Nas equações acima usadas $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
Fig. 3.15 – Geração dos marcadores externos e internos.

v) **Divisor d’água**

A transformação divisor d’água ou *watershed* é usada aqui para extrair os contornos das sombras. O primeiro passo nesta fase é aplicar uma mudança de homotopia (Beucher, 1982) no gradiente da imagem f_2 usando a imagem g_{16} que contém os marcadores internos e o marcador externo das sombras. Obtém-se o divisor d’água daquela imagem. O resultado é uma imagem rotulada das sombras de acordo com a implementação da MMach (Barrera et al., 1995). A rotulação das sombras é mostrada na Figura 3.16.
Sejam \(\psi_1 \) o gradiente morfológico, \(\psi_2 \) a transformação de homotopia.

O gradiente morfológico em \(f_2 \) é dada por:

\[
g_{17} = \psi_1 (f_2). \tag{3.23}
\]

A mudança de homotopia da imagem \(g_{17} \) é dada por:

\[
g_{18} = \psi_2 (g_{17}). \tag{3.24}
\]

A transformação de divisor d’água da imagem \(g_{18} \) é dada por:

\[
g_{19} = \psi_w (g_{18}). \tag{3.25}
\]
onde \(B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \). Foi utilizada a conexidade 8 como parâmetro da transformação de divisor d’água sobre a imagem \(g_{18} \).

\(\text{vi}) \) Extração das sombras

Na Figura 3.16 tem-se a imagem rotulada \(g_{19} \) das sombras. Neste item, deseja-se uma imagem binária que identifique as sombras a partir da imagem rotulada. As equações a seguir definem um imagem binária desta imagem rotulada que apresente as sombras e seus contornos externos.

De acordo com a transformação de divisor de água (watershed) desenvolvido na MMach o contorno dos objetos segmentados é representado por níveis de cinza iguais a zero. Portanto, o contorno das sombras é obtido comparando os pontos onde a imagem é nula.

\[
g_{20}(x) = \begin{cases} 255 & \text{se } g_{19}(x) = 0 \\ 0 & \text{c.c.} \end{cases} \quad (3.26)
\]

O fundo da imagem \(g_{19} \) é representado pelo rótulo 1. As sombras são rotuladas então a partir do valor 2. Isto se deve ao fato de como foi implementada a transformação de divisor de água (watershed) na MMach.

\[
g_{21}(x) = \begin{cases} 255 & \text{se } g_{19}(x) \geq 2 \\ 0 & \text{c.c.} \end{cases} \quad (3.27)
\]

\[
g_{22} = g_{20} \lor g_{21}, \quad (3.28)
\]

A imagem \(g_{22} \) representa os marcadores de sombras da imagem \(f_2 \). O item a seguir mostra a transformação que identifica as sombras e as nuvens das duas imagens de entrada \(\psi_2^* \).
Fig. 3.17 – Localização de sombras.
b) A transformação ψ_2^*

A transformação ψ_2^* identifica as sombras e as nuvens das duas imagens. A Figura 3.19 mostra a imagem h_5, resultado da identificação de sombras e nuvens das duas imagens de entrada. A seguir são apresentadas as equações.

i) As imagens com nuvens apenas é dada a partir da união das duas imagens de entrada:

$$h_1 = f_1 \lor f_2.$$ \hspace{1cm} \text{(3.29)}

ii) As imagens com sombras apenas é dada pela interseção das duas imagens de entrada:

$$h_2 = f_1 \land f_2.$$ \hspace{1cm} \text{(3.30)}

iii) A variação de níveis de cinza das nuvens e sombras é dada pela subtração da imagem que contém apenas nuvens com a imagem que contém apenas sombras.

$$h_3 = h_1 - h_2.$$ \hspace{1cm} \text{(3.31)}

iv) A limiarização para encontrar nuvens e sombras é vista a seguir. Supõe-se B_1 não planar com diâmetro 5 e offset 20. A Figura 3.18 apresenta o perfil de h_3 e h_4. Observa-se que objetos que não são nuvens ou sombras em h_1 são mapeados para zero.

$$h_4 = \gamma_{h_1}(h_3).$$ \hspace{1cm} \text{(3.32)}

h_5 é uma imagem binária de marcadores de nuvens e sombras das duas imagens de entrada.
Fig. 3.19 – Geração dos marcadores de nuvens e sombras das imagens \(f_1 \) e \(f_2 \).

c) A transformação \(\psi_3 \)

A transformação \(\psi_3 \) identifica as nuvens da primeira imagem. Foi visto na seção 3 que conceito \textit{perto de}. Aqui para encontrar nuvens \textit{perto de} sombra é usado o mesmo tipo de abordagem. As equações a seguir mostram os passos para encontrar os marcadores das nuvens de \(f_2 \) que são vistos na Figura 3.20.

A imagem \(i_1 \) é dada pela dilatação da imagem \(g_{22} \) com relação ao elemento estruturante \(B_1 \). A definição do elemento estruturante é baseada na observação de que as nuvens estão posicionadas na imagem, acima e a direita das sombras.

\[
i_1 = \delta_{B_1}(g_{22}),
\]

(3.34)
onde \(B_1 = 10 \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \).

A imagem \(i_2 \) contém a localização das sombras de \(f_2 \):

\[i_2 = \gamma_{R,h_5}(g_{22}), \quad (3.35) \]

A imagem \(i_3 \) não contém os marcadores das sombras de \(f_2 \):

\[i_3 = h_5 - i_2, \quad (3.36) \]

A imagem \(i_4 \) contém os marcadores das nuvens perto dos marcadores das sombras de \(f_2 \):

\[i_4 = \gamma_{R,i_1}(i_3). \quad (3.37) \]

A Figura 3.20 mostra o diagrama de blocos para encontrar apenas os marcadores das nuvens.

Fig. 3.20 – Marcadores de nuvens de \(f_2 \) perto de sombra.
O mesmo procedimento já descrito na transformação \(\psi_i \) é utilizado aqui para encontrar as nuvens de \(f_2 \). Utiliza-se agora \(i_4 \) no lugar de \(g_3 \) no item (a), passo (ii) como o marcador, já que agora deseja-se localizar as nuvens de \(f_2 \). Finalmente tem–se a imagem \(b_2 \) (ver Figura 3.10).

d) A transformação \(\psi_i \)

A transformação \(\psi_i \) verifica se as nuvens (imagem \(b_2 \)) estão perto de suas sombras (imagem \(a_2 \)). A transformação é dada por:

\[
\begin{align*}
b_2 &= i_4, \\
i_5 &= \delta_{B_2}(b_2), \\
c_2 &= \gamma_{i_5, a}(a_2),
\end{align*}
\]

onde \(B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \).

Até agora foi visto como localizar automaticamente as nuvens e as sombras de \(f_2 \). Para encontrar as sombras \((c_1) \) e as nuvens \((b_1) \) de \(f_1 \), o procedimento é o mesmo; basta substituir \(f_2 \) por \(f_1 \) na transformação \(\psi_i \), isto é, nas Equações 3.11 e 3.23. A imagem resultante a localização das nuvens e das sombras é mostrada na Figura 3.11.

De posse destas imagens binárias que identificam sombras e nuvens das imagens \(f_1 \) e \(f_2 \) é possível fazer uma interpolação local em uma das imagens e gerar uma terceira imagem com menor cobertura de nuvens (Figura 3.9). Supõe–se que a máscara \(m_1 \) identifica nuvens e sombras de \(f_1 \). Ela é dilatada com relação ao quadradinho \((B) \), na Figura 3.9, para garantir que toda a região onde se encontra nuvem e sombra seja interpolada.

\[
m_1 = \delta_{B_1 \lor c_1},
\]

Os parâmetros estatísticos das imagens \(f_1 \), \(f_2 \) e \(f_3 \) são vistos na Tabela 3.1. Observa–se, pela tabela que, na imagem resultante \(f_3 \) o valor da sua média é bastante próximo a imagem \(f_1 \) e a sua variância é inferior as duas imagens de entrada. Para o caso da média sabe–se que o efeito da nuvem subir a média é igual ao efeito da sombra reduzi–la. Portanto para as três imagens as médias não devem ser muito diferentes. Para o caso da variância percebe–se que quanto maior é a quantidade de nuvens e sombras maior será seu valor.

TABELA 3.1 – ESTATÍSTICAS DAS IMAGENS \(f_1 \), \(f_2 \) E \(f_3 \) DA FIGURA 3.9

<table>
<thead>
<tr>
<th>Estatísticas</th>
<th>imagem (f_1)</th>
<th>imagem (f_2)</th>
<th>imagem (f_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>média</td>
<td>51.2981</td>
<td>53.6607</td>
<td>51.2659</td>
</tr>
<tr>
<td>variância</td>
<td>47.7618</td>
<td>127.804</td>
<td>38.1958</td>
</tr>
</tbody>
</table>
A avaliação de percentagem da cobertura de nuvens e de sombras na imagem é dada pelo: número de pixels de m_1 dividido pelo número de linhas vezes o número de colunas da imagem. No caso de m_1, tem-se que o tamanho da imagem é de 220 linhas e 512 colunas, e que 609 pixels desta imagem marcam as posições de nuvens e sombras. Logo, a percentagem de cobertura é de 0,541%.

Uma aplicação deste método de avaliação se dá durante a fase de aquisição de imagens em Cachoeira Paulista. Uma vez que estas imagens também são adquiridas em função da percentagem de cobertura de nuvens que são especificados para cada quadrante da imagem.

Um resultado importante deste exemplo é poder gerar um produto sintético com menor cobertura de nuvens para auxiliar em trabalhos de análise visual (Figura 3.9).

Esta metodologia quando é aplicada para terrenos que não possuem muita variação de relevo. Porém quando esta variação de relevo é elevada na cena, uma única distância associada a perto de pode não ser útil para encontrar todas as nuvens e sombras da imagem.
3.3 – HOMOGENIZAÇÃO DE TEMAS EM UMA IMAGEM DE RADAR SEGMENTADA POR MÁXIMA VEROSIMILHANÇA

Em alguns problemas de análise de imagens de SR é necessário homogenizar temas para melhorar na identificação de classes. Este problema pode ser claramente visto na segmentação de imagens de radar por máxima verossimilhança. Os filtros morfológicos podem auxiliar nesta homogenização de temas. Como exemplo, mostra-se aqui um trabalho desenvolvido por Frery e Candeias (1995) que se baseia no melhoramento da segmentação por máxima verossimilhança de imagens de radar usando um filtro alternado sequencial descrito no Capítulo 2. A abertura remove pequenas regiões com níveis de cinza altos enquanto que o fechamento remove pequenas regiões com níveis de cinza baixos. Associando estas duas transformações, pequenos buracos (lagoas) e pequenas ilhas podem ser eliminados da imagem. Neste exemplo utilizou–se uma imagem SAR580, 1–look de uma região de Freiburg, Alemanha (512 × 512 pixels).

Seja \(f \) uma imagem segmentada por máxima verossimilhança com duas classes. Seja \(f_i \) a imagem resultante da aplicação do filtro alternado sequencial obtido por:

\[
f_i = \zeta_f(\zeta_f(\zeta_f(\zeta_f(\zeta_f(f)))))
\]

onde \(\zeta_f \) é o resultado da composição de operações de abertura e fechamento com relação ao elemento estruturante \(B \), i.e. \(\zeta_f = \gamma_B \circ \phi_B \). \(B_1, B_2, B_3, B_4, B_5 \) e \(B_6 \) são elementos estruturantes, definidos por:

\[
B_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad B_3 = 2B_1; \quad B_4 = 2B_2; \quad B_5 = 3B_1; \quad B_6 = 3B_2.
\]

A Figura 3.21 (a) mostra a imagem original (SAR580, 1–look). Esta imagem foi obtida por um sensor aero–transportado, na banda L polarização HH. Uma interpretação visual mostra duas classes principais. A classe de níveis de cinza mais altos correspondem a floresta e a classe de níveis de cinza mais
escuros a solo úmido. A Figura 3.21 (b) é uma imagem da mesma área mas de frequência diferente (banda X). Ela funciona como uma fonte adicional de informação visual para discriminação de regiões homogêneas.

A Figura 3.22 mostra a segmentação por máxima verossimilhança e a aplicação do filtro alternado sequencial para gerar uma melhoria da segmentação. Percebe–se que o filtro gera uma boa homogenização das duas classes.

![Figuras 3.22](image)

Fig. 3.22 – a) Segmentação por máxima verossimilhança para duas classes. b) Filtro Morfológico.

É necessário observar que esta técnica é restrita a duas classes. Não é correto supor uma filtragem deste tipo para uma imagem temática com mais de duas classes. Pois não é possível supor uma ordenação dos valores atribuídos as classes dado que eles podem ser quaisquer e dependendo dos valores assumidos pelas classes ter–se–á resultados distintos.

3.4 – HOMOGENIZAÇÃO DE TEMAS POR UMA FILTRAGEM MORFOLÓGICA NOS PLANOS DE BITS

É bem conhecido na literatura que, imagens de radar de abertura sintética (SAR) são corrompidas por um ruído dependente do sinal denominado *speckle*. Várias técnicas de filtragem têm sido propostas (Sant’Anna, 1995), e em geral estes filtros são baseados e algumas propriedades estatísticas dos dados. Frery et al. (1996) mostram resultados estatísticos sobre dados SAR de amplitude.

Nesta seção, operações morfológicas binárias são aplicadas nos planos de bits de uma imagem (Gonzalez e Woods, 1992). Em uma imagem *byte*, os planos de bits formam oito imagens binárias. Ao invés de trabalhar com a estatística dos níveis de cinza observados, considera–se que o ruído cria pequenas áreas brancas (pretas respectivamente) sobre as áreas pretas (brancas respectivamente), e as operações binárias são aplicadas de forma a reduzir este problema antes da imagem ser reconstruída. A Figura 3.23 mostra a metodologia aplicada nesta seção e que está também definida em Candeias e Frery (1996).
Fig. 3.23 – a) Decomposição da imagem \(f \) em oito planos de bits. b) Filtragem morfológica \(F \) nos planos de bits antes da reconstrução da imagem \(f \).

Considere-se um reticulado \(E = \{0, ..., m - 1\} \times \{0, ..., n - 1\} \). Para cada \(s \in E \) um nível de cinza \(y(s) \in K = \{0, ..., k - 1\} \) é observado.

Considere-se que cada valor observado é um byte e que pode ser representado por \(y(s) = [b^7(s), ..., b^0(s)] \). Os bits (do mais ao menos significativo) formam o byte observado em \(s \). Outros formatos usuais (\(k = 2^{16} \) por exemplo) também podem ter este tipo de representação.

A decomposição em planos de bits de uma imagem \(y \) consiste em oito imagens binárias \(b^p : E \to \{0,1\} \), com \(7 \geq p \geq 0 \), dadas pelos bits observados em cada coordenada, denotada por \(y = [b^7, ..., b^0] \), onde \(b^p = (b^p(s))_{s \in E} \).

A Figura 3.24 apresenta uma imagem em níveis de cinza e seus oito planos, ordenados do mais significativo (b^7) para o menos significativo (b^0). Quanto menor é o índice dos planos de bits, menor será a quantidade de informação fornecida por este plano.

![Fig. 3.24 – Imagem em níveis de cinza e seus oito planos de bits (com os planos mais significativos da esquerda para direita, de cima para baixo).](image)

A metodologia aqui proposta consiste em restaurar os planos de bits usando as transformação da MM e posteriormente reconstruir esta imagem.

O filtro usado é um fechamento seguido de abertura para remover pequenas regiões espúrias menores que o elemento estruturante B das áreas homogêneas.

Seja $f = [b^7, b^6, b^5, b^4, b^3, b^2, b^1, b^0]$ a imagem original decomposta em planos de bits. Deseja-se reduzir o ruído presente em f. O problema é saber quais os planos de bits devem ser filtrados e quais os filtros que devem ser aplicados.

O ruído presente na imagem f é representado no plano de bits por pequenas áreas pretas e brancas. Um filtro de fechamento seguido por uma abertura parece ser razoável para solucionar este problema. Resta ainda a questão de qual elemento estruturante utilizar.

É intuitivo afirmar que quanto maior é a quantidade de planos filtrados, maior será a sua visualização da imagem reconstruída, e maior será o esforço computacional. Desde que a maior quantidade de
informação está presente nos planos de bits mais significativos (próximos à 7) parece ser natural que estes planos sejam fortes candidatos para a filtragem.

Um estudo empírico é feito a partir de uma imagem simulada que apresenta duas áreas homogêneas, uma escura e uma outra clara, que são corrompidas de forma multiplicativa pelo speckle (ver Frery et al., 1996; Yanasse et al., 1995). Esta imagem é usada como um padrão para se observar a qualidade da filtragem quanto: a variação de bordas, objetos pontuais, influência na largura das barras verticais. A variação da largura das barras é de $2n + 1$, onde $n = 0, ..., 6$. A imagem original e a versão corrompida pelo ruído $(1 - \text{look})$ são apresentadas na Figura 3.25. Os dados da imagem ruidosa possuem uma distribuição Rayleigh (Yanasse et al., 1995).

Fig. 3.25 – Imagem original e sua versão de um look corrompida pelo ruído speckle.

Avaliou-se a restauração da imagem por um filtro que consiste em um fechamento seguido por uma de abertura:

$$F = \gamma \phi_B,$$

onde $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Para avaliar o desempenho deste tipo de filtragem foram realizadas oito restaurações a partir da reconstrução dos planos de bits filtrados. As imagens f_j são reconstruídas a partir dos j planos de bits mais significativos filtrados e dos $n - j$ menos significativos não filtrados. Para o caso da imagem de um byte, o valor de n é igual a oito. A versão mais filtrada f_8 é construída a partir dos oito planos de bits filtrados $[F(b^0), ..., F(b^7)]$. A segunda versão mais filtrada f_7 é dada pela reconstrução dos sete bits mais significativos com o último plano de bits não alterado e dado por $[F(b^7), ..., F(b^1), b^0]$. As filtragens seguem neste esquema e têm como resultado as imagens f_6, f_5, f_4, f_3, e finalmente $f_1 = [F(b^7), b^6, ..., b^0]$. f_1 é denotada como a versão menos filtrada. A Figura 3.26 mostra cada um dos planos de bits e a Figura 3.27 mostra estes planos filtrados. Para estas figuras têm-se os planos mais significativos da esquerda para direita, de cima para baixo. A Figura 3.28 mostra a imagem corrompida pelo speckle e o resultado da filtragem apenas nos três planos de bits mais significativos filtrados.
O coeficiente de variação (desvio padrão dividido pela média amostral) é uma medida quantitativa da relação sinal–ruído. Quanto maior é o coeficiente de variação, maior será a relação sinal ruído presente na imagem. A Tabela 3.2 mostra o coeficiente de variação sobre as versões reconstruídas filtradas. Supondo que as regiões são homogêneas quanto menor for o coeficiente de variação, mais homogênea é esta região. Pela tabela observa-se que a partir de $f_5 = [F(b^5), F(b^6), F(b^5), b^4, b^3, b^2, b^1, b^0]$ não há muita alteração entre a área amostral escura e a região amostral clara.

TABELA 3.2 – COEFICIENTE DE VARIAÇÃO DAS IMAGENS FILTRADAS RECONSTRUÍDAS

<table>
<thead>
<tr>
<th>restauração</th>
<th>área amostral escura</th>
<th>área amostral Clara</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>0.522</td>
<td>0.247</td>
</tr>
<tr>
<td>f_2</td>
<td>0.302</td>
<td>0.165</td>
</tr>
<tr>
<td>f_3</td>
<td>0.225</td>
<td>0.136</td>
</tr>
<tr>
<td>f_4</td>
<td>0.201</td>
<td>0.128</td>
</tr>
<tr>
<td>f_5</td>
<td>0.192</td>
<td>0.124</td>
</tr>
<tr>
<td>f_6</td>
<td>0.188</td>
<td>0.123</td>
</tr>
<tr>
<td>f_7</td>
<td>0.186</td>
<td>0.122</td>
</tr>
<tr>
<td>f_8</td>
<td>0.185</td>
<td>0.122</td>
</tr>
</tbody>
</table>

Desta tabela pode-se concluir que:

a) a qualidade da restauração aumenta com a quantidade de planos de bits filtrados.

b) este crescimento é não linear e, para esta imagem, não se altera muito após o plano b^5 ser processado.

c) a redução do ruído é diferente para áreas escuras e claras, Sendo bem maior para a última.

Devido a filtragem ter iniciado por um fechamento seguida por uma abertura.
Fig. 3.26 – Planos de informação \([b^7, ..., b^0]\) de uma imagem de um look corrompida por speckle.

Fig. 3.27 – Planos de bits filtrados \([F(b^7), ..., F(b^0)]\) da Figura 3.26.

Fig. 3.28 – Imagem de um look corrompida por ruído speckle e o resultado após filtragem dos três planos mais significativos.
Esta metodologia é aplicada aqui a duas imagens SAR, uma obtida pelo sensor JERS–1 sobre Tapajós, Brasil (imagem g), e uma outra obtida pelo sensor SAR580 sobre Freiburg, Alemanha (imagem h).

A Figura 3.29 mostra a imagem original g sobre Tapajós e seus oito planos de bits. Verifica-se que até o terceiro plano de bits é possível visualizar algumas estruturas da imagem. A Figura 3.30 mostra os três planos de bits mais significativos de g após suas filtragens por F e com elemento estruturante B.

Fig. 3.29 – Imagem JERS–1 (imagem g) sobre tapajós e seus oito planos de bits.

Fig. 3.30 – Três planos de bits mais significativos da imagem g filtrados.
A Figura 3.31 mostra a imagem original e a sua versão filtrada supondo \(g_3 = [F(b^7), F(b^6), F(b^5), b^4, b^3, b^2, b^1, b^0] \). Observa–se que a imagem resultante pode ser vista também como uma versão classificada da imagem original. Existe porém, o problema de estruturas geométricas que aparecem na versão filtrada. Isto é devido ao elemento estruturante utilizado.

![Imagem g e sua versão filtrada.](image)

Fig. 3.31 – Imagem \(g \) e sua versão filtrada.

A Figura 3.32 mostra a imagem original \(h \), a filtragem \(F \) aplicada diretamente na imagem original e a versão filtrada \(f_3 \) dos três planos de bits mais significativos. Observa–se que, para a segunda imagem, há uma suavização de regiões, e que em relação à terceira imagem, tem–se visualmente a sensação de que ela está dividida em três classes. É visível pelo histograma da Figura 3.33(c) a presença de três classes distintas. Já para as Figuras 3.33(a) e 3.33(b) estas três classes não são claramente visíveis. O histograma pode ser utilizado como um indicador de discriminação de classes em uma imagem. Esta discriminação mostra de forma indireta que inter–classes há uma homogenização.

![Imagem SAR580 sobre Freiburg, filtro F aplicado diretamente a imagem original e sua versão filtrada pelos três planos mais significativos de bits.](image)

Fig. 3.32 – Imagem SAR580 sobre Freiburg, filtro \(F \) aplicado diretamente a imagem original e sua versão filtrada pelos três planos mais significativos de bits.

A Figura 3.34 mostra os três planos de bits mais significativos (de cima para baixo) e suas versões filtradas a direita. Por esta imagem observa–se que até o terceiro plano de bits tem–se informação de estruturas da imagem.

![Imagem mostrando os três planos de bits e suas versões filtradas.](image)
Como foi mostrado anteriormente, a homogenização feita a partir da filtração morfológica nos planos de bits reduz o ruído bem como fornece uma discriminação entre classes. É necessário, entretanto alguns estudos mais aprofundados para determinar qual tipo de filtro mais adequado, quais planos de bits que devem ser filtrados e quais elementos estruturantes utilizar. O problema visto também neste tipo de filtração é a grande alteração dos valores de níveis de cinza, aumentando assim o valor de média da imagem. Outros tipos de decomposições da imagem em planos de bits podem ser testados. O que é interessante neste método é poder trabalhar com imagens binárias.
3.5 – RESTAURAÇÃO DE IMAGENS

A restauração de imagens muitas vezes pode ser considerada como um pré–processamento à análise de imagens. Ela é necessária para minimizar o efeito do ruído, sendo possível trabalhar com resultados mais próximos do caso ideal onde não existe este ruído. A seguir são mostrados dois exemplos de restauração de imagens. O primeiro exemplo trata de uma listra horizontal que ocorre em imagens NOAA e segundo exemplo trata de um problema de ruído em interferometria.

3.5.1 – ELIMINAÇÃO DE UMA LISTRA HORIZONTAL EM UMA IMAGEM NOAA

Este exemplo mostra como eliminar o problema de uma listra horizontal que aparece frequentemente em imagens AVHRR (NOAA) e que pode gerar problemas em uma classificação automática ou um registro por correlação na região próxima ao ruído. Este trabalho também pode ser visto em Banon e Candeias (1993).

O INPE de Cachoeira Paulista é responsável pela recepção das imagens AVHRR (NOAA). Quando ocorre um problema de recepção destas imagens, as três bandas do sensor, ou seja, as bandas do vermelho, infra–vermelho próximo e infra–vermelho médio são afetadas por um ruído provocando o aparecimento de listras horizontais com largura de um pixel, nas imagens. O que em geral é feito para eliminar este problema é passar um filtro da mediana em toda a imagem. Porém, este procedimento altera a nitidez da imagem. Apresenta–se aqui uma interpolação local, na posição da listra, com isto os outros níveis de cinza da imagem sejam preservados. Será usada a banda do infra–vermelho próximo denotada por f (Figura 3.35) e que apresenta este efeito.

![Fig. 3.35 – Imagem NOAA original f (com um defeito na forma de uma listra horizontal).](image-url)
Uma listra em termos geométricos possui uma largura de um pixel e é exatamente horizontal. Do ponto de vista radiométrico, ela é formada por uma sequência de pixels com valores próximos de 255 e outro com valores próximos de zero, sendo que o tamanho máximo da sub-sequência de valores próximos de zero é de 59.

Fig. 3.36 – Processo de restauração da imagem NOAA.

O processo de restauração de uma imagem \(f_1 \) com o mesmo defeito que a imagem \(f \) é mostrado na Figura 3.36. Ele é decomposto em três etapas: localização da listra (geração de uma máscara) denotada por uma transformação \(\psi_1 \) de \(K^E \) em \{0, 1\}\(^E \), filtragem pelo filtro da mediana (transformação \(\psi_2 \)) e a operação de fusão dada pela operação \(\square \) que possui como parâmetros de entrada a imagem de entrada com ruído \(f_1 \) em \(K^E \), a máscara do ruído \(f_4 \) em \{0, 1\}\(^E \) e \(f_5 \) em \(K^E \) que é resultado da mediana (transformação \(\psi_2 \)). Como saída, esta operação gera a imagem \(f_6 \) em \(K^E \) que é o resultado da fusão.

A localização da listra é materializada na forma de uma imagem binária também chamada máscara que indica a posição da listra. O processo de geração da máscara é mostrado na Figura 3.37. A transformação \(\psi_1 \) é decomposta em três etapas.
Na primeira etapa, tem–se uma transformação de fechamento \(\phi \) de \(K^E \) em \(K^E \) que uniformiza a listra em torno de um mesmo nível de cinza próximo de 255. Utiliza–se para isto um fechamento por

\[
B_1 = \begin{bmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

e tem–se:

\[
f_2 = \phi_{B_1}(f_1);
\] \hspace{1cm} (3.43)

O número 1 em negrito, na expressão de \(B_1 \), significa que aquela posição coincide com a origem \((0, 0)\) de \(\mathbb{Z}^2 \).

Na Figura 3.37, tem–se uma amostra de \(f_2 \). Nesta imagem observa–se que na posição da listra tem–se uma linha contínua clara.

![Fig. 3.37 – Geração da máscara.](image)

Na segunda etapa representada também na Figura 3.37, tem–se a transformação \(\psi \) de \(K^E \) em \(\{0, 1\}^E \), que mapeia \(f_2 \) em \(f_3 \). Extraem–se os picos (ou máximos locais) de largura de um pixel na direção vertical. O processo de extração, mostrado na Figura 3.38, é obtido da seguinte maneira:

\[
f_3 = (\delta_{B_1}(f_2) \equiv f_2) \wedge (\neg (\varepsilon_{B_2}(f_2) \equiv f_2)) \wedge (\neg (\iota_{B_3}(f_2) \equiv f_2)),
\] \hspace{1cm} (3.44)

onde \(B_1 = \begin{bmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{bmatrix} \), \(B_2 = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \), \(B_3 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} \).
Supondo que na representação pelo par \((x_1, x_2)\), \(x_1\) seja a linha e \(x_2\) a coluna, a expressão de \(f_3\) acima pode ser escrita ainda como:

\[
f_3(x_1, x_2) = \begin{cases}
1 & \text{se } f_2(x_1 - 1, x_2) \leq f_2(x_1, x_2) \\
& \text{e } f_2(x_1 + 1, x_2) \leq f_2(x_1, x_2) \\
0 & \text{c.c.}
\end{cases}
\]

A imagem \(f_3\) em \(\{0, 1\}^E\) contém segmentos horizontais. Um deles ocupa uma linha inteira e indica a posição da listra. Os outros segmentos, todos de tamanho inferior a 301 pixels, devem ser eliminados.

![Diagrama](image)

Fig. 3.38 – Extração dos máximos locais.

Na terceira etapa, a eliminação destes segmentos, é obtida, como mostrado na Figura 3.37, através de uma abertura por \(B = ((301 - 1)/2)\) e tem–se:

\[
f_4 = \gamma_B(f_3).
\] (3.45)

Tem–se agora a máscara \(f_4\) em \(\{0, 1\}^E\) indicando a posição da listra. A seguir mostra–se a interpolação condicionada à máscara.

A interpolação condicional ou local (fusão) dada pela operação \(\Box\) possui como entradas \(f_1\) em \(K^E\), \(f_4\) em \(\{0, 1\}^E\) e \(f_3\) em \(K^E\) e como saída \(f_6\) em \(K^E\) que é o resultado da interpolação local ou condicional (Figura 3.39):

\[
f_6 = (f_1 \land (\neg f_4)) \lor (f_5 \land f_3),
\] (3.46)

A imagem \(f_5\) é a obtida pelo filtro da mediana que é um mapeamento \(\psi_2\) de \(K^E\) em \(K^E\) aplicado a imagem de entrada \(f_1\).
\(f_s = \text{mediana}_d(f_1), \)

(3.47)

com a máscara dada por uma linha vertical, já que o ruído é horizontal e de largura de um pixel. Como o ruído é um ponto ou de máximo ou de mínimo da janela, tem-se portanto que este ruído será removido. A máscara é dada por:

\[
M = \begin{bmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]

A expressão de \(f_6 \) acima pode ser escrita ainda por:

\[
f_6(x) = \begin{cases}
 f_1(x) & \text{se } f_3(x) = 0 \\
 f_4(x) & \text{se } f_3(x) = 1.
\end{cases}
\]

A Tabela 3.3 mostra as estatísticas da imagem de entrada \(f \), da imagem resultante da aplicação do filtro da mediana \(f_5 \) e da imagem da interpolação local \(f_6 \).

TABELA 3.3 – ESTATÍSTICAS DAS IMAGENS \(f, f_5 \) E \(f_6 \)

<table>
<thead>
<tr>
<th>Estatísticas</th>
<th>imagem (f)</th>
<th>imagem (f_5)</th>
<th>imagem (f_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>média</td>
<td>22.7978</td>
<td>22.6118</td>
<td>22.7111</td>
</tr>
<tr>
<td>variância</td>
<td>71.4015</td>
<td>60.4689</td>
<td>59.4835</td>
</tr>
</tbody>
</table>

Observa-se que as médias de \(f, f_5 \) e \(f_6 \) são praticamente iguais. Porém a variância de \(f_6 \) é inferior às duas outras imagens. Isto é um resultado esperado já que para o último caso altera-se apenas a linha ruída sem no entanto alterar os valores dos outros pixels. No caso da imagem \(f_5 \), com a filtragem da mediana abrange toda a imagem a variância deve ser menor que a imagem \(f \) já que eliminou o ruído. A imagem \(f \) é a que possui maior variância devido ao ruído horizontal nela presente.

A imagem \(f_6 \) (Figura 3.41) é o resultado da imagem \(f_1 \) (Figura 3.35) restaurada localmente, desta maneira, as estatísticas obtidas de \(f_6 \) se aproximam daquelas que seriam obtidas da imagem sem o defeito de listras. A restauração proposta, baseada numa interpolação condicional, tem um desempenho melhor em termos de nitidez quando comparada com a abordagem tradicional que consiste em restaurar simplesmente pelo filtro da mediana (Figura 3.40) usando uma filtragem global.

Um fato interessante neste método é que ele não necessita de um limiar para encontrar a posição da lista, fazendo com que este método seja bem geral para restaurar listras horizontais de imagens NOAA.
Fig. 3.39 – Fusão.

Fig. 3.40 – Imagem NOAA restaurada pelo filtro da mediana (f_5).
3.5.2 – REDUÇÃO DO RUÍDO DE FASE EM INTERFEROMETRIA USANDO UMA IMAGEM DO VULCÃO ETNA

A qualidade do interferograma gerada pela fase é comprometida devido à presença do speckle (Goldstein et al., 1988; Mura, 1993; Palme et al., 1996). Um método largamente utilizado para redução deste ruído é aplicar um filtro passa-baixa nos dados antes da obtenção da fase. Com este procedimento tem-se um aumento da razão sinal-ruído e decresce o número de resíduos.

Nesta seção deseja-se saber se a MM pode contribuir na redução do ruído speckle na imagem de fase. A representação da fase é dada por níveis de cinza arranjados de forma circular e portanto não é possível definir um maior e menor valor (supremo e ínfimo). Para gerar então, um filtro de redução de ruído de fase de interferometria é necessário considerar a circularidade do dado.

Para resolver problemas de análise de imagens por MM, supõe-se uma única ordem parcial definida para todas as posições de pixels. Portanto, as transformações vistas no capítulo 2 não podem ser aplicadas diretamente para este tipo de imagens. O desenvolvimento do filtro mostrado a seguir possui uma ordem parcial diferente para cada posição de pixel. A partir disto, é possível definir operadores que são do...

Candeias et al. (1995) e Mura et al. (1996) utilizam filtros não lineares aplicados na fase com o objetivo de reduzir o ruído supondo a restrição de circularidade. Mostra-se aqui as definições dos operadores tipo-dilatação e tipo-erosão supondo que a ordem parcial seja agora dada para cada posição de pixel.

Definição 3.4 – O operador tipo-dilatação com relação a \(B \), chamado aqui expansão, é denotado por \(\delta^*_{\mu} \) dado, para qualquer \(x \) em \(E \) e qualquer \(f \) em \(K^E \), por:

\[
\delta^*_{\mu}(f)(x) = (f(x) - \nu) + \max\left\{ f(y) + (\nu - f(x)) : y \in B^c \cap E \right\}.
\]

(3.48)

Onde \(\cdot \) define a soma módulo \(l \) (o tamanho de \(K \)), \(\nu \) é o “centro” do intervalo de \(K \) e “max” é definido com relação a ordem parcial usual em \(Z \) ou \(R \). Por exemplo, para \(K = [-\pi, \pi] \), usa-se \(l = 2\pi \) e \(\nu = 0 \).

A expansão (Equação 3.48) é uma adaptação da dilatação (Equação 2.12). Ela encontra o valor máximo das somas módulo \(l \) dos \(f(y) \) com a diferença de \(\nu \) com \(f(x) \). Há uma ordem parcial para cada posição \(x \) do pixel. Em seguida é aplicada uma soma módulo \(l \) com a diferença de \(f(x) \) com \(\nu \) para voltar ao valor esperado do pixel na posição \(x \).

Definição 3.5 – O operador tipo-erosão com relação a \(B \), chamado aqui de contração, é denotado por \(\varepsilon^*_{\mu} \), dado, para qualquer \(x \) em \(E \) e qualquer \(f \) em \(K^E \), por:

\[
\varepsilon^*_{\mu}(f)(x) = (f(x) - \nu) + \min\left\{ f(y) + (\nu - f(x)) : y \in B^c \cap E \right\}.
\]

(3.49)

Onde \(\cdot \) define a soma módulo \(l \) (o tamanho de \(K \)), \(\nu \) é o “centro” do intervalo de \(K \) e “min” é definido com relação a ordem parcial usual em \(Z \) ou \(R \). Por exemplo, para \(K = [-\pi, \pi] \), usa-se \(l = 2\pi \) e \(\nu = 0 \).

A contração (Equação 3.49) é uma adaptação da erosão (Equação 2.13). Ela encontra o valor mínimo das somas módulo \(l \) de \(f(y) \) com a diferença de \(\nu \) com \(f(x) \). Há uma ordem parcial para a posição \(x \) do pixel. Em seguida é aplicada uma soma módulo \(l \) com a diferença de \(f(x) \) com \(\nu \) para voltar ao valor esperado do pixel na posição \(x \).

Observa-se que em geral, estes novos operadores não são nem dilatação nem erosão, pois não verificam as Definições 2.13 e 2.14.

Candeias et al. (1995) e Mura et al. (1996) mostram uma comparação da metodologia aqui apresentada com outros filtros adaptados a dados que possuem periodicidade. O filtro utilizado é dado por:

\[
f_1 = \varepsilon^*_{\mu}(\delta^*_{\mu}(\delta^*_{\mu}(f)))
\]

(3.50)
onde \(B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \).

A análise de desempenho dos filtros de fase interferométrica é feita em termos de redução do resíduo em Candeias et. al. (1995) e do erro médio quadrático em Mura et al. (1996). Em ambos os casos observa-se que o desenrolamento da fase melhora com esta filtragem que respeita a circularidade dos dados.

![Imagens](image.png)

(a) Imagem original do interferograma. b) Imagem filtrada. c) Diferença entre a imagem original e imagem filtrada.

A partir da filtragem de fase é possível gerar mapas topográficos de alta resolução, auxiliando assim a comunidade de SR que necessita deste tipo de informação.

3.6 – CASAMENTO DE PADRÃO EM IMAGENS MULTISPECTRAL E PANCRÔMÁTICA DO SENSOR SPOT

Várias metodologias tais como: avaliação de crescimento urbano, desmatamento, fusão de imagens de multisensores, etc., comparam duas ou mais imagens tomadas em tempos diferentes e/ou sensores diferentes. Neste caso, as imagens obrigatoriamente devem estar registradas entre si. Na literatura, existem várias formas de se implementar o registro. O que há em comum entre estes métodos é o alto grau de intervenção do usuário na definição dos pontos de controle. Uma forma automática para encontrar pontos de controle entre duas imagens é procurar nelas, padrões similares. Com isto, obtém-se os pontos de controle e em seguida efetua-se o registro. Dentro deste enfoque, é apresentada aqui uma metodologia utilizando os centros dos padrões equivalentes entre duas imagens para efetuar o registro.

Esta seção mostra, através de um experimento, como resolver um problema de casamento de imagens utilizando as ferramentas da MM. Para este experimento são utilizadas as imagens SPOT PAN (resolução espacial de 10m) e XS2 (resolução espacial de 20m), de uma cena da região do Aeroporto Internacional de Guarulhos – São Paulo. Estas imagens são apresentadas na Figura 3.43. Este problema está também descrito em Faria e Candeias (1995).

Fig. 3.43 – Imagem SPOT. a) Imagem pancromática. b) Imagem multispectral banda 2.

Como o objetivo é casar estas duas imagens (Figura 3.43), toma-se como imagem de referência a imagem pancromática, a qual é denotada por \(f_P \); a imagem a ser registrada será denotada por
O método consiste de uma sequência de operações de uma ampliação, binarização, seleção e casamento de feições. Observa-se que todos estes passos são efetuados para encontrar o elemento estruturante que fornecerá o deslocamento adequado para a imagem XS ampliada (Equação 3.59 e Figura 3.44).

a) Ampliação

A ampliação por 2 da imagem multiespectral banda 2 (SPOT) é o primeiro passo a ser efetuado. Utiliza-se aqui a ampliação pelo vizinho mais próximo, o que não altera a radiometria da imagem. É utilizada aqui a definição de expansão por dilatação vista no capítulo 2.

A transformação \(\psi_1 \), apresentada na Figura 3.45, mapeia \(f_{xs2} \) em \(f_1 \):

\[
f_1 = \text{expansion}_{B}(f_{xs2}),
\]

onde \(B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \), \(s = 2 \) e \(o = 0 \)

b) Binarização

A binarização servirá para encontrar feições equivalentes nas imagens \(f_p \) e \(f_1 \).

A transformação \(\psi_2 \), apresentada na Figura 3.45, mapeia \(f_p \) em \(f_2^* \):

\[
f_2^* = \begin{cases}
255 & \text{se} \ 120 \leq f_p \leq 200 \\
0 & \text{c.c.}
\end{cases}
\]

A transformação \(\psi_3 \), apresentada na Figura 3.45, é uma abertura, ela mapeia \(f_2^* \) em \(f_2 \):

\[
f_2 = \Phi_B(f_2^*)
\]

A transformação \(\psi_4 \), apresentada na Figura 3.45, mapeia \(f_1 \) em \(f_3^* \):

\[
f_3^* = \begin{cases}
255 & \text{se} \ 30 \leq f_1 \leq 65 \\
0 & \text{c.c.}
\end{cases}
\]

A transformação \(\psi_5 \), apresentada na Figura 3.45, é uma abertura. Ela mapeia \(f_3^* \) em \(f_3 \).

\[
f_3 = \Phi_B(f_3^*)
\]

onde \(B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \)

c) Seleção do padrão

Para selecionar o padrão utiliza-se a função \(\text{extract}_{x,y,w,h}(\cdot) \) que extrai uma região retangular da imagem a partir de um ponto \((x, y)\), uma largura \(w\) e uma altura \(h\). O padrão \(f_4 \) é então dado por:
\[f_4 = \text{extract}_{x,y,w,h}(f_2) \]

(3.56)

A transformação \(\psi_3 \), apresentada na Figura 3.45, mapeia \(f_2 \) em \(f_4 \).

O padrão \(f_4 \) servirá como elemento estruturante do operador sup–gerador do Capítulo 2. No caso, foi escolhido um quadrado de tamanho 11 na imagem \(f_2 \), a partir do ponto (44, 146).

d) Casamento de padrão

Supõe–se que haja apenas uma translação entre \(f_2 \) e \(f_3 \). Reconhecendo apenas um ponto de \(f_1 \) em relação a \(f_2 \), é possível definir o valor da translação a ser feita para casar as duas imagens.

Para localizar os pontos correspondentes, utiliza–se o operador sup–gerador, que encontra o centro do padrão \(f_4 \) nas imagens \(f_2 \) e \(f_1 \), gerando respectivamente as imagens \(f_5 \) e \(f_6 \). Estas imagens são dadas pelo operador sup–gerador \(\lambda_{A,B} \) como mostrado nas Equações 3.57 e 3.58.

\[f_5 = \lambda_{A,B}(f_2) \]

(3.57)

\[f_6 = \lambda_{A,B}(f_3) \]

(3.58)

onde \(A = B = f_4 \)

O ponto encontrado em \(f_5 \) é escolhido como origem por estar associado à imagem \(f_P \) (imagem de referência). Se a imagem \(f_P \) não possui nenhum deslocamento em relação a \(f_{XS} \) então a imagem união de \(f_5 \) e \(f_6 \) possui apenas um ponto. O deslocamento que \(f_6 \) apresenta em relação \(f_5 \) será usado para gerar o elemento estruturante que servirá para fazer a translação e o casamento das imagens.

A partir da imagem \(f_7 = f_5 \lor (f_6)' \) é possível criar um elemento estruturante \(B_1 \) que fornece a informação de deslocamento para a erosão da pela Equação 3.59, gerando assim \(f_{XSd} \) (Figura 3.44).

\[f_{XSd} = \varepsilon_{B_1}(f_{XS}) \]

(3.59)
Fig. 3.44 – Translação de f_{XS} com deslocamento de 2 pixels na horizontal e 1 pixel na vertical.
Fig. 3.45 – Metodologia para registro translacional.

Este exemplo mostrou que supondo apenas um problema de translação, entre as imagens, é possível casa-las a partir de padrões similares. O problema deste método, entretanto, é a binarização prévia que as imagens sofrem antes de encontrar o padrão. Dependendo da binarização, este padrão poderá ser encontrado ou não. É necessário portanto uma abordagem em níveis de cinza para que esta metodologia seja mais eficiente. De qualquer modo este tipo de exemplo é válido por usar algumas idéias interessantes tais como ampliação usando o operador expan-δ_{μ,ν}, por usar o sup-gerador e por encontrar a translação para registrar as imagens do exemplo.
3.7 – EXTRAÇÃO DE CORPOS D’ÁGUA

A água é um dos recursos naturais mais importantes para o homem. Sua utilização se estende desde a irrigação até a recreação. É necessário um monitoramento da qualidade, quantidade e distribuição geográfica deste recurso. Com o uso do SR e SIG é possível desenvolver este monitoramento usando como base o comportamento espectral da água, seu volume, sua área, e seu perímetro.

Lilesand e Kiefer (1994) e Novo (1992) mostram o comportamento espectral da água e mencionam algumas aplicações do SR para este alvo, tais como: detecção de poluição, qualidade da água, turbidez etc. Em todas estas aplicações é necessário a extração destes corpos d’água de maneira a quantificar e qualificar estes resultados.

São abordados aqui três problemas sobre a extração de objetos em imagens de SR. O primeiro exemplo é mostrado na Seção 3.7.1 onde é vista a extração do reservatório Buritama. Na Seção 3.7.2 tem-se a extração de ilhas. E finalmente na Seção 3.7.3 é vista a extração da drenagem.

3.7.1 – EXTRAÇÃO DO RESERVATÓRIO BURITAMA

O monitoramento da água de um reservatório fornece a qualidade e a quantidade desta água. Isto é vital para a região abastecida por este reservatório. Uma análise desta região usando SR permite observar se há algum tipo de desequilíbrio de qualidade ou quantidade de água (Novo e Barga, 1991).

Novo et al. (1994) e Novo e Leite (1996) relatam uma experiência de organização de um banco de dados limnológicos para o reservatório de Barra Bonita. Para se fazer um monitoramento da água do reservatório é necessário inicialmente extrair os contornos deste objeto. Isto pode ser feito por meio de sua digitalização em uma carta topográfica (Novo e Leite, 1996) ou por meio de imagens de SR.

Um reservatório em uma imagem possui características espaciais bem distintas de um outro corpo d’água. Ele é um objeto grande que está conectado a um rio e possui uma represa que divide o rio do reservatório além de apresentar níveis de cinza baixos para a banda estudada. A partir destas observações é que foi desenvolvida a metodologia desta seção para a extração dos objetos. Este exemplo também pode ser visto em Candeias e Fernandez (1993). Utiliza-se como exemplo uma imagem simulada do sensor SSR desenvolvida por Banon e Santos (1993).

A metodologia é dividida em três partes distintas, que são respectivamente: a) obtenção da imagem binária, para localizar os objetos com baixa resposta espectral. b) extração da represa, para separar o rio do reservatório. E c) geração da imagem final com o reservatório apenas.

a) Obtenção da imagem binária

Neste exemplo, mostra-se a extração do reservatório Buritama. A limiarização da água é aqui processada de forma automática. A água limpa sem nenhuma turbidez ou elementos em suspensão
possui uma baixa resposta espectral e é representada por níveis de cinza baixos em uma imagem. Na Figura 3.46 (a), o reservatório está representado por níveis de cinza próximos a zero. Portanto, encontrando-se áreas de mínimo estaremos encontrando a localização da água do reservatório. Isto é feito selecionando os pixels de \(f \) que são iguais aos pixels de \(R_b(f) \). Classifica-se as áreas de mínimo e por consequência obtém-se a extração da água. A Equação 3.60 segue esta ideia, supondo que os mínimos estão localizados ao longo de quatro perfis distintos.

\[
f_i = (R_{a_1}(f) \equiv f) \lor (R_{a_2}(f) \equiv f) \lor (R_{a_3}(f) \equiv f) \lor (R_{a_4}(f) \equiv f)
\]

onde \(B_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B_3 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}. \]

Um exemplo de imagens do tipo \(f_i \) é mostrado na Figura 3.46 onde aplica-se a Equação 3.60 com \(n = 1 \), \(n = 5 \) e \(n = 10 \) para os elementos estruturantes. \(n \) fornece o comprimento do perfil onde deve ser avaliado o mínimo local.

![Fig. 3.46 – a) Reservatório Buritama (imagem simulada SSR). b) Resultado para \(n = 1 \). c) Resultado para \(n = 5 \). d) resultado para \(n = 10 \).](image)

Após a extração da máscara do corpo d’água é possível medir a área (número de pixels vezes a área de um pixel mapeada do solo) e perímetro (gradiente, contorno interno e contorno externos) ou gerar uma imagem com apenas as informação espectrais do objeto.

A binarização de um corpo d’água portanto, pode ser a mesma da apresentada anteriormente ou por meio de uma LUT (Figura 3.47) aplicada a imagem de entrada. Optou-se aqui a segunda forma para ficar compatível com Candeias e Fernandez (1993). A imagem binária \(f_i \) é dada por:

\[
f_i(x) = \begin{cases}
255 & \text{se } f(x) \leq 49 \\
0 & \text{c.c.}
\end{cases}
\]

(3.61)
Fig. 3.47 – Representação do histograma e da LUT.

A Figura 3.48 mostra a imagem original e a imagem binária. Se o reservatório fosse desconectado do rio, bastaria gerar um marcador para a região desejada e em seguida usar a abertura por reconstrução. Porém, como isto não ocorre, é necessário separar o reservatório da represa para depois usar o procedimento de reconstrução. A seguir mostra-se como localizar pontualmente a represa, construí-la e depois gerar uma imagem que separe a represa do reservatório.

![Fig. 3.48 – a) Imagem original. b) Imagem binária.](image)

b) Extração da represa

A represa pode ser identificada por um padrão. Usando a transformação sup-geradora é possível reconhecê-la na imagem.
Os elementos estruturantes B_1 e B_2 são escolhidos de forma a serem idênticos ao padrão da represa. Com isto, tem–se uma imagem de um ponto localizado na represa. A imagem resultante é denotada por f_2 e dada por:

$$f_2 = \lambda_{b_1,b_2}(f_1). \quad (3.62)$$

onde $B_1 = B_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

A partir do ponto de localização da represa é possível reconstruí–la. Supõe–se que ela seja vertical. A imagem f_3 é a represa reconstruída (Figura 3.49) e é dada por:

$$f_3 = \delta_{b_3}(f_2). \quad (3.63)$$

onde $B_3 = 4 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

c) Geração da imagem final

Subtraí–se, inicialmente a imagem f_1 da imagem f_3. Com isto desconecta–se o rio do reservatório gera–se assim a imagem f_4. A Figura 3.49 (a) mostra a represa (dentro do círculo). A Figura 3.49 (b) mostra o resultado da separação do rio com o reservatório. Finalmente, a Figura 3.49 (c) mostra uma ampliação desta separação.

$$f_4 = f_1 - f_3. \quad (3.64)$$
Para extrair a região desejada é necessário possuir um marcador. Escolhe–se um marcador automático, supondo que o reservatório é a maior componente conexa. Ele é dado pela imagem \(f_5 \).

\[
f_5 = \varepsilon_{B_5}(\varepsilon_{B_4}(f_1)), \tag{3.65}
\]

o elemento estruturante \(B_5 \) é um círculo de diâmetro 5 e \(B_4 \) é um círculo de diâmetro 11. O marcador pode ser qualquer desde que esteja na região desejada. Poderia também ser usado qualquer outro elemento estruturante desde que ele marcase apenas a região de interesse ou ainda, o usuário poderia selecionar o objeto a ser reconstruído.

A partir da imagem \(f_4 \) e do marcador \(f_5 \) é possível obter o reservatório (imagem \(f_6 \)) usando uma abertura por reconstrução (Figura 3.50):

\[
f_5 = \gamma_{B_6}(f_1), \tag{3.66}
\]

onde \(B_6 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \). \(B_6 \) deve ser simétrico para que todo o reservatório seja recuperado.
Esta metodologia mostrou como extrair um objeto grande, o reservatório, de uma imagem binária. Mostrou-se também que é possível encontrar objetos escuros na imagem a partir da Equação 3.60, sem utilizar uma limiarização. Optou-se porém, em usar uma LUT para binarização dos corpos d’água para ficar compatível com Candeias e Fernandez (1993), já que este foi o primeiro trabalho desenvolvido pela autora para extração de objetos usando MM. Uma metodologia mais eficiente pode ser elaborada para encontrar o local da represa, supondo que este é um ponto de estrangulamento do reservatório.
3.7.2 – EXTRAÇÃO DE ILHAS USANDO IMAGENS DOS SENSORES TM, JERS E RADAM

Nesta seção, mostra-se como extrair uma ilha do rio Solimões e próxima a cidade de Manaus para obter um estudo de sua evolução de sedimentação. O estudo da geomorfologia é desenvolvido a partir de imagens registradas com passagens diferentes.

As Figuras 3.54 e 3.55 mostram as imagens dos sensores TM, JERS e do RADAM, com seus respectivos resultados contendo apenas as ilhas. É possível verificar a crescente sedimentação desta ilha.

A metodologia se desenvolve a partir da definição de ilha e da definição de maior componente conexa e é a mesma desenvolvida por Candeias (1996b). A seguir são mostradas estas definições.

Definição 3.6 – Em uma imagem binária, as componentes conexas que não tocam sua moldura são chamadas de ilhas. Se \(f \) é uma imagem binária, então \(f_1 \), dada por:

\[
f_1 = f - \gamma_{B,m}(f),
\]

contém todas as ilhas de \(f \).

Definição 3.7 – As maiores componentes conexas de uma imagem \(f \), são aqueles objetos que após uma erosão ou abertura de \(f \) por um elemento estruturante \(B \) ainda estão representadas mesmo que parcialmente na imagem resultante \(f_1 \).

O tamanho do elemento estruturante indica o tamanho mínimo permitido para que a componente seja considerada do tipo grande. Em geral, utiliza–se \(f_1 \) como uma máscara da abertura por reconstrução de \(f \) por \(B \). A imagem reconstruída \(f_2 \) representa os objetos maiores de \(f \).

A Equação 3.68 representa os objetos de tamanhos iguais ou superiores a \(B \). A reconstrução dos objetos que restaram é dada pela Equação 3.69.
\[f_1 = \gamma_1(f) \] (3.68)

\[f_2 = \gamma_{a_1, b_1}(f). \] (3.69)

A metodologia para a extração da ilha é dividida em quatro partes: binarização, eliminação de componentes que tocam na moldura, extração das maiores componentes e região de interesse. Elas são vistas a seguir.

i) Binarização \((\psi_i)\)

Na Figura 3.54 (a), a água é apresentada com níveis de cinza mais altos quando comparada com outros outros alvos. Existe uma separabilidade bem definida no histograma da Figura 3.51, sendo então possível definir um limiar que separa a terra da água.

\[
\psi_i(f)(x) = \begin{cases}
255 & \text{se } a \leq f(x) \leq b \\
0 & \text{c.c.}
\end{cases}
\] (3.70)

Utiliza-se para a Figura 3.51 os valores \(a = 0\) e \(b = 45\). \(\psi_i\) é uma anti-dilatação pois a LUT associada \(h\) é uma anti-dilatação.

A binarização para classificar o que não é água é definida de acordo com a resposta espectral da água para aquela imagem. Em geral, aplica-se uma LUT \(h\) com propriedades de uma anti-dilatação como mostrado na Figura 3.52 ou de uma erosão como mostrado na Figura 3.53. Para extrair as ilhas das imagens das Figura 3.54 (b) e 3.54 (c) e a Figura 3.55 aplica-se uma LUT \(h\) com propriedades de uma erosão pois o alvo água fica no início do histograma e o que se deseja é classificar a terra.

![Fig. 3.51 – Histograma da banda 3 (TM) da Figura 3.54(a).](image)
ii) Eliminação de componentes que tocam a moldura (ψ₁)

Supondo que nenhum ponto da moldura m da imagem f deve pertencer a ilha, então subtraindo da imagem f_1 (imagem binária terra e água) todos os objetos que encostam na moldura ($γ_{R,m}(f_1)$) tem–se apenas as ilhas, f_2:

$$f_2 = f_1 - γ_{R,m}(f_1),$$

(3.71)

onde $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

iii) Extração das maiores componentes (ψ₃)

Em f_2 existem vários tamanhos de ilhas. Deseja–se obter apenas as maiores ilhas. O operador $ψ₃$ produz a imagem f_3 de marcadores de ilhas iguais ou maiores a B_2. Utilizou–se um fechamento em f_2 para agrupar componentes muito próximas.
\[f_3 = \gamma_{B_2}(\phi_{B_3}(f_2)), \]
\[\text{(3.72)} \]

onde \(B_1 = 2B \) e \(B_2 = 2B \).

Como a abertura é anti–extensiva, então para identificar os objetos com dimensões originais é necessário aplicar uma abertura por reconstrução para obter os objetos com as dimensões que eles tinham na imagem \(f_2 \). Os objetos são então reconstruídos em \(f_4 \) usando como marcador a imagem \(f_3 \):

\[f_4 = \gamma_{B_1}(f_3). \]
\[\text{(3.73)} \]

iv) **Região de interesse** (\(\psi_A \))

Como o que se deseja no problema são as ilhas e a água da ilha, tem–se que a imagem final é dada pela intersecção da imagem original com o fechamento do marcador \(f_4 \):

\[f_5 = f \land \phi_{B_3}(f_4), \]
\[\text{(3.74)} \]

onde \(B_3 \) é um elemento estruturante circular com um diâmetro igual a 50 (largura mínima do rio principal).

Fig. 3.54 – Imagem de uma região da Amazônia. (a) Imagem TM 3. (b) Imagem TM 4. (c) Imagem TM 5. (d) Extração de ilhas de (a). (e) Extração de ilhas de (b). (f) Extração de ilhas de (c).
3.7.3 – EXTRAÇÃO AUTOMÁTICA DA DRENAGEM EM UMA IMAGEM DE RADAR

O arranjo espacial da rede de drenagem em uma região é dada por uma série de fatores ambientais tais como: relevo, clima, geologia, cobertura vegetal da área e características do tipo de solo presente. Sua interpretação permite avaliar a permeabilidade do solo, as unidades e as estruturas geológicas (Valério Filho et al., 1981). Como resultado desta avaliação, é possível obter a dinâmica anual de enchentes, caracterizar tipos de solos e seu potencial de erodibilidade, auxiliar no planejamento de rodovias e no planejamento de assentamentos (Kux et al., 1993; Kux et al., 1995; Trevett, 1986 e Ichoku et al., 1996).

As cartas topográficas possuem a rede de drenagem já mapeadas. Entretanto, devido à necessidade de se compilar uma série de informações em uma única carta, boa parte da drenagem é suprimida (rios menores). Esta supressão é também devida à escala na qual vai ser plotada essas informações. Além disto, existem áreas não mapeadas. Desta forma, a partir de uma extração automática em uma imagem, além de se otimizar e melhorar em todos os aspectos a geração da rede de drenagem, pode-se gerar estas informações para áreas que não as dispõe.

O problema que surge é como extrair a rede de drenagem de uma imagem. Em geral esta extração é feita de forma manual. E para o caso da extração automática? A seguir mostra-se uma metodologia para a extração automática da drenagem a partir de uma imagem de radar.

A drenagem nas imagens de radar é bem visível e com formas bem definidas. O problema é encontrar um mapeamento de K^e em $\{0, 1\}^e$ que exiba apenas drenagem. A solução proposta aqui é extrair a drenagem a partir de suas características espaciais e espectrais. A Figura 3.57 mostra a imagem original, a binarização com limiar igual a 70 e a extração da drenagem com o método abordado nesta seção. Observa-se pela Figura 3.57(b) que a simples limiarização não fornece um resultado satisfatório, pois parâmetros tais como padrão da antena, speckle e textura produzem uma grande variação dos níveis de cinza e como resultado têm-se uma imagem binária ruidosa.

![Fig. 3.57 – a) Imagem original. b) imagem binarizada. c) Resultado pela MM.](image-url)
Como já havia sido mencionado no Capítulo 2, uma imagem em níveis de cinza pode ser vista como um modelo 3D. Neste modelo, a drenagem é representada pelos níveis de cinza baixos ou vales. Para reduzir o efeito de textura, um filtro da média de tamanho 3x3 pode ser aplicado a esta imagem. A Figura 3.58 mostra a representação 3D para uma imagem \(f \), a imagem filtrada pelo filtro da média e a imagem binarizada que localiza os vales. Observa-se que a imagem \(f \) é bem mais ruidosa que a sua versão filtrada e que para o caso da segunda é bem mais fácil encontrar os vales (drenagens). A imagem binária é o resultado obtido pela demarcação destes vales a partir da versão filtrada. A metodologia desenvolvida a seguir procura encontrar estes vales, que são regiões de mínimo local, e a partir daí obtém-se a imagem binária com a respectiva drenagem.

![Fig. 3.58 – a) imagem original. b) imagem filtrada com filtro passa-baixa. c) resultado binário. d) representação 3D da imagem original. e) representação 3D do filtro passa baixa. f) representação 3D do resultado binário.](image)

i) Metodologia para a extração automática da drenagem

A transformação \(\psi \) de \(K^E \) em \(\{0, 1\}^E \), apresentada na Figura 3.59, gera uma imagem binária que representa a drenagem da imagem de entrada \(f \). Esta transformação é dividida em dois passos: O primeiro passo é a união da extração da drenagem nas três direções, 45°, 0° e – 45° vistas na Figura 3.61.
(transformações ψ_2, ψ_3 e ψ_4) e o segundo passo refere-se à subtração de um ruído na borda da imagem resultante (máscara “[]”). A metodologia é apresentada na Figura 3.60.

Fig. 3.59 – Extração da drenagem.

Fig. 3.60 – Representação do mapeamento ψ.
Para minimizar o ruído e a textura presente na imagem, aplica-se a imagem de entrada f um filtro passa-baixas denotado por ψ_1 e dado por:

$$f_1 = \psi_{1\mu}(f).$$

(3.75)

onde M é uma 3x3.

A drenagem nas direções 45°, 0° e -45° é obtida a partir da versão filtrada de f, ou seja, a partir da imagem f_1. Para extrair a drenagem é necessário fazer a união das imagens em três direções distintas, pois assim obtem-se uma melhor identificação dos mínimos locais ou vales (vide Figura 3.61).

![Fig. 3.61 – a) Extração da drenagem na direção de 45°. b) Extração da drenagem na direção de 0°. c) Extração da drenagem na direção de -45°. d) União destas extrações.](image)

A seguir é mostrado o conjunto de equações para encontrar a drenagem na direção de 45°. Para encontrar a drenagem nas direções 0° e -45°, basta trocar alguns elementos estruturantes destas equações, o restante do procedimento é igual ao adotado para a direção de 45°.

A primeira etapa é como encontrar um mínimo local e uma região homogênea de uma imagem.
A comparação feita na Equação 3.76 gera a imagem \(h_1 \) que contém mínimos locais e regiões homogêneas da imagem \(h \):

\[
h_1(x) = \begin{cases}
255 & \text{se } h(x) \leq (i_x(h))(x) \\
0 & \text{c.c.}
\end{cases}
\] (3.76)

Caso a imagem \(h \) possua um alto grau de textura, \(h_1 \) será uma imagem binária ruidosa, pois existem vários mínimos locais devidos a textura além dos mínimos referentes a drenagem. Este ruído pode ser minimizado com o aumento de \(B \). Com isto a região de busca do mínimo local aumenta, diminui-se o ruído e tem-se uma melhor demarcação da drenagem.

A identificação da drenagem na direção 45\(^o\) é vista a seguir e mostrada na Figura 3.65.

Inicialmente a imagem \(f_1 \) é convertida para byte.

\[
g_1 = \text{byte}(f_1).
\] (3.75)

onde \(\text{byte}() \) gera a imagem com contradomínio \([0, 255]\).

A imagem \(g_6 \) é dada pela subtração entre duas comparações \(g_4 \) e \(g_5 \) (Equações 3.79 e (3.80)). A Figura 3.62 mostra um perfil da imagens \(g_4 \), \(g_2 \) e \(g_1 \). Observa-se por esta figura que a imagem \(g_4 \) localiza as rampas descendentes em \(g_1 \) (indo da esquerda para a direita). O elemento estruturante \(B_1 \) é quem indica o quão grande deve ser esta descida. A imagem \(g_2 \) é dada pela equação a seguir:

\[
g_2 = \varepsilon_{B_1}(g_1),
\] (3.77)

onde \(B_1 = \begin{bmatrix} 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \end{bmatrix} \).

Mas, a imagem \(g_4 \) também localiza regiões constantes. A seguir são vistas as imagens \(g_3 \), \(g_4 \), \(g_5 \) e \(g_6 \).

A imagem \(g_3 \) localiza as rampas crescentes e é dada por:

\[
g_3 = \varepsilon_{B_2}(g_1),
\] (3.78)

Onde \(B_2 = \begin{bmatrix} 0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \end{bmatrix} \).

A imagem \(g_4 \) é dada pela comparação entre \(g_1 \) e \(g_2 \) e localiza rampas descendentes. Esta imagem é dada por:

\[
g_4(x) = \begin{cases}
255 & \text{se } g_1(x) \leq g_2(x) \\
0 & \text{c.c.}
\end{cases}
\] (3.79)
A imagem g_4 compara a imagem g_1 com g_3 para verificar de existe uma região sem rampa (constante) ou com rampa ascendente. A Figura 3.63 mostra um perfil das imagens g_5, g_3 e g_1.

A comparação entre g_1 e g_3 localiza regiões homogeneas e rampas ascendentes. Portanto, a imagem g_5 é dada por:

$$
g_5(x) = \begin{cases}
255 & \text{se } g_1(x) \leq g_3(x) \\
0 & \text{c.c.}
\end{cases}
$$

(3.80)

Fig. 3.62 – Representação das imagens g_4, g_2 e g_1.

Finalmente tem-se g_6:

$$
g_6 = g_4 - g_5
$$

(3.81)

A Figura 3.64 mostra as imagens g_4, g_5 e g_1 e observa-se que g_6 irá mostrar apenas as rampas descendentes.
Visualmente, a imagem g_6 perde várias ligações da drenagem e ainda sobram alguns ruídos (Figura 3.65). Então reduz-se o ruído da imagem g_6 e seu resultado será um marcador para a imagem g_4 que visualmente é mais representativa para o objeto rede de drenagem. O resultado deste procedimento é uma imagem menos ruidosa porém com mais ligações fechadas da drenagem que a imagem g_6. A seguir tem-se o procedimento da geração do marcador para a imagem g_4.

Fig. 3.63 – Representação das imagens g_5, g_3 e g_1.

Fig. 3.64 – Representação das imagens g_4, g_5, g_1.
A imagem \(g_7 \) é composta pelos pixels isolados de \(g_6 \).

\[
g_7 = \lambda_{B_3,B_4}(g_6).
\]

Onde \(B_3 = B_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \).

A imagem \(g_8 \) é igual à imagem \(g_6 \) sem os pixels isolados. Esta transformação pode ser vista com um afina-mento.

\[
g_8 = g_6 - g_7.
\]

A Equação 3.84 supõe \(g_8 \) como um marcador para a imagem \(g_4 \) e reconstrói a rede de drenagem:

\[
f_2 = \gamma_{B_5,g_8}(g_4),
\]

onde \(B_5 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \).

\(\psi_3 \) identifica a drenagem na direção \(0^\circ \). A sequência é quase a mesma que a explicada anteriormente para a transformação \(\psi_2 \). A mudança está apenas no elemento estruturante usado nas transfor-mações que produzem \(f_2 \) e \(f_3 \) em \(g_2 \) e \(g_3 \). Tem-se agora: \(B_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \) e \(B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \). A imagem resultante é \(f_3 \).

\(\psi_4 \) identifica a drenagem na direção \(-45^\circ \). A sequência é quase a mesma que a explicada anteriormente para a transformação \(\psi_2 \). A mudança está apenas no elemento estruturante para \(g_2 \) e \(g_3 \).

Tem-se agora \(B_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \) e \(B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \). A imagem resultante é \(f_4 \).

A união de \(\psi_2, \psi_3, \psi_4 \) gera a imagem \(f_5 \) (veja Figura 3.60):

\[
f_5 = f_2 \lor f_3 \lor f_4.
\]

A transformação chamada \(\psi_5 \) gera a máscara \(f_6 \). As Equações 3.86 a 3.89 mostram como é construída a transformação \(\psi_5 \). Temos sucessivamente:

\[
h_1 = 0_6,
\]

\[
h_2 = \epsilon_{B_6}(g_2),
\]

onde \(B_6 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \).
\[h_3 = \varepsilon_{B_7}(g_2), \quad \text{(3.88)} \]

onde \(B_7 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \).

\[h_4 = \varepsilon_{B_8}(g_2), \quad \text{(3.89)} \]

onde \(B_8 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \).

A união das imagens \(h_2, h_3 \) e \(h_4 \) geram a máscara \(f_6 \).

\[f_6 = h_2 \lor h_3 \lor h_4. \quad \text{(3.90)} \]

A imagem final é obtida pela operação de subtração entre \(f_5 \) e \(f_6 \) (Figura 3.60). Então o topo, o final e o lado esquerdo da imagem e \(f_5 \) são retirados.

\[g = f_5 - f_6. \quad \text{(3.91)} \]

Esta metodologia foi desenvolvida para a imagem \(f \). Para usá-la em outras imagens é necessário se fazer algumas adaptações tais como escolher um filtro que suavize a imagem, selecionar as melhores direções para a extração da drenagem, e alterar os elementos estruturantes que identificam as rampas de subida e descida.

É importante ressaltar que imagens de radar são bastante complexas e que mesmo assim, este método foi capaz de extraí-las sem usar limiares no desenvolvimento da metodologia.

De forma resumida, pode-se concluir que o objetivo do método era marcar as maiores rampas de descidas que foram implicitamente definidas como a drenagem para a imagem estudada.
ii) Comparação entre a análise visual e a extração automática da drenagem

É feita aqui uma comparação com a análise visual para verificar a qualidade do mapeamento proposto. A Figura 3.67 mostra a extração da drenagem usando a análise visual (imagem \(x\)) e uma análise automática (imagem \(y\)). A imagem \(y\) é definida por:

\[
y = \gamma_{B_1} (\sigma_{B_1 B_2 B_3} (g)),
\]

onde \(\sigma(g)\) é uma imagem esqueleto de \(g\) definida por Jang e Chin (1990) e descrito em Banon e Barrera (1994); \(B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, B_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B_3 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} e B_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

Supõe-se que os pixels brancos da imagem \(y\) pertencem a \(\mathcal{A}\) e os pixels brancos da imagem \(x\) pertencem a \(\mathcal{B}\) e ambos pertencem ao conjunto \(\mathcal{Y}\) (veja Figura 3.66). O caso ideal ocorre quando \(\mathcal{A} = \mathcal{B}\) e o pior caso o corre quando \(\mathcal{A} \cap \mathcal{B} = \emptyset\). A extração automática é boa se \(NP(\mathcal{A} \cap \mathcal{B})\) ficar pró-
ximo ao de \(NP(\mathcal{A} \cup \mathcal{B}) \), caso contrário, \(NP(\mathcal{A} \cap \mathcal{B}) \) é baixo comparado com \(NP(\mathcal{A} \cup \mathcal{B}) \). Onde \(NP() \) indica o número de elementos.

Fig. 3.66 – Diagrama de Venn.

Supõe-se que tanto a extração manual quanto a extração por MM possuem erro. Tem-se então uma tolerância de aceitar como extração se seus pixels estiverem incluídos em \(\mathcal{A} \cap \mathcal{B} \). Tal tolerância é obtida pela dilatação de \(x \) e \(y \) por \(B \). Mais precisamente, tem-se os seguintes conceitos introduzidos por Banon (1996c):

- Região de erro do tipo 1, chamado de imagem de erro por excesso:
 \[e = y - \delta_y(x). \] (3.93)
- Região de erro do tipo 2, chamado de imagem de erro por falta:
 \[f = x - \delta_x(y). \] (3.94)
- Região de concordância do tipo 1:
 \[a_2 = y \land \delta_y(x) \] (3.95)
- Região de concordância do tipo 2:
 \[a_1 = x \land \delta_x(y). \] (3.96)

O próximo passo é computar o número de pixels \(NP() \) de cada região definida em (3.93) até (3.96). Seja \(NP(a) \) a média do número de pixels das regiões de concordância,

\[Np(a) = (Np(a_1) + Np(a_2))/2. \] (3.97)

Em seguida, são definidas as seguintes percentagens:

- a) Seja \(NP(a)\% \) o grau de concordância dado por:
 \[NP(a)\% = NP(a)/T . \] (3.98)
- b) Seja \(NP(e)\% \) o grau do erro do tipo 1 dado por:
 \[NP(e)\% = NP(e)/T . \] (3.99)
- c) Seja \(NP(f)\% \) o grau do erro do tipo 2 dado por:
\[NP(f)\% = NP(f)/T. \] (3.100)

Onde \(T = NP(a) + NP(e) + NP(f) \).

A Tabela 3.4 mostra o resultado de cada percentagem para os elementos estruturantes:

\[
B_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad B_2 = 2B_1 \text{ and } B_3 = 3B_1.
\]

TABELA 3.4 – PERCENTAGEM DE PIXELS

<table>
<thead>
<tr>
<th></th>
<th>(NP(a)%)</th>
<th>(NP(e)%)</th>
<th>(NP(f)%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_1)</td>
<td>51</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>(B_2)</td>
<td>73</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>(B_3)</td>
<td>80</td>
<td>17</td>
<td>3</td>
</tr>
</tbody>
</table>

A metodologia aqui desenvolvida foi comparada com a extração visual. A tolerância de distância foi considerada através da dilatação com respeito a \(B \), assumindo alguns erros na extração automática bem como na visual. Quanto maior é o \(B \) maior é a tolerância e mais pixels pertencem a região de concordância. Resultados podem ser melhores pela Tabela 3.4 caso o esqueleto da extração automática (ver Figura 3.67 (c)) for podado. Na Tabela 3.4, uma extração automática possui 80% de concordância supondo a tolerância de três pixels.

Fig. 3.67 – a) Imagem original \(f \). b) Extração visual (imagem \(x \)). c) Extração automática (imagem \(y \)).
iii) Extrapolação de segmentos

Na segmentação de imagens pode ocorrer uma interrupção de ligação como foi visto na Figura 3.67(c). Mostra-se aqui como gerar uma ligação de segmentos ou extrapolação. Inicialmente trabalha-se sobre uma imagem sintética e depois a metodologia é aplicada a imagem da Figura 3.67 (c). Este exemplo mostra um tipo especial de fechamento que une segmentos de retas.

Supõe-se uma imagem binária \(f \) como entrada com interrupções de ligação. A metodologia é dividida em três passos: divisão da imagem em regiões, reconhecimento de ligações que tocam a moldura (definida no Capítulo 2) e ligação dos segmentos.

a) Divisão da imagem em regiões (transformação \(\psi_1 \))

Neste item procura-se dividir a imagem em regiões para encontrar as prováveis ligações. A transformação \(\psi_1 \) de \(\{0, 1\}^E \) para \(\{0, 1\}^E \) é dada por:

\[
\psi_1(f)(x) = \begin{cases}
255 & \text{se } f^*(x) = 0 \\
0 & \text{c.c.}
\end{cases},
\]

onde:

\[
f^*_1 = \psi_u(\neg \psi_d (\neg f)).
\]

\(\psi_u \) é a transformação divisor d’água e \(\psi_d \) é a transformação de distância. Na Equação 3.102 a imagem \(f \) de \(\{0, 1\}^E \) é invertida. É calculada então a função distância que gera isolinas com mesmo valor de distância até a borda da imagem. A inversão da imagem depois da aplicação da distância irá fornecer valores altos para isolinas próximas aos segmentos e valores baixos para valores distantes destes segmentos. A transformação divisor d’água irá fornecer o caminho mínimo para a ligação entre os segmentos. Para o caso de ligações com ângulos 0° e 90° a ligação com distância mínima é a mesma que um ser humano normalmente faria. Porém para o caso de ângulos diferentes dos citados acima tem-se uma ligação do caminho mínimo que em geral não seria aquela definida por uma ligação manual (Figura 3.68).

A fórmula anterior liga todos os segmentos desejados e gera algumas ligações não desejadas. Se seguir é desenvolvido um procedimento para minimizar este problema.

b) Reconhecimento de ligações que tocam na moldura de \(f \)

Com a transformação divisor d’água são ligados todos os segmentos com a moldura da imagem, tem-se neste item o reconhecimento de ligações que tocam a moldura de \(f \).

O primeiro passo é procurar as extremidades dos segmentos usando a transformação n–cânônica(\(\psi_2 \)).
\[f_2 = \psi_{A,B}(f), \] (3.103)

onde \(A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \) e \(B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \).

É feita uma pequena dilatação destes pontos para evitar o problema da conexidade.

\[f_3 = \delta_{B_1}(f_2), \] (3.104)

onde \(B_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \).

Finalmente, Reconstroem-se os segmentos que tocam na moldura de \(f \) (transformação \(\psi_3 \)):

\[f_4 = \gamma_{B, \psi_3}(f_1 - f_3). \] (3.105)

Fig. 3.68 – Ligação de segmentos.
c) Eliminação de ligações espúrias

Finalmente, subtraindo a imagem obtida em f_i das ligações não desejadas em f_i, tem–se:

$$f_5 = f_i - f_i.$$ \hspace{1cm} (3.106)

Para um caso mais geral de ligação de linhas é necessário impor a restrição *perto de* para evitar ligações erradas.

A Figura 3.69 (a) apresenta uma imagem do esqueleto de uma drenagem (Figura 3.67 (c)). Aplica–se a metodologia de extrapolação vista anteriormente sobre a imagem apresentada na Figura 3.69(a) sem restrição *perto de* e obtém–se o resultado apresentado na Figura 3.69(b), que une todos os segmentos. A metodologia com restrição do ínfimo do resultado com sua dilatação com relação a $B_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ é apresentada na Figura 3.69 (c) e com restrição do ínfimo ao resultado com sua dilatação com relação à $B_2 = 3B_1$ é apresentada na Figura 3.69 (d). Para estas duas últimas figuras tem–se apenas as ligações que estão perto de outros com tolerância de 1 pixel para o caso da Figura 3.69 (c) e de 3 pixels para a Figura 3.69 (d). Além de gerar uma extrapolação, esta metodologia fornece também uma poda dos segmentos, como pode ser visto nas Figuras 3.69 (b), 3.69 (c) e 3.69 (d) quando comparadas com a Figura 3.69 (a).

A união ou a extrapolação dos segmentos foi vista nesta seção. O interessante é que é possível incorporar o atributo *perto de* para a união de objetos. Isto pode ser utilizado em diversas aplicações onde se deseja unir todos ou alguns objetos da imagem binária.
Fig. 3.69 – a) Esqueleto da drenagem. b) Aplicação direta do método. c) Aplicação do método usando dilatação com relação a B_1. d) Aplicação do método usando dilatação com relação a B_2.

3.8 – EXTRAÇÃO DE ISOLINHAS DE UMA CARTA TOPOGRÁFICA

As informações das cartas topográficas são fundamentais no processo de geração de projetos utilizando-se o geoprocessamento. Tais informações são elementos básicos para a geração da base de dados a ser trabalhada e manipulada nos SIG’s. Entretanto, na geração da base de dados, os temas contidos em tais cartas precisam ser digitalizados individualmente formando assim os layers.

Mesmo com o avanço tecnológico conseguido nos dias atuais, o processo de transferência individual das informações contidas nas cartas topográficas é realizada ainda de forma manual. Isto torna o processo cansativo, demorado, passível de erro e oneroso.

Apesar de órgãos como o IBGE e a DSG disporem dos fotolitos onde tais elementos encontram-se individualizados, esses fotolitos não são disponibilizados para uso externo para que possam ser scannerizados e vetorizados. Desta forma, a alternativa é a extração das informações contidas nas cartas
topográficas. A forma automática de efetuar esta extração é através de programas que permitam, a partir do processo de scannerização dessas cartas, extrair os temas separadamente e em seguida vetorizar–los e transferi–los para um SIG.

O tema contido na carta topográfica de interesse para este estudo são as curvas de nível (isolinhas). Esse tema foi escolhido por ser de grande utilidade no processo de geração das cartas de declividade e de modelos numéricos de elevação.

A metodologia aqui apresentada baseia–se na extração das isolinhas a partir da digitalização colorida de uma carta topográfica da região de Formosa, Brasília, escala 1:25.000.

Utiliza–se no desenvolvimento deste método, as bandas da imagem colorida no espaço RGB e a banda H do espaço HSV. Pela Figura 3.70, observa–se que tanto no espaço RGB quanto no espaço HSV, as bandas possuem algumas informações que as individualizam. Esta figura mostra por exemplo que f_2 ou banda R é composta pela drenagem, estradas, texto e alguns pontos e linhas espúrias. f_3 ou banda G é composta pela drenagem, isolinhas, linhas hachuradas, texto e linhas espúrias. f_4 ou banda B é composta por isolinhas, estrada, texto e linhas espúrias, mas a drenagem não é visível. Além disto mostra também que a banda H (matiz), mostra a drenagem, as isolinhas, etc.

A partir destas bandas e das ferramentas da MM gera–se uma imagem binária contendo as informações das isolinhas e alguns ruídos. Esta imagem pode ser em seguida vetorizada e transferida para um SIG. Após esta transferência, as isolinhas passam por um processo de edição dentro do próprio SIG de forma a corrigir as possíveis falhas (descontinuidade das linhas e pequenos segmentos de linhas).

A metodologia é dividida em três passos: o primeiro passo é digitalizar a carta topográfica para obter uma imagem digital colorida. A resolução escolhida da digitalização é um parâmetro importante para gerar bons resultados. Neste trabalho foi usado um scanner HP IICX com 300 dpi (dot per inch). Com isto, utiliza–se uma maior quantidade de pontos por milímetro e obtém–se uma melhor qualidade das imagens digitais geradas. O segundo passo é aplicar as ferramentas da MM (MMach) para gerar uma imagem binária contendo as isolinhas. O terceiro passo é vetorizar esta imagem binária e transferi–la para um SIG.
Na geração de mapa topográfico dois atributos, cor e forma, auxiliam o usuário a encontrar os temas ou objetos desejados. Então parece natural que um método para extrair objetos em um mapa seja baseado nestes atributos.

Dependendo do objeto a ser extraído do mapa, pode-se escolher uma ou mais bandas da imagem colorida. A escolha do espaço de representação da imagem colorida pode também facilitar a extração destes objetos. A drenagem de um mapa topográfico da Figura 3.70, por exemplo, pode ser extraída a partir da banda R (espaço RGB) ou a partir do Matiz (espaço HSV). Em ambos os casos existem outros objetos que não são drenagem mas estão presentes nestas bandas e devem ser eliminados do resultado final. Candeias e Sousa (1996) abordam a extração de isolinhas usando o espaço RGB e as ferramentas da MM. Um exemplo seria a extração de informação de uma imagem digital que se apresente na cor preta (caso do texto, linhas hachuradas, etc.). A união das bandas R, G e B identifica estes objetos.

O tema ou objeto de interesse visto nesta seção é a extração das isolinhas. Ela podem ser definidas no mapa como objetos de cor avermelhada e alongadas. As bandas G e B são boas para sua identificação pois seus pixels são associados com baixos níveis de cinza e são bem contrastadas com relação a
outros objetos (ver Figura 3.70). Porém usando apenas uma destas bandas tem–se outros objetos que devem ser eliminados.

A metodologia para a extração das isolinhas é apresentada na Figura 3.71. Ela é composta por uma transformação ψ_1 de $(K^E)^3$ em $\{0, 1\}^E$ e por quatro operações: $\psi_{\text{RGB}}, \psi_2, \sim, \psi_3$ que são detalhadas a seguir.

A transformação ψ_1 de $(K^E)^3$ em $\{0, 1\}^E$ extrai os objetos avermelhados da imagem f. Como as isolinhas não possuem um único matiz é necessário indicar um intervalo de valores que são aceitos como a cor vermelha. O intervalo considerado na Equação 3.107 fornece a tolerância dos valores que são considerados como a cor das isolinhas. O aumento ou a diminuição deste intervalo indicará respectivamente, uma maior ou menor tolerância para a cor selecionada.

Observando a Figura 3.72 (a) verifica–se que objetos com a cor preta também são extraídos. Eles aparecem nesta figura devido a definição do matiz H, onde a cor preta da imagem colorida é levada para o valor zero na banda da Matiz (ver maiores detalhes em Foley et al., 1990). A limiarização usada na Equação 3.107 define os objetos avermelhados da imagem (ver Figura 2.27). A imagem f_1, apresentada na Figura 3.72 (a), é dada por:
\[f_1 = \psi_1(f) = (0 \leq H(\psi_{HSV}(f)) \leq 0.2) \lor (0.8 \leq H(\psi_{HSV}(f)) \leq 1) , \quad (3.107) \]

onde \(H(\psi_{HSV}(f)) \) é o matiz \(H \) da imagem colorida \(f \) obtida através da transformação HSV.

A operação \(\psi_{RGB} \) gera a decomposição da imagem colorida \(f \), em três bandas \(f_2 \) (banda R), \(f_3 \) (banda G) e \(f_4 \) (banda B), do espaço RGB. Portanto:

\[f_2 = R(\psi_{RGB}(f)) , \quad (3.108) \]
\[f_3 = G(\psi_{RGB}(f)) , \quad (3.109) \]
\[f_4 = B(\psi_{RGB}(f)) , \quad (3.110) \]

A operação \(\psi_2 \) identifica todos os objetos pretos da imagem \(f \). Ela é uma imagem binária sendo gerada a partir da limiarização da união de \(f_2 \), \(f_3 \) e \(f_4 \). Portanto tem-se:

\[f_5 = (0 \leq (f_2 \lor f_3 \lor f_4) \leq 128) . \quad (3.111) \]

Aplica-se então, a subtração entre a imagem \(f_1 \) e \(f_5 \) para eliminar os objetos que não são isolinhas (ver Figura 3.72 (b)). Então:

\[f_6 = f_1 - f_5 . \quad (3.112) \]

Como sobram partes destes objetos na imagem \(f_6 \), aplica-se a operação \(\psi_2 \) e gera-se a imagem \(f_7 \) (ver Figura 3.72 (b)) que é dada pela Equação 3.115 com o objetivo de reduzir o ruído presente em \(f_6 \). Então:

\[g_3 = \sim (128 \leq f_2 \leq 255) \land f_6 . \quad (3.113) \]
\[g_4 = B_1, B_2^n (g_3) , \quad (3.114) \]

onde \(n = 20 \), \(B_1 = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \) e \(B_2 = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} \right] \). O valor de \(n \) indica qual o tamanho máximo do ruído.

Finalmente, parte de \(g_3 \) é reconstruída com base no marcador \(g_4 \).

\[f_7 = \gamma_1 t, B (g_3) , \quad (3.115) \]

onde \(B = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] \).

O passo seguinte, após a obtenção da imagem \(f_7 \), é a vetorização e a obtenção dos arquivos de linha. Ablameyko et al. (1994) mostram como corrigir certos erros depois de uma vetorização. Estes arquivos são então transferidos para um SIG, onde são manipulados para gerar uma carta de declividade ou um modelo numérico de terreno.
A Figura 3.73 (a) mostra a imagem original colorida digitalizada a partir de um mapa (em níveis de cinza) e a Figura 3.73 (b) mostra a versão final do processo de edição da vetorização após a intervenção humana.

Melhores resultados são obtidos na aquisição da imagem do mapa quando se aumenta o número de pontos por polegadas. Porém, isto implica em imagens que ocupam maior área em disco e maior quantidade de memória para processá-las. Esta metodologia pode ser considerada geral para aquisição de isolinhas a partir de um mapa digitalizado na escala de 1:25,000, pois existe uma regra na geração de mapas quanto às cores, largura dos objetos traçados etc. Porém, existe algumas limitações neste método tais como: o uso de um scanner colorido com o formato A1, e tamanho reduzido da imagem gerada.

Observa-se que os resultados conseguidos por este método apesar da necessidade de uma edição a posterior, são bastante satisfatórios e que há uma grande aplicabilidade em diversos projetos da área de Sensoriamento Remoto, onde há uma necessidade da entrada de informações de isolinhas de um mapa topográfico.
Fig. 3.72– a) Imagem f_1. b) Imagem f_6. c) Imagem f_7.
Fig. 3.73 – a) Imagem em níveis de cinza do mapa colorido. b) Imagem vetORIZADA de isolinhas.
CAPÍTULO 4

BANCO DE EXEMPLOS

4.1 – INTRODUÇÃO

Nosso trabalho faz parte do projeto PROTEM–CC ANIMOMAT que envolve 7 instituições, INPE, USP, UNICAMP, UFSCAR, UFAL, UFPE e CEFET, para a difusão do uso da tecnologia de análise de imagens por MM (Banon, 1995b).

O problema era encontrar uma forma de reunir todos os trabalhos desenvolvidos na forma de um banco de exemplos incluindo imagens e suas informações, espaços de trabalho (workspaces), artigos, metodologia, biblioteca de programas etc, e manter a homogenização do armazenamento das contribuições de cada centro de forma que a integração dos mesmos fosse feita sem nenhuma alteração de endereçamento entre documentos.

Uma maneira inicial de resolver o armazenamento foi o de arranjar os exemplos em diretórios distintos. Mas como acessar exemplos de outras instituições? Como enviar uma cópia de uma metodologia desenvolvida supondo que as máquinas poderiam ser de plataformas diferentes?

Para solucionar estes problemas foi utilizado o paradigma de repositórios uniformes (Uniform Repositories). Foi utilizada uma biblioteca digital baseada neste paradigma, chamada de URLib (Banon, 1995c). Esta biblioteca veio suprir os problemas de troca de informações entre as instituições bem como organizar e adequar as metodologias desenvolvidas pelos participantes em um mesma sequencia de armazenamento.

Em Savola et al. (1996) encontram-se informações básicas sobre a linguagem HTML e alguns conceitos abordados nesta seção tais como: âncoras, sites, browsers, URL, etc e uma boa bibliografia sobre a WWW.

Os serviços da URLib utilizam-se dos recursos da INTERNET do correio eletrônico e da WWW para seu acesso e uso. Um exemplo de um “URLib site” está localizado na URL: http://www.inpe.br/~analucia/URLib3. O acervo da biblioteca é distribuído sobre sistemas de arquivos independentes, cada um armazena o chamado acervo local. A Figura 4.1 mostra o índice do acervo local (gerado a partir do html) de um determinado “site” de uma “URLib site” particular. No cabeçalho destes índices tem-se as âncoras: “Help” e “URLib news”. A âncora “Help” ajuda o usuário a entender o funcionamento do banco de dados no “browser” (netscape por exemplo) e a âncora “URLib news”, mostrada na Figura 4.2, fornece informações sobre a URLib e os “sites” onde ela já foi instalada e apresenta os 10 serviços fornecidos ao usuário. O envio da última versão da URLib pode ser pedido como indicado em “URLib news”.
A Figura 4.3 mostra um exemplo da árvore de diretórios. Ela é composta por dois diretórios: URLib_Service_1.1 e col (collection). O primeiro contém os serviços da biblioteca e o segundo guarda o acervo local organizado por “domainname” e “user” (Ex: analucia, banon, sandri).

A Figura 4.4 mostra um exemplo onde a usuária sandri instalou um repositório em 1996 no mês 10, dia 11, às 15:07 horas, contendo o diretório bib/SandriBanoMoraCand=1996=CAS (nome_dosAutores=ano=3 primeiras letras do título) que contém o arquivo BibTeX em postscript descrevendo de forma bibliográfica o documento armazenado no diretório doc. O diretório not_sent serve para guardar os programas fontes que produziram o documento e que não se deseja enviar.

A parte do banco de exemplos voltado para SR foi depositado na URLib. A intenção é difundir as metologias que foram apresentadas no Capítulo 3.
Fig. 4.2 – URlib News.

Fig. 4.3 – Topo da árvore de diretórios.
4.2 – BANCO DE EXEMPLOS

O banco de exemplos é distribuído ao longo de vários repositórios. Um deles contém o documento principal (Figura 4.5) que fornece acesso a todas as aplicações vistas no Capítulo 3. Ele é composto por quatro itens: exemplos, objetos, atributos e ação. Cada exemplo possui a caracterização do problema, sua solução, agradecimentos, caso necessário, e as referências.

Fig. 4.5 – Banco de exemplos.
A Figura 4.6 apresenta as aplicações na mesma ordem que a desenvolvida no Capítulo 3. As Figuras 4.7, 4.8, 4.9 e a Tabela 4.1 mostram outras formas de acessar estes exemplos. Dependendo da necessidade do usuário, a consulta em uma delas pode ser mais útil na identificação de um exemplo próximo ao seu problema.

A Figura 4.7 lista alguns substantivos que são objetos usuais em SR e a Figura 4.8 lista alguns atributos que se aplicam a estes objetos. A Figura 4.9 lista as ações sobre os objetos. Finalmente, a Tabela 4.1 possibilita o acesso das aplicações a partir das transformações mostradas no Capítulo 2.

Fig. 4.6 – Exemplos de aplicações.
Fig. 4.7 – Objetos tratados nos exemplos.

Fig. 4.8 – Atributos ou adjetivos associados aos objetos extraídos.
A numeração existente nas Figuras 4.7, 4.8, 4.9 e na Tabela 4.1 serve para identificar os exemplos listados na Figura 4.6.

Para exemplificar o uso das figuras e da tabela mencionada anteriormente, supõe-se o seguinte exemplo: o usuário deseja extrair manchas de óleo em uma imagem. Supõe-se que estas manchas apareçam com níveis de cinza baixos (escuros). Pela Figura 4.8 tem-se a identificação de objeto: escuro através dos exemplos [3], [4], [6], [9], [11] e [12]. Portanto, a partir destes exemplos pode-se gerar uma metodologia para resolver o novo problema.

Um outro exemplo seria na homogenização de temas. Pela Figura 4.9, tem-se a apresentação da homogenização através dos exemplos [4] e [5]. Com isto, é possível gerar uma nova metodologia para uma imagem que se deseja homogenizar baseando-se nestes exemplos.
<table>
<thead>
<tr>
<th>MMach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome</td>
</tr>
<tr>
<td>igualdade (Equal)</td>
</tr>
<tr>
<td>moldura (Frame)</td>
</tr>
<tr>
<td>menor que (Less Than)</td>
</tr>
</tbody>
</table>

Nível 2 (operações)

suprimento (supremum)	2.4	∨	[6] [8] [11] [12]
infim (infimum)	2.5	∧	[3] [6] [10] [11]
complementar ou negação (negation)	2.7	~	[6] [8]
adição (addition)	2.8	+	...
subtração (subtraction)	2.9	–	[3] [9] [10] [11] [12]

Nível 3 (operadores elementares)

erosão (erosion)	2.13	ε	[6] [8] [9] [11] [12]	
anti–dilatação (anti–dilation)	2.18	δα	...	
anti–erosão (anti–erosion)	2.18	εα	...	
dilatação condicional (cond. dilation)	2.19	δB,g	...	
erosão condicional (cond.erosion)	2.19	εB,g	...	
n–dilatações (n–dilation)	2.20	δB^n	...	
n–erosões (n–erosion)	2.20	εB^n	...	
n–dilatações condicionais (n–cond. dilation)	2.22	δB,g^n	...	
n–erosões condicionais (n–cond. erosion)	2.22	εB,g^n	...	
transformação de distância (distance transform)	2.30	ψ	d	[11]
expansão por dilatação (expansion by dilation)	2.33	expan.δB,s,o	[8]	
expansão por erosão (expansion by erosion)	2.34	expan.εB,s,o	...	

Nível 4 (operadores sup–gerador e inf–gerador)

sup–gerador (sup–generating)	2.35	λB,g	[8] [9] [11]
inf–gerador (inf–generating)	2.35	μB,g	...
limiar (threshold)	2.36
n–canônico dual (n–can. dual)	2.37	ωA,B	...

(continua)
Tabela 4.1 – Conclusão.

MMach

Nível 5 (operadores baseados em sup–geradores e inf–geradores)

<table>
<thead>
<tr>
<th>Nome</th>
<th>Expressão</th>
<th>Símbolo</th>
<th>Exemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>afinamento (thinning)</td>
<td>2.38</td>
<td>(\sigma_B.g)</td>
<td>...</td>
</tr>
<tr>
<td>espessamento (thickening)</td>
<td>2.38</td>
<td>(T_A.B)</td>
<td>...</td>
</tr>
<tr>
<td>afinamento condicional (cond. thinning)</td>
<td>2.39</td>
<td>(\sigma_{A,B}.g)</td>
<td>...</td>
</tr>
<tr>
<td>espessamento condicional (cond. thickning)</td>
<td>2.39</td>
<td>(T_{A,B})</td>
<td>...</td>
</tr>
<tr>
<td>n–afinamentos (n–thinning)</td>
<td>2.40</td>
<td>(\sigma_{A,B}.g^n)</td>
<td>...</td>
</tr>
<tr>
<td>n–espessamento (n–thickening)</td>
<td>2.40</td>
<td>(T_{A,B,n})</td>
<td>...</td>
</tr>
<tr>
<td>esqueleto por afinamento (skel. by thin.)</td>
<td>2.41</td>
<td>(\Sigma_{A,B})</td>
<td>...</td>
</tr>
<tr>
<td>exoesqueleto por espessamento (exoskel. by thick.)</td>
<td>2.41</td>
<td>(T_{A,B})</td>
<td>...</td>
</tr>
<tr>
<td>esqueleto condicional por afinamento (cond. skel. by thin.)</td>
<td>2.42</td>
<td>(\Sigma_{A,B}.g)</td>
<td>...</td>
</tr>
<tr>
<td>exoesqueleto condicional por espessamento (cond. exoskel. by thick.)</td>
<td>2.42</td>
<td>(T_{A,B,g})</td>
<td>...</td>
</tr>
<tr>
<td>poda (pruning)</td>
<td>Definição 2.17</td>
<td>...</td>
<td>[2] [3] [11]</td>
</tr>
<tr>
<td>linha de partição d’água (watershed)</td>
<td>(\psi_w)</td>
<td>[3] [12]</td>
<td></td>
</tr>
<tr>
<td>esqueleto por afinamento filtrado de parâmetro A, B, C e D</td>
<td>2.43</td>
<td>(\sigma_{A,B,C,D})</td>
<td>[2]</td>
</tr>
</tbody>
</table>

Nível 6 (Filtros Morfológicos)

<table>
<thead>
<tr>
<th>Nome</th>
<th>Expressão</th>
<th>Símbolo</th>
<th>Exemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>abertura (opening)</td>
<td>2.44</td>
<td>(\gamma)</td>
<td>...</td>
</tr>
<tr>
<td>fechamento (closing)</td>
<td>2.44</td>
<td>(\phi)</td>
<td>...</td>
</tr>
<tr>
<td>abertura por reconstrução (open. by rec.)</td>
<td>2.45</td>
<td>(\gamma_{B,f(g)})</td>
<td>[2] [3] [9] [10] [11] [12]</td>
</tr>
<tr>
<td>fechamento por reconstrução (clos. by rec.)</td>
<td>2.45</td>
<td>(\phi_{B,f(g)})</td>
<td>...</td>
</tr>
<tr>
<td>n–aberturas (n–opening)</td>
<td>2.46</td>
<td>(\gamma_{B,n})</td>
<td>[1] [6] [10] [12]</td>
</tr>
<tr>
<td>n–fechamentos (n–closing)</td>
<td>2.46</td>
<td>(\phi_{B,n})</td>
<td>[6] [10]</td>
</tr>
<tr>
<td>n–aberturas/fechamentos (n–open/close)</td>
<td>2.47</td>
<td>(\gamma_{B,n})</td>
<td>[1] [4] [10]</td>
</tr>
<tr>
<td>n–fechamentos/aberturas (n–close/open)</td>
<td>2.47</td>
<td>(\phi_{B,n})</td>
<td>...</td>
</tr>
<tr>
<td>n–aberturas/fechamentos/aberturas(n–op/cl/op.)</td>
<td>2.48</td>
<td>(\gamma_{B,n})</td>
<td>...</td>
</tr>
<tr>
<td>n–fechamentos/aberturas/fechamentos(n–cl/op/cl.)</td>
<td>2.48</td>
<td>(\phi_{B,n})</td>
<td>...</td>
</tr>
<tr>
<td>centro primitivo (center primitive)</td>
<td>2.50</td>
<td>(\beta_B)</td>
<td>...</td>
</tr>
<tr>
<td>filtro de centro (center filter)</td>
<td>2.51</td>
<td>(\alpha_B)</td>
<td>...</td>
</tr>
<tr>
<td>fechamento de buracos (close holes)</td>
<td>...</td>
<td>...</td>
<td>[1]</td>
</tr>
</tbody>
</table>

SKIZ

<table>
<thead>
<tr>
<th>Nome</th>
<th>Expressão</th>
<th>Símbolo</th>
<th>Exemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>[3]</td>
</tr>
</tbody>
</table>

Nível 7 (Operadores baseados em subtração)

<table>
<thead>
<tr>
<th>Nome</th>
<th>Expressão</th>
<th>Símbolo</th>
<th>Exemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>gradiente (gradient)</td>
<td>2.53</td>
<td>(\psi_B)</td>
<td>[3]</td>
</tr>
<tr>
<td>esqueleto morfológico (morph. skel.)</td>
<td>2.54</td>
<td>(\sigma_B)</td>
<td>...</td>
</tr>
<tr>
<td>erosão última (last erosion)</td>
<td>2.55</td>
<td>(\theta_B)</td>
<td>...</td>
</tr>
<tr>
<td>cartola (top–hat)</td>
<td>2.56</td>
<td>(\eta_B)</td>
<td>...</td>
</tr>
<tr>
<td>cartola dual (top–hat dual)</td>
<td>2.57</td>
<td>(\mu_B)</td>
<td>...</td>
</tr>
</tbody>
</table>

Mostra-se a seguir um exemplo de acesso a um dos temas abordados neste trabalho: Eliminação de uma listra horizontal NOAA. A âncora [6] da Figura 4.6 fornece o acesso ao exemplo apresentado na Figura 4.10. Nesta figura, tem-se 4 âncoras que levam respectivamente para a definição do problema (Figura 4.11), sua solução (Figura 4.12), agradecimentos (Figura 4.13) e referências (Figura 4.14).

Todas aplicações apresentadas no Capítulo 3 seguem a mesma sequência de passos que a metodologia para fusão de imagens NOAA e podem ser acessadas pela URL: http://www.inpe.br/~analucia/URLib3.

Fig. 4.10 – Acesso HTML ao exemplo da eliminação de listras horizontais em uma imagem NOAA.
Fig. 4.11 – Definição do problema.
Eliminação de listras horizontais em uma imagem NOAA
Ana Lúcia Bezerra Cândida

Solução

A solução consiste em interpolar localmente a lista na imagem em três etapas: localização da lista, filtragem da imagem de entrada pela mediana e interpolação usando como parâmetro imagem de entrada, mediana da imagem, e localização binária da lista. A Figura 2 mostra o procedimento geral. Maiores detalhes da implementação ver [1].

Os blocos do programa principal foram implementados no Khoros 1.05 (download)

Fig. 2 – Blocos do programa principal.

Fig. 4.12 – Solução do problema.
Fig. 4.13 – Agradecimentos.

A autora agradece as sugestões dadas pelo Dr. Gerald J. F. Baron.

Fig. 4.14 – Referências.

Referências

Gerald J. F. Baron, and Ana L. B. Cardellos. 1995
Restauração de imagens NOAA por Morfologia Matemática.

Ana L. B. Cardellos. 1996
Aplicação da Morfologia Matemática à análise de imagens de Sensoramento Remoto.

Ana L. B. Cardellos. 1995
Explorer Saté’s NOAA AVHRR band 1, 2 and 3.
A MM pode ser entendida como uma teoria unificada para problemas de processamento de imagens. Foi visto que esta teoria é construída a partir da noção de ordem parcial e de reticulados. A partir da noção de reticulado pode-se definir duas operações: união e interseção. Com estas operações é possível definir os operadores da dilatação, da erosão, da anti-dilatação e da anti-erosão que são as bases para outros operadores mais complexos.

A análise de imagens de SR pode ser vista como a extração espacial de estruturas. Foi visto neste trabalho que as ferramentas da MM são bastante úteis para este tipo de extração. Para exemplificar tais extrações, selecionou-se doze exemplos, que foram descritos no Capítulo 3, de forma a mostrar a diversidade de problemas de análise de imagens de SR, onde as ferramentas da MM podem auxiliar.

Em geral uma imagem de SR se adequa a noção de ordem parcial. Porém para algumas imagens existe um problema de circularidade de dados e portanto a noção de uma única ordem parcial para estas imagens não é válida. No texto foram mostrados dois exemplos onde este tipo de problema ocorre. Estes exemplos envolvem imagens de fase em interferometria e o matiz de uma imagem colorida no espaço HSV. Para estes casos, é necessário usar novos operadores que supõem estes tipos de dados. Estes operadores são a expansão e a contração definidos no Capítulo 3 e que possuem uma relação de ordem parcial local. Observou-se que estes novos operadores não são nem dilatação nem erosão, pois não verificam as respectivas definições.

Este trabalho fez uma revisão da Morfologia sobre imagens binárias e em níveis de cinza para fornecer o embasamento necessário para as metodologias desenvolvidas no Capítulo 3. Além disto, mostrou-se também algumas considerações sobre a morfologia em imagens coloridas, já que a cor é um atributo de grande importância em análise de imagens de SR. É necessário observar que a morfologia em imagens coloridas é uma área em estudo e ainda não está completamente sedimentada. O estudo aqui apresentado fornece caminhos para o desenvolvimento de novos operadores mais complexos, para extração de objetos em imagens coloridas.

O Capítulo 4 mostrou os exemplos do Capítulo 3 descritos na forma de tabela para facilitar o acesso das metodologias por meio da WWW. Estes exemplos foram adequadamente armazenados em uma biblioteca digital e podem ser acessados a partir de quatro tabelas. A primeira tabela possui o acesso dos exemplos pelos seus títulos. A segunda tabela possui o acesso dos exemplos a partir dos objetos extraídos. A terceira tabela possui o acesso dos exemplos a partir de atributos associados aos objetos. A quarta tabela fornece as ações sobre as imagens. Existe ainda uma outra tabela referente as transformações vistas...
Com os doze exemplos selecionados da Tabela 1 (Capítulo 4) observou–se que várias transformações foram utilizadas em mais de um problema tais como: a interpolação local serviu para a eliminação da lista NOAA e para a geração de uma imagem sintética com menor recobrimento de nuvens. O atributo *perto de* serviu tanto para comparar a extração automática da drenagem com sua extração manual, quanto para classificar as sombras e nuvens. Em cada exemplo selecionado foi dado uma motivação, uma definição do problema, uma solução e sua conclusão.

Um passo importante para o desenvolvimento deste trabalho foi a utilização de uma programação visual disponível na plataforma KHOROS e da caixa de ferramentas MMach que facilitou no desenvolvimento das metodologias.

Observou–se que para trabalhar com a MM é interessante que a plataforma usada suporte uma programação visual ou uma linguagem funcional para que a implementação de novas metodologias seja testada de forma mais eficiente. É necessário também que esta plataforma tenha condições de armazenar e recuperar os passos das metodologias desenvolvidas já que vários procedimentos são reutilizáveis em outras imagens ou em outras aplicações.

Observa–se que as metodologias foram desenvolvidas com um certo grau de heurística, mas os resultados são bastante interessantes e em vários casos pode se aplicar estas metodologias a outras imagens.

A MM fornece ao usuário possibilidades para extração de objetos na imagem. Isto não é em geral obtido pelos softwares comercializados na área de processamento de imagem.

Este trabalho trouxe vários conceitos novos tais como: restauração local do ruído em uma imagem NOAA, filtragem da fase interferométrica, a extração de isolinhas e de ilhas, a extração automática da drenagem, etc.

A área da MM é bastante vasta, existem novos operadores mais gerais que estão sendo desenvolvidos para resolver problemas de casamento de imagens, classificação e segmentação entre outros. Espera–se que este trabalho auxíliie em estudos de análise de imagens.

As perspectivas são de ampliar o banco de exemplos voltados para problemas de análise de imagens de SR mostrando as potencialidades da MM para resolvê–los e gerar uma massa crítica de usuários que trabalhem com essa nova abordagem não linear ao processamento de imagens.
Como trabalhos futuros têm-se o aprimoramento de formas mais automáticas para solucionar alguns problemas vistos aqui, evitando uma limiarização da imagem para uma posterior extração de objeto, como no caso do exemplo da extração da ilha e do casamento de imagens. Estudar mais a fundo as idéias dos operadores sobre imagens coloridas e aproveitar melhor este atributo na extração de objetos das imagens de SR.
REFERÊNCIAS BIBLIOGRÁFICAS

_____ Transformação de expansão e contração sobre a banda do matiz no espaço HSV. São José dos Campos, 2 ago. de 1996b. Comunicação pessoal.

Rechiuti, L. V. Digitalização semi–automática de dados para produção de modelos numéricos de elevação. (Dissertação de mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, nov. 1994.

Sant’Anna, S. J. Avaliação do desempenho de filtros redutores de speckle em imagens de radar de abertura sintética. (Dissertação de Mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 1995, Brazil. No prelo.

APÊNDICE 1

KHOROS E MMACH

a) SISTEMA KHOROS

O KHOROS (Rasure et al., 1990) é um sistema integrado de desenvolvimento de software para processamento e visualização da informação. Ele foi desenvolvido para pesquisadores em processamento de imagens e de sinais. É criado no Departamento de Engenharia elétrica e de Computação na Universidade do Novo México, Alburquerque (E.U.A). O KHOROS foi projetado para ser portátil e extensível e baseia-se no Unix e sistema X–windows. Esta plataforma possui o ambiente de programação CANTATA que é uma interface de alto nível de abstração. Ela é baseada em programação visual e sua linguagem e expressa graficamente por interconexão orientada de módulos interligados. Neste ambiente é possível construir uma metodologia de processamento a partir de uma coleção de blocos interligados.

O KHOROS tem sido extensivamente usado para pesquisa em processamento de imagens, desenvolvimento de algoritmos, e visualização de dado e para aplicações tais como: inspeção industrial, diagnóstico médico, sensoriamento remoto, processamento de semicondutores, ótica, imagens médicas, análise de eco–sistemas, biologia celular, etc.

Maiores detalhes sobre o KHOROS ver a URL: http://www.khoral.com/. Atualmente é possível adquirir o software via ftp. Durante o desenvolvimento deste trabalho foram surgindo novas versões do KHOROS e a última versão é o KHOROS 2.1. A seguir tem–se os sites onde o KHOROS pode ser adquirido:

Brasil: ftp.unicamp.br [143.106.10.40] /pub/khoros2.1
EUA: ftp.khoral.com /pub/khoros2/
Japão: ftp.waseda.ac.jp [133.9.1.5] /pub/khoros/khoros2

As páginas WWW do KHOROS estão atualmente alocadas em:
Brasil: http://dca.fee.unicamp.br/projects/khoros
EUA: http://www.khoros.unm.edu

Através da URL: http://www.khoral.com/dpicource/Welcome.html tem–se um curso de processamento de imagens.

Existe associado ao sistema KHOROS um Mail Digest diário (via web da utilização do KHOROS para a versão 2.0) onde é possível trocar dúvidas desde a instalação do pacote até resolver algum problema em alguma rotina do sistema. A língua oficial deste Mail Digest é o inglês.
b) A CAIXA DE FERRAMENTAS MMach

A MMach (Morphological Machine) desenvolvida com o empenho de três instituições USP, UNICAMP e INPE e descrita em Barrera et al. (1995), foi implementada para imagens binárias, níveis de cinza e multi–bandas. Ela possui um conjunto de transformações da MM mostradas no capítulo 2 deste texto.

Todos os programas implementados na MMach são rotinas do KHOROS. Na URL: http://www.ime.usp.br/dcc/khoros/vision.html tem-se uma breve descrição da MM e da MMach. O acesso via ftp para aquisição da MMach para a versão 2.1 é visto a seguir:

ftp ftp.khoral.com /pub/khoros/Khoros2/contrib/toolboxes