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RESUMO

As quatro classes de operadores elementares da Morfologia
M atematica: dilatacdes, er osdes, anti—dilatacdese anti—er osbesmostr aram—sedefun-
damental importancia par aadecomposi¢ao/r epresentacio dequalquer mapeamento
entre reticulados completos. Neste artigo, vamos considerar a caracterizacao dos
operadores elementares de janela invariantes por translacdo (com janela W) que
transformam uma imagem em niveis de cinza com contra—dominio K; finito numa
imagem en niveis de cinza com contra—dominio K, finito. Baseada nas propriedades
deconexdesdeGaloisentrereticuladoscompletos, umaprimeiracar acterizacéo, cha-
mada de “ caracterizacdo por confrontacdo”, é estabelecida. Nesta caracterizacao,
cada operador elementar depende deuma familiade mapeamentosde Wem K, cha-
mada deelemento estrutur ante. Baseada na decomposi¢cdo deumaimagem em niveis
decinzaem ter mosdeimagensimpulsivas, umasegunda car acterizagdo, chamadade
“caracterizacdo por selecdo” , é estabelecida. Nesta car acterizacéo cada oper ador ele-
mentar depende de uma familia de mapeamentos de Wem K,, chamada de resposta
impulsiva. Finalmente, a partir desta segunda caracterizacdo, uma terceira, cha-
mada de “caracterizacdo por decomposicao” € estabelecida. Nesta caracterizacdo
cada operador elementar depende de uma familiade mapeamentosde K, em K, cha-
mados de tabelas de transfor magdo elementares (“ Elementary L ook Up Tables’). A
caracterizacao por confrontacdo € a maisnatural dentro dateoria da decomposicao
dos operadores. A caracterizacdo por selecéo e a por decomposicao cor respondem,
respectivamente, a implementagfes computacionais seriais e par alelas eficientes.



ABSTRACT

Thefour classesof Mathematical M or phology elementary oper a-
tors: dilations, erosions, anti—dilations and anti—er osions have proved to be of funda-
mental importance to the decomposition/representation of any mapping between
completelattices. Inthispaper, weareconcer ned with thechar acterization of transla-
tion—invariant window elementary operators (with window W) that transform a
gray—level imagewith finiterange K, into a gray—evel imagewith possibly different
finiterange K.,. Based on the properties of Galois connections between complete |at-
tices, afirst characterization, called “ characterization by confrontation” is derived.
In this characterization each elementary operator dependson a family of mappings
from Wto K, called structuring element. Based on the decomposition of a gr ay— evel
imagein termsof pulseimages, asecond char acterization, called “ char acterization by
selection”, is presented. In this characterization each elementary operator depends
on a family of mappings from Wto K,, called impulse response. Finally, from this
second char acterization, a third one, called “ characterization by decomposition”, is
derived. In this characterization each elementary operator depends on a family of
mappingsfrom K, to K,, called Elementary L ook Up Tables. Thechar acterization by
confrontation is the natural one within the theory of operator decomposition. The
characterization by selection and the one by decomposition correspond, respectively,
to efficient serial and parallel computational implementations.
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CHAPTER 1

INTRODUCTION

1.1 - OVERVIEW ON SOME CLASSES OF DILATIONS AND EROSIONS

The four classes of Mathematical Morphology elementary operators: dilations, erosions,
anti—dilations and anti—erosions have been shown by Banon & Barrera (1), (2), to be of fundamental impor-
tance to the decomposition/representation of any operator between compl ete lattices. For practical reasons,
here we are specially interested with the very important class of trandation—invariant el ementary operators.
Besides this point, we focus our interest to the window operators, that is, the operators for which the output
pixel values depend only on the values of the pixelsinside given windows that can be derived from aunique
window.

In the early age of Mathematical Morphology, dilations and erosions have been introduced
(3) for black and white images (binary images). Let E (equipped with an addition +) be a set representing
the white image and let B be asubset of E. Let Xand Y be subsets of E representing any black and white
images. The dilation of Y with respect to B and the erosion of X with respect to B are the subsets, respec-
tively, given by means of the addition (4) and subtraction (5) of Minkowski:

AgY) 2 Y®B and (1a)

Eg(X) 2 X© B, (2a)

where, for any subsets Aand B of E,

APBL{XECE:JacAedbEB, x=a+b and (1b)

ASB2{yEE:VYbeEB, (Ja€ A y=a- h)}. (2b)

The underlying operator A5 is an example of trandation-invariant window operator (with

window B' or greater). The underlying operator Ej is another example of trandation—invariant window
operator (withwindow B or greater). Heijmans & Ronse (6, Theorem 3.6), Banon & Barrera (7, Proposition

4.15) and (8, Section 2), have shown that A (resp., Eg) commuteswith the union (resp., intersection) of any
family of subsetsof E and that any trandlation—invariant operator which commutes with union (resp., inter-
section) hasthisform. In other words, the collection of subsetsof E (likethe B's) characterized these classes

of operators. Sincethe subset Bistheimpulsiveresponse or the point spread subset of the dilation A gweare
used to caling B the blur of the dilation.

There exist many equivalent waysto define 4(Y) and Eg(X). Let X be the complementary
setof XinE, X'and X + u be, respectively, thetransposeof X and thetranslate, with respectto +, of Xby
apoint uof E. We may rewrite Expressions (1) and (2) as

Ag(Y) = {x € E: (Y- X) C B°® and (3
EyX) ={y€ E: BC (X-y)}. ©)

Expressions (3) and (4) correspond to what we call, in Section 3.2, the dilation and erosion characterization
by confrontation because to know if x belongs or not to the dilation of Y with respect to B, we haveto con-
front Y — x with B, and to know if y belongs or not to the erosion of X with respect to B, we have to con-
front X — ywith B. Since the subset B playsthe role of a probe in the computation of Eg(X), itisusedto
caling B the structuring element of the erosion E.



In another way, we may rewrite Expression (1) and (2) as
AgY) ={x€ E: ve B, ve (Y-x} and (5)
EgX) ={y€ E: Vue B, ue (X-y)}, (6)

these expressions correspond to what we call, in Section 3.3, the dilation and erosion characterization by
selection.

For a visua construction of the dilation of Y with respect to B and the erosion of X with
respect to B, it is interesting to use the equivalent expressions

Ag(Y) = ngJY(B +y) and (7)
Eg(X) = ﬂxC(B” + X). (8)

From Expressions (5) and (6), we get another equivalent expressions

4g) = U (Y +u) and 9)
Eg(X) = M (X+V). (10)

Expression (9) corresponds to the decomposition of a dilation in terms of union of dilations reduced to
trandlations. Expression (10) corresponds to the decomposition of an erosion in terms of intersection of ero-
sionsreduced to tranglations. In Section 3.4 of thiswork, werefer to them asthe dilation and erosion charac-
terization by decomposition.

The trandation-invariant black and white elementary operators have been extended to gray—
level images by introducing the notion of flat operators (9). Let fand gbefunctionsfrom Eto K represent-
ing gray—level images (with gray—scale K). Theflat dilation of gwithrespect to B and theflat erosion of f
with respect to B, are the functions from E to K, respectively, given by, for any x and y in E,

Ag(@)(x) = maxg(B' + x) and (11)
Eg(f)(y) = minf(B + y), (12)

where f(A) istheimageof Athrough f. Expressions(11) and (12) reduceto Expression (1) and (2) whenthe
gray—scale K reduces to two gray—levels.

Expressions (11) and (12) can be rewritten as, for any x and y in E,
Ag(9)(¥) = U\E/Bg(x —u) and (13)
Eg(D)(y) = u/E\Bf(y + ). (14)

More general classes of dilations and erosions for gray—level images with finite gray—scale
are the ones proposed by Heijmans (9, Section 11.8) and (10).



Let K = [0,K] C Z (theset of intergers) andlet + bethe operationfrom K x Z to K defined
by, foranyt € Kand z € Z,

0 if t =0,

A ]0 ift>0andt+2z<0,

“Jt+z ft>0and0=st+z=<Kk,
k ift>0andt+ z>k

t+z

Similarly, let = be the operation from K X Z to K defined by, forany s € Kand z € Z,

0 ifs<kands—2z<0,
s+ 724 s—z ifs<kandO0=<s-z<k,
1k if s<kand s— z> Kk,
k if s=k.

Let b be afunction defined from B C Eto Z. The Heijmans' dilation of g with respect to
b is the function from E to K, given by, for any xin E,

A@() =V gix — u) +b(y) (15)
and the Heijmans' erosion of f with respect to b is the function from E to K, given by, for any y in E,

E(H®) 2 Ay + ) = b, (16)

The underlying operators A, and E, are called here Heijmans elementary operators.

Actually, based on other binary operations we can define other classes of dilations and ero-
sions with respect to a function bfrom B C Eto K = [0,K] C Z.

Let C* and €~ be the classes of binary operations from K2 to K defined by, respectively,

teet A t=t=t+z<t,+ 2z (t,t,,z€ K)) and
< 10+ z=0 (z€ K))

and

ce- A (Si=8=8-2=<%-2(s,52z€K)) ad
B < V(k-2z=k (z€E€ K)).

Some examples of binary operations belonging to C* are:

0 ift=0,
+h () —t+z2Jt+z ift>0andt+z<k (Heijmans' addition for z positive)
k ift+z>k

0 ift—z<0,

t—z ifo<t—z (Heijmans' addition for z negtive)

+2 ()t +2220V (t -2 =[

+3 ) —>t+3z2t Az (Bloch and Maitre; Baets et al.)

0 ift—z=<0,

+4 +4z2
L3t Z_[t ifo<t-z



we will denote by D+ the set of the above four binary operations.

Some examples of binary operations belonging to C~ are:

0 if s<kands—z<0,
- (s,z)|—>s—12i s—z ifs<kand0=<s—z<k (Hejmans subtraction for z posi-
k if s=Kk,

tive)

s+z if s+z<k,

_ 2. _2,4A =
(559 —=>s—-*z=kA(s+ 2 [k if s+2>k

(Sinha and Dougherty, or Heijmans' subtraction for z negative)

_a. 3 a)s ifs—2z<0,
(89— Z=[k if0<s—z

—% (52 —>s—*z2sV z (Bloch and Maitre; Baets et al.)

we will denote by O~ the set of the above four binary operations. The operations + 2 and — * have been
introduced independently by Bloch and Maitre (11) and Baets et al. (12). The operation — 2 has been
introduced by Sinha and Dougherty (13).

Wesay that + € C* and — € C~ are companions iff for any s,t,z € K,
t+z=set=s-z2
For example, the above operations +' and —' are companions for any i = 1,2, 3,4.

Foragiven z€ K,wesaythat t—t + z and s— s — zare companions iff + € C* and
— € €~ are companions.

For example, for agiveni € {1,2,3,4}and z € K, themappingst —t +'zands+—s—'z
are companions.

Figure 1 shows some companion mappings t —t +'z and s+~ s —'zfor agiven i and z

Let b be afunction defined from B C Eto K = [0,K] C Z, and let (+ )yes and (— J)ues
be, respectively, familiesof operationsin O * and I ~, suchthat + ,and — , arecompanionsfor any u € B.
We define the dilation of gwith respect to band (+ ), as being the function from Eto K, given by, for any
XinE,

45+@0) = V gl = ) +.b(), (17)

and the erosion of f with respect to b and (— ), as being the function from E to K, given by, for any y in
EI

Ey-(O0) = A Fy + 1) —ub. (18)



dilation erosion
7 r® 7 »
Heijmans Heijmans
K K
t—>t+11 s—>s—11
0L 0 L=
0 7 0 7
K K
7 7 r®
Heijmans Heijmans
K K
t—>t+21 S—>s—21
0 [ 0
0 7 0 7
K K
7 . 7 pror-e-o-o
Bloch & Maitre /
Baets et al.
K aleeele K /
t—>1t+33 s—>s—33
0 0
0 7 0 7
K K
7 7 _
Bloch & Maitre
Baets et al.
K / K “Tele
t—>t+43 s—>s—43
0 [eteretd 0
0 7 0 7
K K

Fig. 1 — Some companion mappings .

Following the neuronal approach (14), (15) even more general classes of dilations and ero-
sions for gray—level images with finite gray—scale can be derived just by composing the above elementary
operators with an activation function. Let a be an increasing function from K to K such that a(0) = 0and
a(k) = k, thenwedefinethedilation of gwithrespecttoa, b(inthisorder) and (+ ), asthefunction from
Eto K, given by, for any xinE,

A+ (@09 = a( V glx = U) +.ub(W), (19)



and the erosion of f with respect to a, b (inthisorder) and (— ), asthe function from Eto K, given by, for
any yinE,

Eun-(O0) 2 A Ay + u) —b(u), (20

where, afrom K to K is the companion function of a defined by a(s) 2 max{t € K : a(t) < s} (s € K).

We can also define the dilation of g with respect to band a(in this order) asthe function from
Eto K, given by, for any xin E,

Aba+(@0) = V alglx = ) +ub(u), (22)

the erosion of f with respect to aand b (in this order) is the function from E to K, given by, for any y in
EI

Eva-(00) 2 a( A Ty + U) —.b(), (22

where, afrom K to K is the companion function of a defined by a(t) 2 min{s € K: t < a(s)} (t € K).

The underlying operators 4., , and E,, _ are typically elementary parametric neural net-

works with activation function a and synaptic function b. The underlying operators 4, ., and E,;, _ could
be called elementary anti—neural networks because they were not derived from aphysiological observation
but are ssimply mathematical constructions.

Figure 2 shows a neural network with five neurones forming a dilation 4 ., ,.

u o f(uy) o] dana (W)

. f(u, (al A0,
u (u,) ; o+ (N(U) 22 by
E{ B{ o=u; f(uy al— Adap.(Dus) b2 buy)
— ¢ 2 b(u,)

up  f(ug) al— A (U

U f(uy) (a] A, ()

Fig. 2—A neural network forming a dilation.

Despite the fact that Expressions (19) to (22) are more general than the previous ones, we
cannot say, asin the black and white case, that all trandation—invariant dilationsand erosionson gray level—
images (with finite gray—scale) have this form.

In this paper, we are precisely concerned with the problem of finding out mechanisms to
construct all such trandation-invariant dilations and erosions on gray level-images (with finite gray—
scale). More precisely, we are concerned with the characterization of trand ation—invariant window el emen-
tary operators (with window W) that transform a gray—level image with finite range K1 into a gray—level
image with possibly different finite range K. This assumption corresponds to the framework of Computa-
tional Mathematical Morphology introduced by E.R. Dougherty and D. Sinha (16) in which the operators
may not preserve the image range.



In Section 1.2, we recall the axiomatic definition of the four classes of elementary operators.

In Section 1.3, we present the characterization of the elementary operators defined on a
bounded chain. We pay aspecial attention to the case of elementary operators between bounded chains since
they have a great importance in image processing as transformation tables or Look Up Tables (LUTSs).

In Chapter 2, we give three equivalent ways to characterize the so—called elementary mea-
sures, that is, operators between a gray—level image and a gray—scale. Based on the properties of Galois
connections between complete lattices, afirst characterization, called “ characterization by confrontation”
is derived. Based on the decomposition of agray—level imagein terms of pulseimages, a second character-
ization, called “characterization by selection”, is presented. Finally, from this second characterization, a
third one, called “characterization by decomposition”, is derived.

The measures are very important because they can be used to characterize the trandl ation—in-
variant window operators as it is shown in Section 3.1.

From the characterizations given in Chapter 2 and Section 3.1, the so—called characterization
by confrontation for the trand ation—invariant elementary operatorsis derived in Section 3.2. In this charac-
terization each elementary operator depends on afamily of mappingsfrom WtoK,, called structuring ele-
ment.

Inthe sameway, the so—called characterization by selection is presented in Section 3.3. Inthis
characterization each elementary operator depends on a family of mappings from W toK,, called impulse
response or point spread function or blur.

Finally, the so—called characterization by decomposition is derived in Section 3.4. In this
characterization each elementary operator depends on afamily of mappings from K; to K, called Elemen-
tary Look Up Tables. Actually, this last characterization is similar to the one presented by H.J.A.M. Heij-
mans and C. Ronse in their Algebraic Basis of Mathematical Morphology (6).

The above three types of mappings. the structuring elements, the impul se responses and the
Elementary Look Up Tables arecalled characteristic functions. In thelast chapter, we show how the charac-
teristic functions simplified in the case of the Heijmans' elementary operators and in the the case of the flat
elementary operators.

1.2-AXIOMATIC DEFINITION OF ELEMENTARY OPERATORS

Let (L, %), orsimply (L, <)or L, beacompletelattice (17). The supremum and the infimum

of asubset Xof L are denoted, respectively, by sup X and inf X, or simply, by supXand infX. The union and
L L

intersection of afamily (&), of elementsof L, indexed by aset I, are denoted, respectively by \V & and

iel

N a.

iel

We areused to calling an operator amapping between two completelattices. Let L, and L,be
two complete lattices. A operator v from L, to L, isincreasing (or isotone) iff

asb= y@=yb @bEL,).

As usual, we denote by u(X) the image of a subset X of L, tha is
p(X) ={y €l,: IXE Xy = p(x}.



Proposition 1.1 (equivalent definitions of the increasing operators) — Let L, and L, be two complete lat-
tices. A operator v from L, to L, isincreasing iff

supy(X) < yp(supX) (X C Ly (23)
or equivaently, iff

P(nfX) < infy(X) (X C Ly). (24)
O

Proof — SeeLemma2.1, p. 260 of Heijmans & Ronse (6) for the casewhere L, and L, areidentical or Propo-
sition 3.1, p. 33 of Banon & Barrera (7) for the case where L, and L, are two Boolean lattices. O

Following Serra(18), if theequality holdsin (23), then y iscalled adilation. If it holdsin (24),
then vy iscalled an erosion. We denote, respectively, by A(L,, L,) and E(L,, L,) the classes of dilations and
erosionsfrom (L, <)to (L,, <). We observe that an erosion (resp., dilation) from (L,, <)to (L,, <)isa
dilation (resp., erosion) from (L,, =) to (L,, =).

A operator i from L, to L, isdecreasing (or antitone) iff
asb = yb =y@ (abel,y.

Proposition 1.2 (equivalent definitions of the decreasing operators) — Let L, and L, be two complete lat-
tices. A operator v from L, to L, is decreasing iff

Y(supX) = infy(X) (X C Ly (25)

or equivaently, iff

supy(X) < y(infX) (X C Ly). (26)
O
Proof — The result follows from Proposition 1.1 by duality. O

Following Serra(19), if the equality holdsin (25), then iscalled an anti—dilation. If it holds
in (26), theny iscalled an anti—erosion. We denote, respectively, by AXL,, L,) and EXL,, L,) the classes of
anti—dilations and anti—erosionsfrom (L,, <)to (L,, <). We observe that an anti—erosion (resp., anti—dila-
tion) from (L,, <)to (L,, <)isananti—dilation (resp., anti—erosion) from (L,, =)to (L,, =). Furthermore,
an erosion (resp., dilation) from (L,, <)to (L,, <)isananti—erosion (resp., anti—dilation) from (L,, <)to
Ly =)

The dilations, erosions, anti—dilations and anti—erosions are said to be the elementary opera-
tors of Mathematical Morphology since any operator between complete lattices can be decomposed from
them as shown by Banon & Barrera (2). Expressed in an equivalent way,

y from (L, =)to (L, <)isadilation < v(V a) = V y(&) for any family (a)g in L,
iel iel
y from (L, <)to (L, <)isanerosion < y( A a) = A y(a) for any family (a)ic, in L,
iel iel
y from (L, <)to (L,, <)isananti-dilation < v(V a) = A y(a) for any family ()¢, in L,
iel iel

y from (L, <)to (L,, <)isananti—erosion < yw( A a) = V y(a) for any family (a)c, in L.
iel iel



From the duality principle (17), we observe that the classes of elementary operators from
(L, =)to (L, <) have the same number of operators.

Leti, (resp., i,) and o, (resp., 0,) be, respectively the greatest and least elements of L, (resp.,
L,), thatis, i; = supL, (resp., i, = supL,) and o, = infL, (resp., 0, = infL,).

Proposition 1.3 (property of the elementary operators) — Let L, and L, be two complete lattices. We have
the following statements:

0 € A(L,,L,) = disincreasing and 6(0,) = 0,
e € E(L,,L,) = eisincreasing and €(i,) = i,
0% € A¥L,,L,) = o%*isdecreasing and 6%0,) = i,

e* € EYL,,L,) = e*isdecreasing and €¥i,) = 0,.
O

Proof — The increase and decrease properties derive from the definition of the four classes of elementary
operators and from Propositions 1.1 and 1.2. The remaining properties derive from the definition of the four
classes of elementary operators and recalling that o, = sup@, (resp., 0, = supf,) and i, = inf@, (resp.,
i, = inf(),), where 0, (resp., 0,) denotes the empty subset of L, (resp., L,). O

In the following section, we will study the characterization of elementary operators on a
bounded chain.

1.3-CHARACTERIZATION OF ELEMENTARY OPERATORS ON A BOUNDED CHAIN

In this section, we consider the case where the domain L, of the elementary operatorsis a
bounded chain (i.e., a bounded totally ordered set). In this case, L, is a complete lattice, sup and inf with
respect to L, can be replaced, respectively, with max and min, and wehave i, = maxL,and 0, = minL,.

Proposition 1.4 (characterization of the elementary operators defined on a bounded chain) — Let L, bea

bounded chain and let L, be a complete lattice. Let y aoperator from L, to L,, then we have the following
statements:

y isadilation < vy isincreasing and y(0,) = 0,
y isanerosion < y isincreasing and y(i,) = i,
¥ isan anti—dilation < 1 is decreasing and ¥(0,) = i,

¥ is an anti—erosion < y isdecreasing and (i) = 0,
O

Proof — Let us prove the first statement. Let us prove =. If y isadilation then, by Proposition 1.3, ¢ is
increasing and (0,) = 0,. Let usprove <. Forany X C L, and X = 0,

w(max X) < supy(X) (max X € Xand supy(X) isan u.b. for (X))
< y(max X). (y isincreasing and Proposition 1.1)
In other words, by transitivity of <, forany X C L, and X = 0, y(max X) = supy(X). For X = 0,

w(max 0) = y(o,) (definition of the supremum of an empty set)
=0, (hypothesis)
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supd (definition of the supremum of an empty set)

supy(0). (definition of the image of a mapping)
In other words, for any X C L,, y(max X) = supy(X), that is y isadilation.
The three other statements follow from the first one by duality. O

May be the simplest elementary operators are those defined between two finite chains, let's
say K, and K,. From Proposition 1.4, amapping pfrom K, to K, isadilation (resp., erosion) iff pisincreas-
ing and p(minK;) = minK, (resp., p(max K,) = max K,). It isan anti—dilation (resp., anti—erosion) iff it
isdecreasing and p(minK,) = max K, (resp., p(max K,) = minK,). Figure 3 showstwo samplesin each
class of elementary operatorsfromK,; = {0,1,2,3,4,5,6,7} toK, = {0, 1, 2, 3}. We see that the graph of
the dilation (resp., erosion, anti—dilation, anti—erosion) must contain the point (0, 0) (resp., (7, 3), (0, 3),
(7,0)).

dilations erosions anti—dilations anti—erosions
3 -0 -0 [ o [ o
K, ole ole ole ola
0
0 7 0 7 0 7 0 7
3 'S
K, ceed olete T Nlele
0 [etetete )
0 7 0 7 0 7 0 7
K, K, K, K,

Fig. 3 — Examples of elementary operators.

Aswe have observed before, the classes of elementary operatorsfrom L, to L, have the same
number of operators. The next proposition gives such number in the case where both |attices are bounded
chains K, and K,. Let's denote by #X the number of elements of aset X.

Proposition 1.5 (combination number property) —Forany i = 0,1,...andany k = 1,2, ..., we have

(1)-20717) D

. K+ i L (k+j-1 . :
Proof — Let P(i) be the property i = Z ; forany i = 0,1,... The properrty P(0) is

. J
j=0
. k k-1 . . . .
truesince | | = 0 = 1. Assuming that P(i) istrue, let usprovethat P(i + 1) isalsotrue. We have

(k TJIFJlr 1) = (k T I) + (ij_r i) (combination number property)

_ N (k'+£ _'1) N (f;fi) (P() istrug

j=0
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+1k +j -1 o
Z , (definition of the sum)

that is, P(i + 1) istrue. Therefore, P(i) istrueforany i = 0,1, ... O

Proposition 1.6 (number of elementary operators between bounded chains) — Let K, and K, be two
bounded chains, and let k;, = (#K,) — 1and k, = (#K,) — 1. Let N(ky, k) be the number of operatorsin
a given class of elementary operators from K, to K,, thenforany k; = 1and k, = 1,

(k; + ky)!

N(klv k2) k |k |

Proof —We consider for example the case of the dilations, that is, N(ky, k;) = #A(Kl, K,).Forany k; = 1
and k, = 1, let

Ni(k) = { € AK, K9 (k) =1} (i € Ky).

K, +i —

1
Let P(k,) be the property Ni(k,) = ( i ) forany i € K,. Let us provethat P(k,) istruefor any

k, = 1. First wenotethat N;(1) = 1forany i € K,, thatis P(1) istrue. Second, forany i € K,, we have

Ni(k, + 1) = Z N;(ky) (definition of Ni(ky))
= Z(k * J ) (assuming that P(k,) is true)
= (k1i+ I), (Proposition 1.5)

that is P(k, + 1) istrue. Therefore, P(k,) istruefor any k, = 1. Furthermore, forany k;, = 1and k, = 1,

N(ky, ko) = iNi(kl) (definition of N(k,, k,) and N;(k,))

Zz(k - ) (P(k,) istrue)

o

k, + k, .
= Kk | (Proposition 1.5)
O

Let W be a nonempty set. We denote by K," the set of mappings from Wto K,. As another
example of elementary operators defined on a bounded chain, let us consider the mappings from K, to K,"
or, equivalently, the families of functions of K,", indexed by K,. The relation < on K given by

0:=0 = o) =gy YEW
defines apartial ordering on K¥. The greatest and | east elements of K," are, respectively, the constant func-
tions g* and g_given by, forany y € W,

g'(y) 2 maxK, and g_(y) 2 minK,
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From Proposition 1.4, a mapping p from K, to K," is a dilation (resp., erosion) iff pis
increasing and p(minK,) = g_(resp., p(max K;) = g’). Itisan anti—dilation (resp., anti—erosion) iff itis

decreasing and p(minK;) = g* (resp., p(maxK;) = g).
Figure 4  shows a dilaion d from K, to K, where K, ={0,1,2 3},

d(0) d() de) d@3)

K, é

O ole-leole e

w w w w
Fig. 4 — A family of functions forming a dilation.

K, ={0,1,2,3,4,5,6,7} and Wisaset with 5 elements. This dilation is an increasing family of 4 func-
tions from Wto K, with the first one being g , that is, the constant function assuming value 0.

Figure 5 shows an erosion e from K; to K,", where K, = {0,1,2,3,4,5,6,7},

&(0) e(1) &(2) &(3) e(4) &(5) &(6) &(7)

3 C veees [Feees

W W W W W W W W
Fig. 5—A family of functions forming an erosion.

K, = {0,1,2,3} and Wisaset with 5 elements. Thiserosion isan increasing family of 8 functionsfrom W
to K, with the last one being g, that is, the constant function assuming value 3.



13

CHAPTER 2

ELEMENTARY MEASURES

21 -CHARACTERIZATION BY CONFRONTATION

We call a measure, an operator from a power lattice or function lattice to a chain. A power
lattice or a function lattice is a set of mappings with a complete lattice as range (9, p. 22 and p. 26).

Let Wbeanonempty set and let (K, <) beabounded chain. Therelation < on KY" given by
f=f, (X)) =f,x) xXeEW (27)

defines apartial ordering on K¥. Furthermore, (KY, <) isacomplete lattice, with the supremum supF and
the infimum infF of a subset F of KY', respectively, given by

(supF)(x) = max{s e K,: If e F, s=f(X)} xe€ W) (28)
and

(infF)(X) = min{se K,;: Afe F, s=fX)} (x&€ W). (29)
Relatively to (KY, <),theunion V f, andintersection A f; of afamily (f,);c, of elementsof K¥, indexed

iel iel

by aset I, are given by, respectively,

(VW= Vi) (xEW (30)
and

(AR = AfG) (xEW, (31

where the union and intersection on the right handside are given by, for any family (s);¢, of elementsof K;,

Vs

iel

max{se K,;: 3i €I, s= s} (32

>
%)
]

min{se€ K;: 3i €I, s = s}. (33

The complete lattice (KY, <) isan example of function lattice. It is interesting to note that,
for any x € W the mappings f — f(x) from KY' to K, are, at the same time, dilations and erosions.

We now give three different ways to characterize the elementary measures from K,"to K,,
where K, and K, are two bounded chains.

Let usfirst introduce the so—called characterization by confrontation. In this characterization,

the elementary measures from K,"to K, will depend on elementary operators from K, to K," that we will
call structuring elements. The characterization will be a direct application of the notion of Galois connec-
tion (17).
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We define the following four pairs of useful expressions.

For any dilation 0 € A(K,",K,) and any erosion e € E(K,, K,"), let
e,t) 2 sup{f € K,": 0() =t} (t € Ky) (34)
SHEImin{teK,: f=<et)} (Fe K™, (35)

e, is called the structuring element of the dilation 6, and (J(f) is called the dilation of f by the structuring
element e.

For any erosion € € E(K,",K,) and any dilation d € D(K,, K,"), let
A 2inf{f € K\ t < e} (t €Ky (36)
eo) 2 max{t € K,: dt) = f} (f € K™, (37)

.discalled the structuring element of the erosion ¢, and e4(f) is called the erosion of f by the structuring
element d.

For any anti—dilation 62 € Aa(Klw, K,) and any anti—dilation d* € D¥K,, Klw), let
030 2 sup{f € K1 t < 0%f)} (t € Ky) (38)
O 2 max{t € K,: f < d(t)} (feK" (39)

sad?iscalled thestructuring element of the anti—dilation 6%, and 40%(f) is called the anti—dilation of f by the
structuring element d?,

For any anti—erosion €2 € E¥K,",K,) and any anti—erosion e € E¥K,, K,"), let
e t) 2inf{f € K\": e¥f) <t} (t €Ky (40)
e 2 mn{t EK,: et) < f} (f €K, (41)

e aiscalled the structuring element of the anti—erosion €?, and e®.(f) is called the anti—erosion of f by the
structuring element €2,

Proposition 1.7 (characterization by confrontation of the elementary measures) — Let W be a nonempty
set, and let K, and K, be two bounded chains. We have the following statements:

0 — e; (Exp. (34)) from A(K," Ky) to E(K,, K™ isabijection, itsinverseis e — 0 (Exp. (35));
e — .d (Exp. (36)) from E(K,",K,) to D(K,, K,") isabijection, itsinverseis d — e, (Exp. (37));
0% ,d?(Exp. (38)) from AYK, " K,) toDAK,, K.Y is a bijection, itsinverse isd® — 402 (Exp.
(39));

€ e (Exp. (40)) from E¥K,", K,) to E¥(K,, K,") is a bijection, its inverse is e® — €. (Exp.

(42)).
O

Proof — The first statement is a direct application of Propositions 3.15 and 3.14 of Heijmans (9). The three
other statements follow from the first one by duality. The third statement is a direct application of Proposi-
tion 2 of Achache (20). O
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Figure 6 shows an elementary measure €4 which is an erosion from K," to K,, where
K, =1{0,1,2734,56,7}, K, = {0,1, 2,3} and Wisaset with 5 elements. In its characterization by con-
frontation, this erosion depends on the dilation d from K, to K" givenin Figure4. In Figure 6, a particular
function fisshown; themeasureof fthrough e,is1. Thisvalueisobtained through Expression (37). Figure
6 showsthat we haveto confront f with each function in the family defined by d in order to find the greatest
function smaller or equal to f.

e4(f) = max{t € K,: d(t) < f}

7 f
= max{0,1} =1
K, oo €4
0 e K" €K, ={0,1,2,3}
W d
d(0) d(1) d2) d@3)
7
K1 SRl
.
é
0 [seietete
W W W W
7
Kl -0 nand . # .
.
é
0 [efetetete| |[efetelete| [eFeteiele| [Folfelele
f, d(0) f, d(1) f. d(2) f, d(3)
d(0) d(1) d(2)
d(0) d(1)
d(0)

Fig. 6 — Erosion characterization by confrontation.

2.2-CHARACTERIZATION BY SELECTION

L et usintroduce our second way to characterize an elementary measure, the so—called charac-
terization by selection. In this characterization, the elementary measures from K" to K, will depend on
elementary operatorsfrom K, to K," that we call distribution functions. The characterization will be based
on the decomposition of the functionsin K," in terms of pulse functions,



16

Let x € Wand s € K,. The functions f,sand **from W to K, respectively, given by

A S if u=x
fys(U) = [minK1 otherwise uew (42)
and
xspiny A ]S if u=x
o) = [max K, otherwise uew, (43)

are called pulse functions.

Proposition 1.8 (sup and inf generating families of the pulse functions) — Let W be anonempty set and let
K, be abounded chain. For any f € K,",

V fX,f(X) =f and /\ 0 = f.
X e W

X EW

O

Proof — Let us prove the first statement. For any f € K,"and u € W,
(V fiW) = V fieu) (Expression (30))

X EW X € W
= fur) V (V finw) (property of the union)
X EW
= f(u) v max{minK} (Expressions (42) and (32))
= f(u) v minK; (definition of the max)
= f(u). (property of the union)
Thatis, V f, = f. The second statement follows in a similar way. O
X EW

Proposition 1.9 (union and intersection of some families of pulse functions) — Let W be a nonempty set
and let K, be abounded chain. For any x € W and any family (s),¢, of elements of K,

Vis=Ffy, ad Af=1,_.
ier ! R = AR
a
Proof — Let us prove the first expression. For any x € W,
(_Vlfx,si)(x) = _Vlfx,si(x) (Expression (30))
e e

]
<
wm

(Expression (42))

= fx,vsi x); (Expression (42))
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forany x € Wand u € W, with x = u,

(_Vlfx,si)(u) = _Vlfx,si(u) (Expression (30))
e e
= minK, (Expression (42))
= v (V). (Expression (42))
That is, V fs. = f, v - The second expression follows in a similar way. O

iel

We define the following four pairs of useful expressions.
For any dilation 0 € A(K,",K,) and any dilation d € D(K,, K,"), let

d,90) 2 6(fd (s € Ky, x E W) (44)
dq(f) 2 VY dEeK (Fe K."), (45)

d, is called the distribution function of the dilation 6, and d4(f) is called the dilation of f by the dilation
which distribution function is d, or, in short, the dilation of fw.r.t. d.

For any erosion € € E(K,",K,) and any erosion e € E(K,, K,"), let

&9 2 e(P) (SE KL xEW) (46)
() 2 A (e K", (47)

.eiscaled thedistribution function of the erosion €, and (f) iscalled theerosion of f by the erosion which
distribution function is e, or, in short, the erosion of fw.r.t. e.

For any anti—dilation 62 € Aa(Klw, K,) and any anti—dilation d* € D¥K,, KZW), let

d24(9(X) = 0%(Fxe) (SE K x EW) (48)
0%ll) = A AN (F € K, (49)

d.iscalledthedistribution function of the anti—dilation 6%, and 6° .(f) iscalled theanti—dilation of fbythe

anti—dilation which distribution function is d? or, in short, the anti—dilation of fw.r.t. d®

For any anti—erosion €2 € E¥K,",K,) and any anti—erosion e € E¥(K,, K,"), let
()X 2 X9 (SEK,XxEW) (50)
w0 = V e (€KY, (51)

a€?iscalled the distribution function of the anti—erosion €?, and (f) iscalled the anti—erosion of f bythe
anti—erosion which distribution function is €2 or, in short, the anti—erosion of fw.r.t. e
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Proposition 1.10 (characterization by selection of the elementary measures) — Let W be a nonempty set,
and let K; and K, be two bounded chains. We have the following statements:

0 — d, (Exp. (44)) from A(K," K5) to D(K,, K,") isabijection, itsinverseis d — 04 (Exp. (45));

€ — .e (Exp. (46)) from E(K,",K,) to E(K,, K,") is abijection, itsinverseis e — . (Exp. (47));

0% d, (Exp. (48)) from A¥K," K,) to D¥K,, K,") is abijection, itsinverse is d*+— 6%, (Exp.

(49));

€*— e (Exp. (50)) from E«K," K,) to E{K,, K,") is abijection, itsinverseis e®+— €e® (EXp.

(51)).

Proof — Let us prove the first statement.

Let us prove that, for any 6 € A(K,", K5), we have d, € D(K,, K,"). For any x € W,

da(minKl)(X) = 6(fx,minK1)

S(inf(K,")

minK..

(Expression (44))

(Expression(42))

(0 isadilation and Proposition 1.3)

That is, d,(minK,) = inf(K,"). For any x € W and any family (s));¢, of elements of K;,

4V $)09 = 0, y.,)

Thatis, d,(V s) = V dy(s). Inother words, d, € D(Ky, K,").

i€l

o(V f,5)

el !

V 3(1,s)
V d,(s)09

i€l

(V dy(sNX).

i€l

iel

(Expression (44))

(Proposition 1.9)

(6 is adilation)

(Expression (44))

(Expression (30))

Let us prove that, for any d € D(K,, K,"), we have 84 € A(K,", K,).

d4(inf(K,")

V d(minK,)(¥)

X E W

V (inf(K;"))().

X EW
max { minK,}.

min K.

(Expression (45))

(disadilation and Proposition 1.3)

(Expressions (32))

(definition of the max)
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For any family (f,),c, of elements of K,",

0o V ) = V d((V 1)) (Expression (45))
=V AV it (Expression (30))
= X\E/Wi\e/ld(fi(X))(X) (disadilation)
= i\e/I x\e/wd(fi (X)) (%) (property of the union)
=V oq(f). (Expression (45))

In other words, 04 € A(K,", K)).

Let us prove that o + d, isinjective. For any 6 € A(K,",K;) and f € K",

dq,(f) = X\e/wdé(f ())(x) (Expression (45))
= ) \e/wé(fx,f(x)) (Expression (44))
= 6(X \E/fovf ®) (6 isadilation)
= 0(f) (Proposition 1.8)

That is, 6% = 0 and 0 — d, isinjective.

Let us prove that o + d, isonto. For any d € D(K;,K,"), s € K, and x € W,

d, (909 = 94(fxs) (Expression (44))
= u\E/Wd(fx,s(U))(U) (Expression (45))
= d(f,())(®) Vv ( de(fx,s(U))(U)) (property of the union)
= d(f,())(®) Vv ( de(min Kp(u)) (Expression (42))
= d(f, ()X Vv ( VW(ianlw)(u)) (disadilation and Proposition 1.3)
= d(f,(¥))(¥) v max{minKy} (Expressions (32))

= d(f,(¥))(¥) v minK, (definition of the max)
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= d(f, (X)) (X (property of the union)
= d(9)(x). (Expression (42))

Thatis, d, = dand 0 — d, isonto. In other words, > d, isabijection and itsinverse is d > 0.
The three other statements follow from the first one by dudlity. O

Figure 7 shows an elementary measure . which is an erosion from K," to K,, where
K, =1{0,1,234,56,7}, K, = {0,1, 2,3} and Wisaset with 5 elements. Inits characterization by selec-
tion, this erosion depends on the erosion e from K, to K," given in Figure 5. In Figure 7, a particular func-
tion fisshown; the measure of fthrough e is1. Thisvalueis obtained through Expression (47). Figure 7
shows that when x runs over W, we have to select, according to the value f(x), the appropriate function in
the family defined by e. Actually, the erosion e of Figure 5 has been chosen in such away that the resulting
measure € isidentical to the measure €4 shown in Figure 6.

A0 = A a0
= A{32111 =1

Ky o e€

0 e K" € K, ={0,1,2,3}

W = {le X21 X31 X41 XS} €

&(0) e(1) &(2) &(3) e(4) &(5) &(6) &(7)

3 Ny o-0r000| (o000
K, ke .
O O8O0
W W W W W W W W
X1 Xz X3 Xy Xs
\ \J v v \J
7
f f f f f
G-
Ky : oo 1" oo 3= ole 3= oo 3= oo
| | | | |
o v v \J v ]
COR e4) v ed ¥ e(3) v e(3) v
3 C 3 P
Kz N otel>1 ool 1
0
W W W W W

Fig. 7 — Erosion characterization by selection.
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Let K; = {0,1} and K, = [0,1] C R (the set of real numbers). A measure from {0, 1} W

to [0, 1], or equivaently from (W) (the collection of subsets of W) to [0, 1] such that (#) = 0 and
(W) = liscalled afuzzy measurein the Theory of Fuzzy Set (21, 22). Thedilations (resp., erosions) from
P(W)to [0, 1] arethen called possibility measures (resp., necessity measures) (23). If  isapossibility mea-
sure, then d (1) (Expression (44)) is then the so—called possibility distribution of ~ (24). If isanecessity

measure, then e (0) (Expression (46)) is then the so—called necessity distribution of  (23).

2.3-CHARACTERIZATION BY DECOMPOSITION

Let us introduce our last way to characterize a measure, the so—called characterization by

decomposition. In this characterization, the elementary measures from K,"to K, will depend on afamily of
elementary operatorsfrom K to K, that we call elementary transformation tables. The characterization will
be derived from the characterization by selection.

We define the following two useful expressions.

For any mapping p from K, to K,", let, for any x € W,

P9 2 P (s € Ky); (52)

For any family (p,)«ew Of mappings from K, to K, let

PO 2 pd9) (s E Ky, X E W). (53)

Proposition 1.11 (bijection between the elementary distribution functions and the families of elementary
transformation tables) — Let W be a nonempty set, and let K, and K, be two bounded chains. We have the
following statements:

p — (po (Exp. (52)) from D(K,, KZW) to D(K, K,)Vis a bijection. Itsinverseis (p,) — p (EXxp.
(53));

p — (po (Exp. (52)) from E(K,, KZW) to E(K,, K,)Vis abijection. Itsinverseis (p,) — p (EXxp.
(53));

p — (po (Exp. (52)) from D¥K,, KZW) to D¥K,, K,)Vis abijection. Itsinverseis (p,) — p (Exp.
(53));
p — (po (Exp. (52)) from E¥K,, KZW) to E¥ K, K,)Vis abijection. Itsinverseis (p,) — p (EXxp.
(53)).

O

Proof — Let us prove the first statement. Expressions (52) and (53) are symmetrical, therefore the mapping
p — (p,) is abijection.

Let us prove that, for any p € D(K,, K,"), we have (p) € D(Ky, K)W. For any x € W,

pu(minK,) = p(minK,)(X) (Expression (52))
= inf(K,")(x) (pisadilation and Proposition 1.3)

= minK,; (Expression (29))
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for any family (s);e, of elements of K, and x € W,

px(i\e/lsi) = p(i\e/lsi)(X) (Expression (52))
= (i\e/lp(s))(X) (pisadilation)
= i\e/.p(s‘)(x) (Expression (30))
=V pds) (Expression (52))

i€l

That is, p, € D(K,, K,). In other words, (p,) € D(K4, K,)Y. Let usprovethat, for any (p,) € D(Ky, K,)Y,
we have p € D(K,,K,"). For any x € W,

p(minKy)(x) = pminK,) (Expression (53))
= max K,; (pxisadilation and Proposition 1.3)

for any family (s);e, of elements of K, and x € W,

p(i\e/ls)(X) = px(i\e/lsi) (Expression (53))
= i\e/llox(a) (p, is adilation)
=V p)X (Expression (53))
= (i\e/lp(si))(X)- (Expression (30))

Thatis, p(V s) = V p(s). Inother words, p € D(Ky, K,™).
iel iel

The three other statements follow from the first one by duality. O

We define the following four pairs of useful expressions.
For any dilation 0 € A(K,", K,) and any family of dilations (d,) € D(Ky, K,)Y, let

(d)9) = 0(f) (SE Kyx € W) (54)
du = V d(f() (F € K."), (55)

((dy),) iscalled thefamily of transformation tables of the dilation 6, and 6 (f) iscalled thedilation of fw.r.t.
the family of transformation tables (d,).
For any erosion € € E(Klw, K,) and any family of erosions (e) € E(K,, K,)Y, let
(©9) 2 e(f) (s€ KuxEW) (56)

e = A () (€ K, (57)

((€),) iscalled the family of transformation tables of the erosion €, and (e(f) iscalled theerosion of fw.r.t.
the family of transformation tables (e,).
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For any anti—dilationd® € A¥K,",K,) and any family of anti—dilations(d2) € DK, K»)",

(d3.)4(9) 2 0%f,) (s € Ky, x € W) (58)
0w = A d30) (€K, (59)

((d%a)y) is called the family of transformation tables of the anti—dilation 6?, and 6a(da)(f) is called the anti—
dilation of fw.r.t. the family of transformation tables (d?).

For any anti—erosion €2 € E¥K,",K,) and any family of anti—erosions (%) € E¥(K, K,)%,
let

(€9 2 () (s E K, x E W) (60)
@eth = V ef() (€KY, (61)

((e€%),) is called the family of transformation tables of the anti—erosion €%, and (a€*(f) is called the anti—
dilation of fw.r.t. the family of transformation tables (e€2).

Proposition 1.12 (characterization by decomposition of the elementary measures) — Let W be anonempty
set, and let K, and K, be two bounded chains. We have the following statements:

0 — ((dy),) (Exp. (54)) from A(K," K)) to D(K, K,)Wis abijection,

itsinverseis (d,) — 0 (Exp. (55));

e — ((.©),) (Exp. (56)) from E(K,", K,) to E(K4, K,)" is a bijection,

itsinverseis (e) — e (Exp. (57));

0% ((d%a)) (Exp. (58)) from AYK," K,) to D¥K,, K,)" is a bijection,

itsinverseis (d?) — 6a(da) (Exp. (59));

€ ((€9),) (Exp. (60)) from E¥(K,", K,) to E{K,, K,) is a bijection,

itsinverseis (€%) — (a€® (Exp. (61)).

O

Proof — Let us prove the first statement. Let us prove that the mapping J — ((d,),) (Exp. (54)) from
A(K.",K,) to D(K,, K,)W is the composition of the mapping ¢ — d; (Exp. (44)) from AK," K, to

DKy, K,™), with the mapping p+— (p) (Exp. (52)) from D(K.,K,") to D(KyK,)Y. For any
0 € AKK,\"K,), x € Wand s € K,

(d))(s) = d,(9(¥) (Expression (52))
= 0(fx) (Expression (44))
= (d)A(9)- (Expression (54))

By Propositions 1.10 and 1.11 these two mappings are bijections, therefore their composition 6 — ((d,),) is
also abijection. Let us prove that the mapping (d,) > d 4 (Exp. (55)) from D(K, K,)" to AK," K,) isthe
composition of (p,) — p (Exp. (53)) from D(Ky, K,)W to D(Ky, K,") with d+— 04 (Exp. (45)) from
D(K4, K,™ to A(K,"Y, K,). For any (dy) € DKy, Kp)W and f € K,",
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04(f) = X\E/Wd(f ()X (Expression (45))
=V d(f(x) (Expression (53))
= 0 (f). (Expression (55))

Hence, the mapping (d,) — 0 (Exp. (55)) from D(K, K;)" to A(K," K,) isthe inverse of & — ((dy),)
sinceit isthe composition of (p,) — p (Exp. (53)) from D(K4, K,)" to D(K,, K,") with d — 8, (Exp. (45))

from D(K,, K,") to A(K,", K,) which are, by Propositions 1.11 and 1.10, theinverses of the above two bijec-
tions. The three other statements follow from the first one by duality. O

From the above characterization we can state the following proposition.

Proposition 1.13 (construction/decomposition of the elementary measures) — Let W be a nonempty set,
and let K; and K, be two bounded chains. Let (6,)xew (€:xew (0% )xewand (€3)ewbethefamilies of ele-

mentary measures from K,"to K, given by, respectively, for any x € W,

o) = d(f()) (F € K"

e(f) = &(f()) (FE K"

o3(f) = df(x) (f € K"

e(f) = ef() (f € K",
where, (d)iews (Bdxew (03)«ew and (€2).cw are, respectively, families of dilations, erosions, anti—dila
tions and anti—erosionsfrom K; to K,. For any x € W, the measures d,, €, 62 and €% from Klwto K, are,

respectively, adilation, an erosion, an anti—dilation and an anti—erosion. The measures 9, €, 6% and €®from
K," to K, given by, respectively,

0=V o
X EW
e= N &
X EW
or= A 0%
X E W
e =\ €.
X E W

are, respectively, adilation, an erosion, an anti—dilation and an anti—erosion. Conversely, any measure 9, e,

5%and e*from K,"to K, whichis, respectively, a dilation, an erosion, an anti—dilation and an anti—erosion
has this form. Furthermore, (d)yew, (E)xew (03)cew and (€2),.cw are given by, respectively, for any
XxeWw,

dy(s) = d(fxs) (s € Ky
els) = () (se€ Ky
d(s) = 0%fx) (s € Ky
e(s) = € (s & Ky.
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Proof — Let usprovetheresult for theclass of dilations. By construction, for any x € W, d, isthecomposi-

tion of f— f(x)with d,; since both are dilations, J, isaso adilation. Therest of the result is Proposition
1.12. The results for the other classes of measures follow by duality. O

Figure 8 shows an elementary measure e which is an erosion from K," to K,, where
K, =1{0,1,2734,56,7}, K, ={0,1,2,3} and W is a set with 5 elements. In its characterization by
decomposition, thiserosion dependson afamily (e,) of 5erosionsfrom K, to K, which arederived fromthe
erosion e givenin Figure5 by applying Expression (52). In thisway the measure e isidentical to . shown
in Figure 7. In Figure 8, a particular function f is shown; the measure of f through e is1. Thisvalueis
obtained through Expression (57). Figure 8 shows adecomposition of e. Each branch is a particular mea-
sure which is an erosion as stated in Proposition 1.13.

W = {le X21 X31 X41 X5}

€
, ©
f(x1) €x,(f) = e (f(xp)
Ky es| T p— (x) €
5 3
oL |
x "V % we® = 1
e K" € K,
EXS
f(xs) 1
— (Xs) €
3 €x(f) = e (f(xs))
(&)
€, €, €, &, S
3‘- 0000 - | on an ) -0 -0 -0
Kz 2 1 1<« |ote 1
O [ & [ &
Y2 o0 b7 0 Y 7 o * 7 o
f(x4) f(x2) f(Xs) f(Xs) f(Xs)
K; K; K; K; K;

Fig. 8 — Erosion characterization by decomposition.
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CHAPTER 3

ELEMENTARY TRANSLATION-INVARIANT OPERATORS

3.1-CHARECTERIZATION IN TERMS OF MEASURES

Let (E, +)bean Abelian group and let K be abounded chain. The functions from Eto K are
the appropriate mathematical representation for the gray—level imageswith domain E (the set of pixel posi-
tions) and gray—scale K (the set of possible pixel values).

Let x bean element of E, wedenoteby — xthenegative of x. For any two elements x; and X,
of Ewe denote by x, — X, the element of E givenby X, — X, 2 X, + (— X,).

Let ubean element of E. Let W beanonempty subset of E, wedenoteby W + uthetrandate
of Wby u, that is, the subset of E given by

W+ U2{XEE: x—UEW.
Let fbeanelement of KE wedenoteby f + uthetrandateof fby u, that is, the element of
KE given by
f+u(x)2f(x —u) (x € E). (62)
We denote by f — uthe element of KEgivenby f — u2 f + (— u).
We denote by 7, the tranglation by u, that is the operator from KEto KE given by
() 2 f+u (f € KO.

Let K, and K, be two bounded chains sets representing possibly two different gray—scales.
Any operator ¥ from K, to K, transforms any gray—level image into a gray—level image. In this chapter
wefocus our attention on the translation—invariant window operators. An operator ¥ from K,"to K, issaid
translation-invariant (t.i.) iff, forany f € K,"and u € E,

W+ u) = Y() + u.

translation-invariant operatorsfrom KEto K&, in the above sense, are called H—operators by
Heijmans [9, p. 109 and p. 373].

In order to introduce the notion of window operator, we recall the definition of restriction and
extension of afunction. Let f € KEand W C E, therestriction of fto W, denoted by f/Wisthe function
from Wto K (i.e., the element of K") given by

F/W() = f(x) (x E W) (63)

From now on, we assume that (K,, <) and (K,, <) are two bounded chains which corre-
spond to two possibly different gray—scales.

Let fbeafunction from Wto K,, we call the functions f and ffrom Eto Ky, given by

= A fX ifxeWw
i) = [ max K, otherwise x&E) (64)
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and

Al f) ifxeWw
fed = [ minK, otherwise x & E), (65)

respectively, the upper and lower extensions of f.

Proposition 1.14 (property of the restriction/extension) — Let E be anonempty set and let K, be abounded
chain. For any nonempty subset W of E, and f € K,",

fW=f and t/W=t.

O
Proof — Let us prove the first statement. For any f € K,"and x € W,
/W) = f(x) (Expression (63))
= f(x). (Expression (64))
The second statement can be proved in a similar way. O

Proposition 1.15 (property of the restriction/extension) — Let (E, +) be an Abelian group and let K, bea
bounded chain. For any nonempty subset Wof E, f € K,"and x € E,

/W +X) —x)/W = (f—x/W and (f/(W+x) — X)/W = (f — X)/W.

O
Proof —Forany f € KlE, XE EandueWw,
((F/(W + %) = x)/W)(u) = (F/(W+X) — x)(u) (Expression (63))
= (f/(W+))(u + %) (Expression (62))
= (f//(W+ x)(u + x) (Expression (64))
=f(u+x) (Expression (63))
= (f = x)(u) (Expression (62))
= ((f = )/ W)(u). (Expression (63))
The second statement can be proved in a similar way. O

An operator ¥ from K, to K, is called a window operator (with window W (W C E)) iff,
forany f € K,%,

YHly) = P/ W+ y)y) € B), (662)
or equivaently,
YHly) = P/ W+ y)y) € B). (66b)

We can prove, for example, that Expression (66a) implies Expression (66b). Forany f € K,
andany y € E,

Y/ (W + »)y) = P(E/ (W + y)/(W+ y)(Y) (Expression (66a))
= Y(/(W + y))(y) (Proposition 1.14, second statement)

Y()(y). (Expression (66a))
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Let obethenull element of (E, +), called origin, we define the following two useful expres-
sions, for any ¥ from K, to K," and y from K," to K,

pulf) 2 M) (F € K" (67a)
or equivalently in the case of window operators,

pulf) 2 P(H) (€ K", (67b)
and

w,My) = (- /W) (€K y€EE). (68)

In the case of window operators, we can prove that ¥(f)(o) = Y()(0). Forany f € K,"

¥(f)(0) = W(F/W)(0) (Expression (66a))
= Y(f/W)(o) (equivalency between Exp. (66a) and (66h))
= Y()(0). (Proposition 1.14)

Given al the above definitions we can now state the following proposition that shows how to
characterize atranslation—invariant window operator in terms of a measure.

Proposition 1.16 (characterization of the transl ation—invariant window operators) — Let (E, +)bean Abe-
lian group, let W be a nonempty subset of E, and let K; and K, be two bounded chains. The mapping
¥ > 4, (Expression (67)) from the set of translation—invariant window operators from K, to K., to the
set of measures from K," to K, isabijection. Itsinverseis y — ¥, (Expression (68)). O

Proof — By construction, for any operator ¥ from K,Fto K5, Yy isaoperator from K,"to K,. Letus prove

that, for any measure y from K," to K,, ¥, isat.i. window operator from K, to K,". For any f € K,"
and y,v € E,

Y, (f + ) = »((f+ V) — y)/W) (Expression (68))
=yp(f+ (v—-y)/W) (property of the translate)
=¥,y - V) (Expression (68))
= (¥, (H) + ). (Expression (62))

In other words, ¥, ist.i.. Forany f € KlE andy € E,

(/W + y)y) = w((F/(W+y) —y)/W) (Expression (68))
= yp((f — y)/W) (Proposition 1.15)
= ¥,MO). (Expression (68))

In other words, ¥, is awindow operator (with window W).
Let usprovethat ¥ — v, isinjective. For any t.i. window operator ¥from K, toK,", f € K,"andy € E,
¥, 00) = pul(f — y)/W) (Expression (68))

Y((f — y)/W)(0) (Expression (67a))
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= Y(f — y)(0) (definition of window operator)
= (¥(f) — y)(0) (definition of t.i.)
= Y(H(y). (Expression (62))

That is, IIIW = ¥and ¥ — y, isinjective.

Let us prove that ¥ — v, is onto. For any operator y from K," to K,, f € K,",

v (1) = ¥,(H(0) (Expression (67a))
= y(f/W) (Expression (68))
= y(f). (Proposition (1.14))

That is, Yy, =9 and ¥ — 1y, is onto. In other words, ¥ — vy isabijection and itsinverseis y — W,
O

Heijmans[9, p. 117 e p. 372] gives asimilar expression to (68) for the class of flat function
operators associated with (finite) window operators on P(E®).

From the previous characterizations we can now derive the three characterizations of the
trandation-invariant elementary operators.

3.2-CHARACTERIZATION BY CONFRONTATION

From the elementary measure characterizations we derive now the characterization by con-
frontation of the trandation—invariant window elementary operators.

Let us first introduce two technical propositions.

Proposition 1.17 (extension of the union and intersection) — Let E be anonempty set, let W be anonempty
subset of E, and let K, be a bounded chain. For any family (f);c, of elements of KY,

fi=Vf ad Afi= AT
iel iel iel iel
and
Vii=Vfiad Afi= Af
iel el iel el
O
Proof — Let us prove the first statement. For any x € E,
'd
— VX)) ifxew
(V1o = 4 Y0 | (Expression (64))
i€l max K; otherwise
.
V fi(X) if xEeW .
=4dici . (Expression (30))
max K, otherwise

i { o otheice (property of the union)

iel | maxK; otherwise
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= Vi (Expression (64))
iel
= (V . (Expression (30))
iel
In other words, V f, = V/ f.. The other statements follow in a similar way. O
iel iel

Let WCE Let's denote by AWK K, (resp., Ew(K:%K,D), AWK, K,
E2(K,5, K,5) the set of translation—invariant window dilations (resp., erosions, anti—dilations, anti—ero-
sions) with window W.

Proposition 1.18 (bijection between the t.i. elementary operators and the elementary measures) — Let
(E, +) be an Abelian group, let W be a nonempty subset of E, and let K; and K, be two bounded chains.
We have the following statements:

Wy, (Exp. (67)) from Aw(K,5 K,5) to A(K,", K,) isabijection. Itsinverseis y — W, (Exp.
(68));

¥y, (Exp. (67)) from E(K,5 K,5) to E(K,", K,) isabijection. Itsinverseis y — ¥, (Exp.
(68));

Wy, (Exp. (67)) from A%(K,%, K,5) to A(K,", K,) isabijection. Itsinverseis y — ¥, (Exp.
(68));

Wy, (Exp. (67)) from E34,(K,%, K,5) to E{K,", K,) isabijection. Itsinverseis y — ¥, (Exp.
(68)).

O
Proof — Let us prove the first statement.
Let us prove that, for any ¥ € Ay(K,%, K,5), we have 9, € A(K,", K)).

Pulinf(K,") = W(inf(K,")(0) (Expression (67b))
= Y(inf(K,%))(0) (Expression (65))
= (inf(K,"))(0) (W isadilation and Proposition 1.3)
= minK.,. (Expression (28))

That is, Yu(inf(K,")) = minK,. For any family (f),c, of elements of KY,
wlll(_\e/lfi) = ll’(_\e/lfi)(o) (Expression (67a))
=YV f)(o) (Proposition 1.17)

iel

= (V ¥())(o) (¥isadilation)

iel

Il
<
<
=
-
~~

(@]
N

(Expression (30))

(Expression (673))

[
n<]
<
5
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That is, ww(_\e/lfi) = _\e/lwg,(fi). In other words, ¥y € A(K,",K5).

Let us prove that, for any ¥ € A(K,",K,), we have ¥, € Ay(K,%,K,%). Forany y € E,

w,(inf(K, D)) = p((nf(K.5) — y)/W) (Expression (68))
= ((inf(K,5))/W) (inf(K,5) is translation-invariant)
= y(inf(K,") (Expression (63))
= minK,. (y isadilation and Proposition 1.3)

That is, ¥, (inf(K,%) = inf(K,%). For any family (f));c, of elementsof KEand y € E,

lpzp(i\e/lfi)(y) = w(((i\e/lfi) - Y)/W) (Expression (68))
= w((i\e/l(fi - Y)/W) (property of the translate)
= w(i\e/l(fi - Y)/W) (Expression (30) twice)
= V(i — /W) (v is adilation)
= V ¥,H)Y). (Expression (68))

iel
Thatis, %,(V f) = V W,(f). Inother words, ¥, € Ay(K;" K,").
iel iel

The three other statements follow from the first one by duality. O

We can now introduce the so—called characterization by confrontation. In this characteriza-
tion, the t.i. window elementary operators (with window W) from K, to K, will depend on elementary
operators from K, to KlW that we will call structuring elements.

We define the following four pairs of useful expressions.
For any dilation 4 € Ay(K,", K,%) and any erosion e € E(K,, K,"), let

e,(t) £ sup{f € K1 A(M(0) = §§ (t € Ky) (69)

AM) = min{t €K,: (f-y)/W=et)} (feEKSyEE), (70)

e, iscaled the structuring element of the dilation 4, and A(f) iscalled the dilation of f by the structuring
element e.

For any erosion E € E(K,%, K,") and any dilation d € D(K,, K,"), let

L) 2 inf{f € K": t < EDO)} (t € Ky) (72)

Eqf(y) = max{t € K,: d(®) = (F - y)/W} (f € Ky € E), (72)

rdiscalled the structuring element of the erosion E, and E (f) is called the erosion of f by the structuring
element d.
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For any anti—dilation 62 € A3,(K,%, K,5) and any anti—dilation d® € DA(K,, K,"), let

a0 2 sup{f € K,": t < AP)(0)} (t € Ky) (73)

A%NY) = max{t € K,: (F—y)/W = d(t)} (FEK, y€EB), (74)

4ad* is called the structuring element of the anti—dilation 43 and ,.4%(f) is called the anti—dilation of f by
the structuring element d?

For any anti—erosion e € E3,(K,", K,") and any anti—erosion e* € E¥(K,, K,"), let

eat) 2 inf{f € K,V: EXD©0) =t} (t € Ky) (75)

L) 2 min{t € K,: &) < (F— y)/M} (€ Ky € B), (76)

e*zaiscalled the structuring element of the anti—erosion E# and E°.(f) iscalled the anti—erosion of f bythe
structuring element €2,

In the next proposition, we state aresult relative to the class of dilations, similar results could
be stated for the other classes of elementary operators.

Proposition 1.19 (composition properties) — Let (E, +) bean Abelian group, let W be a nonempty subset
of E, and let K, and K, be two bounded chains. We have the following statements:

A — e, (Exp. (69)) is the composition of ¥ +— y (EXp. (67)) with d — e, (Exp. (34))

e — A (Exp. (70)) is the composition of e — 4 (Exp. (35)) with v — ¥, (Exp. (68)).
O

Proof — Let usprovethat themapping 4 — e, (Exp. (69)) from A(K,", K,%) to E(K,, K,") isthe composi-
tion of the mapping ¥ > v, (Exp. (67)) from A(K,", K,") to A(K,", K,), with the mapping ¢ — e, (Exp.
(34)) from A(K," K,) to E(K,, K,"). Forany 4 € Ay(K,5, K,D) and t € K,

e, () = sup{f € K;": y,(H) < 4 (Expression (34))
= sup{f € K,": A(f)(0) < t} (Expression (67h))
= e,(t). (Expression (69))

Let usprovethat themapping e — 1 (Exp. (70)) from E(K,, K;") to A (K, K,%) isthe composition of the
mapping e — & (Exp. (35)) from E(K,, K;™) to A(K,",K,), with the mapping y — ¥, (Exp. (68)) from
A(K," Ky) to Ay(K,5 K,5). Forany e € E(K,, K", fE K,Fandy € E,

¥, (0O = S((f - y)/W) (Expression (68))
= min{t € K,: (f — y)/W = €(t)} (Expression (35))

= AMOY)- (Expression (70))

O

In Proposition 7.2, Barrera (25) gives the caracterization by confrontation for the erosion in
the case of lattices having sup—generating families. Herewe give asimilar result for all the elementary oper-
ators between gray—level images.
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Proposition 1.20 (characterization by confrontation of the t.i. elementary operators) — Let (E, +) be an
Abelian group, let W be a nonempty subset of E, and let K, and K, be two bounded chains. We have the
following statements:

A — e, (Exp. (69)) from AWK, K,5) to E(K,, K,") is a bijection,

itsinverseis e — 4 (Exp. (70));

E — ,d (Exp. (72)) from E(K,*, K,%) to D(K,, K,") is a bijection,
itsinverseis d — E4 (Exp. (72));

A% 0% (Exp. (73)) from A%(K,", K,5) to D¥K,, K,") is a bijection,
itsinverseis d®+— 42 (Exp. (74));

E®—> e (Exp. (75)) from E3,(K,%, K,5) to E{K,, K,") is a bijection,
itsinverseis e®— E2. (EXp. (76)). O

Proof — Let us prove the first statement. By Proposition 1.19, 4 +— e, (Exp. (69)) is the composition of
Y — o, (Exp. (67)) with 6 — e; (Exp. (34)). By Propositions 1.18 and 1.7, these two mappings are bijec-
tions, therefore their composition 4 — e, isa so abijection. Furthermore, the mapping e — A (Exp. (70))
isitsinversesinceitis, by Proposition 1.19, the composition of e — 0 (Exp. (35)) withy — ¥, (Exp. (68))
which are, by Propositions 1.7 and 1.18, the inverses of the above two bijections. The three other statements
follow from the first one by duality. O

Figure 9 shows an elementary operator E4whichisat.i. window erosion (with window W)

from K,° to K,, where E = [-55] CZ (the set of integers), W=[—-22] CE
K, =1{0,1,2734,56,7}, K, = {0,1,2,3} and E is equipped with the addition + modulus 11. In its

characterization by confrontation, thiserosion dependsonthedilation d from K, to Klwgiven inFigure4.In
Figure 9, a particular function f is shown; the erosion of f through E at point 3 of Eis 1. Thisvaueis

obtained through Expression (72). Figure 9 showsthat we haveto confront f £ (f — 3)/W with each func-
tion in the family defined by d in order to find the greatest function smaller or equal to f'.

3.3-CHARACTERIZATION BY SELECTION

Let W be asubset of the Abelian group (E, + ), we denote by W! the transpose of W, that is,
the subset of E given by

WAaA{yeE: —ye W. (77)

We now introduce our second way to characterize an elementary operator, the so—called char-
acterization by selection. In this characterization, the t.i. window elementary operators (with window W)

from K, to K, will depend on elementary operatorsfrom K to K," that wewill call impulsive responses.
Let pbeamapping from K, to K,", wedefinethetranspose of pasthemapping p‘from K, to

K," given by
PO = PE(—Y) (SE Ky y EW). (78)
In the same way, let p be a mapping from K, to szt, we define the transpose of p asthe

mapping p' from K to K," given by

PO = pE(= X (S E Ky, x € W), (79)
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E{M(3) = max{t € K,: d(t) < (f — 3)/W}

. f = max{0,1} =1
3
Ky oo Ly oiore oletere K
0
0 € K, € K,° | |
—— E 0 3
E -2 0 2 d
d(0) d(1) d2) d(3)
7
Ky inC
é
0 [sheteiee
w w w w
/ see | -3
— N
E 0
7
Ky veie| [{P00ele
é
0 [efefeteie| |[eletetere| [Herelete| [Kelelee
f,d0) f,d1) f,d@ f,dQ)
d(0) d(1) d(2)
f = (f - 3)/W d(0) d(1)
d(0)

Fig. 9 — Erosion characterization by confrontation.

Proposition 1.21 (property of the transposition) — Let (E, +) be an Abelian group, let W be a nonempty
subset of E, and let K; and K, be two bounded chains. The mapping p — p' (Expression (78)) from the
set of mappings from K, to K,", to the set of mappings from K, to KZV"t isabijection. Itsinverseis p — p'
(Expression (79)).

a
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Proof — For any W C E, for any mapping p from K, to K,", s € K,and x € W,

P)' (X = p((— X (Expression (79))
= p(s)(— (= X)) (Expression (78), withy = — X)
= p(9(X). (property of +)

That is, (p")' = p. For any mapping p from K, to szt, se K,andy € W,

P)EY) = p(—Y) (Expression (78))

= p)(= (= y) (Expression (79) with x = —y)

= p(s)(y)- (property of +)

That is, (pY)' = p. In other words p — p'is a bijection. O

Proposition 1.22 (bijection between the elementary operators and their transposes) — Let (E, +) be an
Abelian group, let W be a nonempty subset of E, and let K, and K, be two bounded chains. We have the
following statements:

p — p' (Exp. (78)) from D(K,, K,") to D(K,, K,") is a bijection. Itsinverseis p — pt (Exp. (79));
p — p' (Exp. (78)) from E(K,, K,") to E(K,, K,") is a bijection. Itsinverseis p — p' (Exp. (79));

p — pt (Exp. (78)) from D¥K,, K,") to DK, K,") is a bijection. Itsinverseis p — p* (Exp.
(79));

p — p' (Exp. (78)) from EXK,, K,") to EXK,, K,") is abijection. Itsinverseis p — pt (Exp. (79)).
O

Proof — Let us prove the first statement.

Let us prove that, for any p € D(K,, K,"), we have p' € D(K,, szt). Forany y € W,

p(mMinKy)(y) = p(minKy)(—y) (Expression (78))
= inf(KZW)(— y) (pisadilation and Proposition 1.3)
= inf(K,")(y). (Expression (77))

That is, pi(minK,) = inf(KZWt). For any family (s);c, of elementsof K, and y € W,

PCV s)) = P(V s)(= ) (Expression (78))
= (i\e/lp(si))(— y) (pis adilation)
= V(=) (Expression (30))
=V pi(s)y) (Expression (78))

iel

(V pE)Hy). (Expression (30))

iel



37

Thatis, p'(V s) = V pY(s). Inother words, pt € D(K,, szt). In the same way we could prove that for
iel iel

any p € D(K,, K,"), we have p' € D(K,, K,").
The three other statements follow from the first one by duality. O

We define the following four pairs of useful expressions.
For any dilation 4 € Ay(K,, K,5) and any dilation d € D(K,, K,"), let
ds(®) = A(fos)/W (s € Ky) (80)

Aqfy) = VA -y (e K.",y € B), (81)

d, iscalled theimpulse response of the dilation 4, and A4 «(f) iscalled thedilation of f by the dilation which
impulse response is d, or, in short, the dilation of fw.r.t. d.

For any erosion E € E(K,% K,%) and any erosion e € E(K,, K,"), let

£&(9) = E(f°) /W (s € Ky) (82)

L) = RAWC (G VIC)ICANUES K.",y € B), (83)

reiscalled theimpulse response of the erosion E, and E(f) iscalled the erosion of f by the erosion which
impulse response is €, or, in short, the erosion of fw.r.t. e.

For any anti—dilation 62 € A3(K,%, K,5) and any anti—dilation d € D¥K,, K,"), let

d%a(9) 2 A%(fo/WE (s € Ky) (84)
A(f)(y) = AR (OIS Ki",y € E), (85)

d?,aiscalled theimpul se response of the anti—dilation 43 and 4°2(f) is called the anti—dilation of f by the
anti—dilation which impulse responseis d? or, in short, the anti—dilation of fw.r.t. d®

For any anti—erosion €* € E2,(K,%, K,%) and any anti—erosion e* € EXK, K,"), let

£a€4(9) 2 E*)/W (s € Ky) (86)

<E*(f)(y) = V(- (e K.",y € E), (87)

ra€is called theimpul se response of the anti—erosion E? and E%(f) is called the anti—erosion of f by the
anti—erosion which impulse response is €? or, in short, the anti—erosion of fw.r.t. e

Instead of the expression “impulse response” we can use point spread function or blur.

In the next proposition, we state aresult relative to the class of dilations, similar results could
be stated for the other classes of elementary operators.

Proposition 1.23 (composition properties) — Let (E, +) bean Abelian group, let W be a nonempty subset
of E, and let K, and K, be two bounded chains. We have the following statements:

A — d, (Exp. (80)) is the composition of ¥+ y, (Exp. (67)) with 6 — d; (Exp. (44))

and with p — p' (Exp. (78)),

d — A4 (Exp. (81)) isthe compasition of p — p' (Exp. (79)) with d — 4 (Exp. (45))

and with y — ¥, (Exp. (68)). O
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Proof — Let us prove that the mapping 4 — d, (Exp. (80)) from Ay(K,, K,5) to D(K,, K,") is the com-
position of the mapping ¥ — v, (Exp. (67)) from Ay(K,", K,%) to A(K,", K,), with the mapping 6 — d
(Exp. (44)) from A(K,", K,) to D(K,, K,"), and with the mapping p — p' (Exp. (78)) from D(K,, K,") to

D(Ky, K,"). Forany 4 € Ay(K.5 K,5), s€ K and y € WL,
d, (90) = d, (9(~ V)

= 04(f-ys)
= A(F,9(0)
= A(f_y5)(0)
= A(fos — y)(0)
= A(fo9)(y)
= (A(fo)/WH(Y)
= d,(9(y).

(Expression (78))
(Expression (44))

(Expression (67b))

(Exp. (65) and (42) with f_, . defined on E)

(Expressions (43) and (62))
(4 isat.i.)
(Expression (63))

(Expression (80))

Let us prove that d — A, (Exp. (81)) from D(Ky, K,) to Au(K,F, K,5) is the composition of the mapping

p — p' (Exp. (79)) from D(K,, K,) to D(K4, K,"), with the mapping d — 3, (Exp. (45)) from D(K1, K,

")

to A(K,",K,), and with the mapping v ~— ¥, (Exp. (68)) from A(K,",K,) to Aw(K,% K,5). For any

d € DK, K,"Y), feKFandy € E,

A5, (D) = 0u((f = ¥)/W)

VA = y) /W)

V. di((f — y)(W)(u)

uew

A4H)(Y)-

(Expression (68))

(Expression (45))

(Expression (63))

(Expression (81))
O

Proposition 1.24 (characterization by selection of the t.i. elementary operators) — Let (E, +) be an Abe-
lian group, let W be anonempty subset of E, andlet K, and K, betwo bounded chains. We have the follow-

ing statements:
A — d, (Exp. (80)) from Aw(K,, K,5) to D(K,, K,") is a bijection,
itsinverseis d — 44 (Exp. (81));
E — e (Exp. (82)) from E (K, K,%) to E(K,, K,") is a bijection,
itsinverseis e — £ (EXp. (83));
A% > d? . (Exp. (84)) from A%(K,F, K,) to DYK,, K, is a bijection,
itsinverseis d*— A2 (Exp. (85));

E?— .6 (Exp. (86)) from E4,(K,F, K,5) to EXK,, K,") is a bijection,
itsinverseis e®— E? (EXp. (87)).
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Proof — Let us prove the first statement. By Proposition 1.24, A4 — d, (Exp. (80)) is the composition of
¥ oy (Exp. (67)) with 6 — d, (Exp. (44)) and with p — p' (Exp. (78)). By Propositions 1.18, 1.10 and
1.22, these three mappings are bijections, therefore their composition 4 +— d, is aso abijection. Further-
more, the mapping d — 44 (Exp. (81)) isitsinverse since it is, by Proposition 1.24, the composition of
p = p' (Exp. (79)) with d — 04 (Exp. (45)) and with y — ¥,, (Exp. (68)) which are, by Propositions 1.22,
1.10 and 1.18, the inverses of the above three bijections. The three other statements follow from the first
one by duality. O

We observe that he impulse responses of the elementary t.i. operators are the distributions
functions of the elementary measures that characterize them.

Figure 10 shows an elementary operator £ which isat.i. window erosion (with window W)
from K,° to K,, where E = [-55] CZ (the set of integers), W=[—-22] CE
K, =1{0,1,2734,56,7}, K, = {0,1,2,3} and E is equipped with the addition + modulus 11. In its
characterization by selection, thiserosion dependson theerosion efrom K, to sztwhich isthetranspose of
the erosion given in Figure 5. In Figure 10, a particular function f isshown; the erosion of f through (E at
point 3of Eis1. Thisvalueisobtained through Expression (83). Figure 10 showsthat when urunsover W,
we have to select, according to the value (f — 3)(u), the appropriate function in the family defined by €.
Actualy, the erosion e has been chosen in such away that the resulting operator (E isidentical to the opera
tor E4 shown in Figure 9 (see Proposition 1.26 below).

We now give equivalent expressions for the characterization by selection of the elementary
operators. These expressions are useful for a visual construction of the operator output.

Proposition 1.25 (equivalent expressions for the characterization by selection) —Let (E, +)bean Abelian
group, let W be anonempty subset of E, and let K, and K, be two bounded chains. We have the following
statements:

for any d € D(Ky, K,"),

440 = V_@iW) +u) (e K.");

for any e € E(Ky, K,"),

L0 = A W) +u) (& K:");

for any d® € DK, K,™),

Agll) = A @@ +0) (f € K,

for any e* € EXK,, K,"),

~E(f) = u\E/E(ea(f(U)) +u) (feK,"). O
Proof — Let us prove the first statement. For any d € D(K;, szt), any f € K," and any y € E,
440 = U\E/Wdt((f = Y)(W)(u) (Expression (81))

=V d(f =)=y (Expression (79))
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W={-2-1012 L) = ué\wet((f = 3)()(u)
= A{32111} =1
! f
3
Ky e oE shels seee] Ko
\ \ 0
E E
0 € K, € K, e 0 3
E -2 0 2 e
e(0) e(1) e2) e(3) e(4) e(5) e(6) e(7)
3 NN ro| [etereree]| [o0erere
K olele ole
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/ oore f—3
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7
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5=
Ki : oo 1" ote 3 ote 3= ote 3= ote
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e'(5) ¥ e'@d) v e@ v e'(3) v e'(3) v
3 > >3
K, 2 otel|> 1 o[> 1 otel> 1
0
W W W W W
Fig. 10 — Erosion characterization by selection.
= V df(u+y)(-u (Expression (62))
uew
=V Ay = v)V) (Exp. (77),v= —uandu = — V)
veE W

=V Ay =WV (Proposition 1.14)



= V df(y — v))(v) (Exp. (65) and max K, is the null element for the union)
= u\E/Ed(f(U))(y—U) (U=y-vandv=y-u
= U\E/E(d(f(u)) + u)(y). (Expression (62))

That is, for any f € K" A4f) = V (d(f(u)) + u).

The other statements follow from the first one by duality. O

Figure 11 shows all the bijections previously defined with respect to the characterization of
trandation—invariant window dilations. This figure helps to establish the next proposition.

e— 0 0 —d;
€ <0 04 < d
y, 4
e— A Aw—d,
e, <4 Ag<d

Fig. 11 — Bijections involved in dilation characterization.

<

—
QL
o —>Q

In order to define the relationships between the characterization by confrontation and by
selection, we define the following four pairs of useful expressions.

Let W, and W, be two subsets of E mutually transposed (i.e., W, = W, or equivalently
W, = W,), and let P(x, y) be the property: x € W, and y € W, suchthat x + y = o (the null element of
+).

For any erosion e € E(K,, K;"1) and any dilation d € D(K,, K,"?), let
&9() = min{t € K, s < e®)(¥)} (s € Ky, P(xy)) (88)
dH)(9) = max{s € Ky: d() = (t € Ko, P(X,Y)). (89)
For any dilation d € D(K,, K;"1) and any erosion e € E(K,, K,"?), let
d9y) = max{t € K,: dt)(x) < &} (s € Ky, P(x,Y)) (90)

et = min{s€ K;: t < ()} (t € Ky, P(X,Y)). (91)
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For any anti—dilation d® € D¥K,, Klwl) and any anti—dilation d® € D¥K,, KZWZ), let respec-

tively
d(9)(y) = max{t € K,: s < d{t)(x)} (s € Ky, P(xY)) (92)
(M) = max{s € K;: t < Ay} (t € Kz P(x,Y). (93)
. For any anti—erosion €2 € E¥K,, K,"1) and any anti—erosion e* € E{(K,, K,"?), let respec-
tively
e(9y) = min{t € K,: e()() = (s € Ky, P(x,y)) (94)
M) 2 min{s € K,: e(s)(y) = t} (t € Ky, P(X,Y)). (95)

Proposition 1.26 (relationships between the characterization by confrontation and by selection) — Let
(E, +) be an Abelian group, let W be a nonempty subset of E, and let K; and K, be two bounded chains.
We have the following statements:

if e € E(K,, K,") then A (Exp. (70)) isidentical to A, (Exp. (81)), i.e, A = 4,
4

if d € D(K,, K,"?) then E, (Exp. (72)) isidentical to s£ (Exp. (83)),i.e, Ey = £

if d € D(Ky, K,"?) then A, (Exp. (81)) isidentical to #A (Exp. (70), i.e, 44

if e € E(Ky, K,"?) then E (Exp. (83)) isidentical to E, (Exp. (72)), i.e, £ = E,

if d® € DAK,, K,") then 4 (Exp. (74)) isidentical to A% (Exp. (85)), i.e., 4% = A%
if d® € DYK,, K,"?) then A2, (Exp. (85)) isidentical to #24°% (Exp. (74)), i.e., 4% = z4°
if e € EYK,,K,") then E2. (Exp. (76)) isidentical to &E® (Exp. (87)), 1.6, E’a = aF?*

if e € E¥(Ky, K,"?) then .E? (Exp. (87)) isidentical to E?a (Exp. (76)), i.e, &b = Efa
O

Proof — Let usprovethefirst statement. For any erosion e € E(K,, K,") and any dilation d € D(K,, szt),

A=A4g ¥, =", (Propositions 1.19 and 1.23)
< O =0y (Proposition 1.18)
= d =d, (Proposition 1.10)
< d=d, (Proposition 1.20)
= dS)y) = dy (9O (S € Ky, y € W) (equality between mappings)
< d(S)(y) = dy(9(%) (s € Ky, P(x,Y)) (Expression (78))
< d9y) = I(f) (s € Ky, P(x,Y)) (Expression (44))

< d(9(y) = min{t € K,: f,s = e(t)} (s € K, P(x,y)) (Expression (35))
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< ds)(y) = min{t € K;: fi(u) = et)(u) (u € W)} (s € Ky, P(x,Y)) (Exp. (27))

< do)(y) = min{t € K,: s = et)(X)} (s € Ky, P(x,y)) (Expression (42))
= d)(y) = &9)(y) (sE Ky, y EW,) (Expression (88))
= d=e (equality between mappings)

Let us prove the second statement. For any dilation d € D(K,, K,"2) and any erosion e € E(K,, K,"),

Ag=A4 = 'Ilédt =Y, (Propositions 1.19 and 1.23)
S 0= (Proposition 1.18)
< e=6, (Proposition 1.7)
= eft) = eédt(t) (t e Ky (equality between mappings)
< et) = sup{f € K;"1: 9, =t} (t € K)) (Expression (34))
= et) = sup{f € K,": . é/v\ﬁdt(f(u))(u) =t} t €Ky (Expression (45))

= et) = sup{f € Klv"l: df(Ww)(u) = t(ue W)} (t € Ky (property of the

union)
= et)(x) = max{s € K, : If € K", di(f(u))(u) < t (u € W,) and s = f(X)}
(te Ky, xe W)
(Expression (28))
< et)(x) = max{s € K, : d(9(x) = t} (t € K, x € W,) (one can chose fto be
fxs)
< e)(x) = max{se€ K;: ds)(y) = t} (t € K,, P(x,y)) (Expression (79))
< eb)(x) = db)(x) (t € K, x € W)
(Expression (89))
< e=d
(equality between mappings)
The other three pairs of statement follow from the first pair by duaity. O
We say that:

e € E(K,, K,") and d € D(K,, K,"?) are companions iff
s et)(u) = t=dOeWV) ((st) € K, X K, P(u,v));

d € D(K, K,"1) and e € E(K,,K,"?) are companions iff
sz dt)(u) = t = eV ((st) € K, X K, P(u,v));

d@ € DYK,, K,"1) and d® € DAK,, K,"?) are companions iff
s dy(t)(u) = t = d(9(V) ((s1) € K; X Ky, P(u,V));



e € EyK,, K,"1) and e* € E{K,,K,"?) are companions iff
s= et)(u) = t = eX9(V) ((st) € K; X K, P(u,v)).

Equivalently (see Proposition 5.4 of Banon & Barrera [7] for a similar case), we say that:
e € E(K, K,") and d € D(K,, K,"?) are companions iff
e = d(Exp. (89)) (or d = e (Exp. (89)));
d € D(K, K,"1) and e € E(K,,K,"?) are companions iff
d = e (Exp. (90)) (or e = d (Exp. (91)));

d2 € DAK,, K,"1) and d* € D¥K,, K,"?) are companions
iff d® = d®(Exp. (92)) (or d® = d? (Exp. (93)));

e € EyK,, K,"1) and e* € E{K,,K,"?) are companions iff
€% = € (Exp. (94)) (or &% = e (Exp. (99))).

The dilation d of Figure 9 (with W = W,) and the erosion e of Figure 10 (with W' = W,) are
exampl es of companion mappings. For thisreason, by Proposition 1.26, theerosionsE yinFigure9and Ein
Figure 10 are identical.

We now give sufficient conditions on the structuring elements and the impul se responsesin
order to a pair of t.i. elementary operators be a Galois connection (G.c.) [17].

Proposition 1.27 (sufficient condition for Galois connections) — Let (E, +) be an Abelian group, let W,
and W, be two subsets of E, mutually transposed, and let K; and K, be two bounded chains. We have the
following statements:

if e € E(K,, K,") and d € D(K,, K,"2) are companions then
(U4 E) isaG.c. between (K%, <) and (K,5, =);

if d € D(K, K,"1) and e € E(K,, K,"?) are companions then
(E,4,) isaG.c. between (K., =) and (K,5, <);

if d® € DYK,, K,"1) and d* € D¥K;, K,"2) are companions then
(A 4 o4) isaG.c. between (K%, <) and (K, <);

if e € EYK,, K,"1) and e* € E¥(K,, K,"2) are companions then
(<E, E.) isaG.c. between (K,5, =) and (K", ).

O
Proof — Let us prove the first statement. For any f € K,"and g € K",
f< Q) < f(x) = L(@QK (x € E) (Expression (27))
< )= e/\ert((g = X))V (x € E) (Expression (83))
< )= e/\W e((@(v + x))(Vv) (x € E) (Expression (62))

= (f() = (@ + X)) (v € Wy)) (x € E)
(property of the intersection)
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= (f() = e((9)v + x))(u) (P(u,v))) (x € E) (Expression (78))

< (9(y) = d((Hu + y)V) (Pu,v)) (y € E)
(hypothesis, y = v + xand x = u + )

< (9(y) = d((Mu + y)(u) (ue W) (x € E) (Expression (79))
< gy) = . é/w d'((F)(u + y))(u) (y € E) (property of the union)
< gy) = é/wldt((f = y)W)U) (y € E) (Expression (62))
= giy) =440 (y € B) (Expression (81))
= g = A45. (Expression (27))

That is, (44, E) isaG.c. between (K,5, <) and (K5, =).

The other statements follow from the first one by duality. O

The next proposition shows how to easily get the different types of Galois connections.

Proposition 1.28 (Galois connections construction) — Let (E, +) be an Abelian group, let W, and W, be
two subsets of E, mutually transposed, and let K, and K, be two bounded chains. We have the following
statements:

for any e € E(K,, K,"), (4e o), (4, E) and (A, EJ) are
G.c. between (K5, <) and (K,%, =);

for any d € D(Ky, K,"?), (44 5E), g Eg) and (4,E,) are
G.c. between (K,5, <) and (K5, =);

for any d € D(K,, Ki"), (zE,4y), (EqAg) and (Eg z4) are
G.c. between (K,5, =) and (K,", <);

for any e € E(Ky,K,"?), (E,4), (E, A) and (E, A) are
G.c. between (K5, =) and (K,%, <);

for any d* € DYK,, K1W1)1 UgAa), (4,44 and (4, 3A4) aE
G.c. between (K,5, <) and (K5, <);

for any d® € DAKy, K,"2), (A g A g, (A ged) and (g, goA) are
G.c. between (K,5, <) and (K5, <);

for any €% € EXKy, Ky, (o, wE), (Eea aE) and (E o, E ) are
G.c. between (K5, =) and (K5, =);

for any €* € EXKy,K,"?), (<E, oE), (oF,E) and (E Ed) are
G.c. between (K,5, =) and (K5, =).
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Proof — Let us prove the first two statements. For any e € E(K,, K, ") and d € D(K,, K,"?),
d = e < eandd are companions (equivalent companion definition)
= (4, E)isaG.c. between (K,5, <) and (K,", =). (Proposition 1.27)

Thatis, (4, L) isaG.c. between (K5, <)and (K,5, =). By Proposition 1.26, (4, .E) and (A4, E,) areaso
G.c. between (K,5, <) and (K,", =). Forany e € E(K,, K,") and d € D(K,, K,"?),

e = d < eandd are companions (equivalent companion definition)
= (44, .E) isaG.c. between (K,5, <) and (K,", =). (Proposition 1.27)

That is, (44 5E) isaG.c. between (K,", <) and (K,", =). By Proposition 1.26, (44, E4) and (,E,) are
adso G.c. between (K,%, <) and (K", =).

The other statements follow from the first two by duality. O

34 -CHARACTERIZATION BY DECOMPOSITION

Let usintroduce our third way to characterize an elementary operator, the so—called charac-
terization by decomposition. In this characterization, the t.i. window elementary operators (with window

W) from K, to K, will depend on afamily of elementary operatorsfrom K, to K, that we call elementary
transformation tables or Elementary Look Up Tables (ELUTS). The characterization will be derived from
the characterization by selection.

We define thefollowing four pairs of useful expressions. In these expressions o standsfor the
mapping composition.

For any dilation 4 € Aw(K,5, K,%) and any family of dilations (d,) € D(K,, K)™, let

(AU = A(fod(V) (s E Ky v E WY (96)

A2 V do+v) (fe K,5), (97)

((d,),) iscaled thefamily of ELUTs of thedilation 4, and 4 (f) iscalled thedilation of fw.r.t. thefamily of
ELUTs (d,).

For any erosion E € E(K,, K,") and any family of erosions (e,) € E(K,, Ko, let

(89 = EFIV) (SE Ky v EW) (98)
E(M 2 /\\Me\,o(f +v) (f €K, (99)

((z€),) iscalled the family of ELUTs of theerosion E, and E(f) iscalled theerosion of fw.r.t. the family of
ELUTS (e,).

For any anti-dilation A42€ A%(K,"K,") and any family of anti—dilations
(d3) € DAK,, Ky, let
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(d2%2)(S) 2 A% (V) (S € Ky v E WY (100)

A 2 A dof+y) (e K., (101)

((d%a).,) is called the family of ELUTs of the anti—dilation 4% and 4%4a(f) is called the anti—dilation of f
wi.r.t. the family of ELUTs (d?).

For any anti—erosion E*€ E3(K,"K,") and any family of anti—erosions
(%) € EAKy, K™Y, let

(:a€)) () 2 E{fS)(V) (s € Ky, v E W) (102)

@B 2 V eof+v) (fe K5, (103)

((z=€%),) iscalled thefamily of ELUTs of theanti—erosion E? and (s E%(f) iscalled theanti—dilation of fw.r.t.
the family of ELUTS (€%).

In the next proposition, we state aresult relative to the class of dilations, similar results could
be stated for the other classes of elementary operators.

Proposition 1.29 (composition properties) — Let (E, +) bean Abelian group, let W be a nonempty subset
of E, and let K; and K, be two bounded chains. We have the following statements:

A —((d)),) (Exp. (96)) isthe composition of 4 — d, (Exp. (80)) with p — (p,) (Exp. (52))

(d)) — 4 g (Exp. (97)) is the composition of (p,) — p (Exp. (53)) with d — A4 (Exp. (81)).
O

Proof — Let us prove that the mapping 4 — ((d,),) (Exp. (96)) from Aw(K,5 K5 to D(K, K)W is the
composition of the mapping 4 > d, (Exp. (80)) from Aw(K,%, K,5) to D(Ky, K,"), with the mapping
p — (p,) (Exp. (52)) from D(K,, K,") to D(K,, K)"™. For any 4 € AyK,5 K,5), v E Weand s € K,

(d)s) = ds(9(V) (Expression (52))
= (A(fo /WH(V) (Expression (80))
= A(fo9)(v) (Expression (63))
= (dy)A9). (Expression (96))

Let us prove that the mapping (d,) — 4 o (Exp. (97)) from D(K,, K»)" to Aw(K,", K,") isthe composition
of (py) — p (Exp. (53)) from D(K,, K)"™ to D(K,, K,"), with d — A, (Exp. (81)) from D(K,, K,") to

AWK, KS5). Forany (d,) € D(K,, KW, f € K,"andy € E, let d be the mapping given by Expression
(53), then we have

A440O) =V d(F = )W) (Expression (81))

=V d(f = )= u (Expression (79))
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=V df -y (Expression (62) and x = y)
=V d(@ + R)W) (Exp. (77), v = —uand u = — V)
= ;/Wtdv((f + V)(X) (Expression (53))
=V (@o+ W) (definition of the composition and y = x)
= AHO). (Expression (97)D)

Proposition 1.30 (characterization by decomposition of the t.i. elementary operators) — Let (E, +) bean
Abelian group, let W be a nonempty subset of E, and let K, and K, be two bounded chains. We have the
following statements:

A ((d,).) (Exp. (96)) from Aw(K,", K,5) to D(K,, K,)™ is a bijection,
itsinverseis (d,) — 4 (Exp. (97));

E — ((z€),) (Exp. (98)) from EW(KlE, KZE) to E(K,, K,)™ is a bijection,
itsinverseis (&) = E (Exp. (99));

A% ((d?,a),) (Exp. (100)) from A%(K,, K,5) to DAK,, K,)™ is a bijection,
itsinverseis (d%) — 474 (Exp. (101));

E® > ((:2€9,) (Exp. (102)) from E3,(K,, K,5) to E(K,, K,)™ is a bijection,
itsinverseis (€%) — (ak® (Exp. (103)).
O

Proof — Let us prove the first statement. By Proposition 1.29, 4 — ((d,),) (Exp. (96)) is the composition
of 4 — d, (Exp. (80)) with p — (p.) (Exp. (52)). By Propositions 1.24 and 1.11 these two mappings are
bijections, therefore their composition 4 — ((d,),) is aso a bijection. Furthermore, the mapping
(d)) — 44 (Exp. (97)) isitsinversesinceit s, by Proposition 1.29, the composition of (p,) — p (Exp. (53))
with d — 44 (Exp. (81)) which are by Propositions 1.11 and 1.24, the inverses of the above two bijections.
The three other statements follow from the first one by duality. O

From the above characterization we can state the following two propositions.

Proposition 1.31 (number of t.i. elementary operators) — Let (E, +) be an Abelian group, let W be anon-
empty subset of E, let K; and K, be two bounded chains, and let k;, = (#K,) — 1, k, = (#K,) — 1 and
w = #W. For any k; = 1and k, = 1, the number of operatorsin agiven class of t.i. window elementary

' w
operators from K, to K, with window Wis (—(k}( Tkkf)') . -
k!
Proof — The result derives from Propositions 1.6 and 1.30. O

Figure 12 shows an example of number of t.i. elementary operators (e.g. erosions) with
k, =k, =255andw = 9.

Proposition 1.32 (construction/decomposition of elementary operators) — Let (E, +) bean Abelian group,
let Wbeanonempty subset of E, andlet K; and K, betwo bounded chains. Let (4,), .yt (EV),ctr @3 yeut

and (E3),., be the families of operators from K, to K," given by, respectively,
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(510! / (255! 255!))19
456203754093517760201776224596239809115926290007841189494168120\

5373097509950657481522055492860742601795118933504459086883897\
4953454359295434971703706939840852758135000304591578537624069\
5596056096755517925868475417853293056422385049325569327243096\
7992225071008877537075007279134119715796008381107349853562979\
4428324672596730527199299223348538707090891066046391785020488\
2570625900486964609586849760094937419518708945620648079148128\
0289218048085815329276549831593895640784026233676946482040894\
6314699869570934583552362817346187821682287541733602877866164\
7728570340604772382153061679348625114197325694552113070543334\
7036757177219439953885069491571275217759314583669854727275884\
1315293404314521764590929646651232269189613102132683016295657\
5228621781573348022491013037903287409623958125948392499346558\
0860024102632920412316802880506020267702153176377746846603629\
6393323069832763516545260141269461308505559839207227579085159\
7071987386780823676350126232219004431373337281534963135796148\
5965625101447153524185108314744534813802976119492915669350088\
4208291628892667947101366390356997884333460732309043279437643\
4964438695063531735576862041537448405714876532923024786796263\
2113823650692331948829830729225062784989100210199842025828796\
5567321437336291518475121613111121525624254552702295996388914\
5829890113229824264870556885026260116064084999421139950616701\
6928821725481081872842752

A

Fig. 12 — Example of number of erosions.

v = (f'—>dvof)o‘[v

EV= (f'—>e\,of)o‘[v

Aa\, = (f'—>da\,of)o‘[v

E?&, = (f — €% 0 f) 0Ty

where, (d,),cptr (8)yenwe (@3), e @nd (63), o are, respectively, families of dilations, erosions, anti—dila-

tions and anti—erosionsfrom K to K,. For any v € W, the operators 4,, E,, 4% and E?, from K,Fto K,°
are, respectively, adilation, an erosion, an anti—dilation and an anti—erosion. The operators 4, E, A%and E?

from K, to K,  given by, respectively,

A

V 4,

vew

N E,

vew

A2 = /\ A8,

vew
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E*= V\ Ea,.
vew
are, respectively, a dilation, an erosion, an anti—dilation and an anti—erosion. Conversely, any operator A4,
E, A%and E*from K, to K,% which s, respectively, adilation, an erosion, an anti—dilation and an anti—ero-
sion hasthisform. Furthermore, (d.),cy0 (8),cye (03),cwe@nd (€3), .« e given by, respectively, for any
vEW,

ve

dfs) = 4(fo(v) (s € Ky)
e(s) = E(f*)(v) (s €Ky
d°y(s) = 4%fo)(V) (s € Ky)

e = EXf*)(V) (s € Ky.
O

Proof — Let us prove the result for the class of dilations. By construction, for any v € W, 4, isthe com-
position of 7, with the mapping f — d, o f; since both are dilations, 4, is aso a dilation. The rest of the
result is Proposition 1.30. The results for the other classes of elementary operators follow by duality. O

Figure 13 shows an €lementary operator £ whichisat.i. window erosion (withwindow W)
from K, to K,, whee E =[-55]CZ (the set of integers)y, W=[-22] CE
K, =1{0,1,2734,56,7}, K, = {0,1,2,3} and E is equipped with the addition + modulus 11. In its
characterization by decomposition, this erosion dependson afamily (e,) of 5 erosionsfrom K, to K, which
are derived fromtheerosion e givenin Figure 10 by applying Expression (52). Inthisway the operator o Eis
identical to £ shown in Figure 10. In Figure 13, a particular function f is shown; the transformation of f
through oE at 3of Eis1. Thisvalueisobtained through Expression (99). Figure 13 shows adecomposition
of FE. Each branch is a particular erosion as stated in Proposition 1.32.
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7
K, P~ 3
W ={-2-1012 K, |letets veleie
0 0
S—— W |
E -2 0 2 E 0
| |
| |
| |
| @F |
| E, |
| f—2 e ,of— 2 |
f } e T, | — e} — } (e>E(f)
| ‘ ‘ E_{f) |
| -2 e, |
| |
| |
| |
S KlE c KzE
ke Ef)
f+2 z
mee——— T, |— e} —
ezo(f + 2)
"2 | e,
(ev)
e_, e_; N e e,
3 ol e e sTele] 3= oo ele
2=
Kz 1= 1= oo 1
0 Le o
o * 7 o * 7 o Y 4 L L
f(3 + 2) f(3 + 1) f(3 + 0) f(3 - 1) f(3 -2
K, K, K, K, K,

Fig. 13 — Erosion characterization by decomposition.
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CHAPTER 4

EXAMPLES

4.1 - NEURAL NETWORKS

In the previous chapter we saw that the elementary t.i. operatorsfor gray— evel images can be
characterized aternatively in terms of three types of mapping: the structuring elements, the impulse
responses and the Elementary Look Up Tables. Wewill call these mappings characteristic functions. Inthis
section and in the following ones, we show that the classes of dilations and erosions recalled in the first
chapter are part of our general characterization.

In this chapter, we assume that K, = K, = K = [0,K] C Z.

We first consider the case of the elementary parametric neural networks. We define the fol-
lowing useful expressions.

For any increasing function afrom K to K such that a(0) = 0and a(k) = k, any nonempty
subset Bof E, any function bfrom Bto K = [0,Kk] C Z, and any familiesof binary operations (+ ), and
(= Jues N, respectively, D+ and D -, such that + ,and — , are companions for any u € B, let

dap, (D) 2 &t +,b(U)) (t €K, u€ B) (104)
€an-(9(WV) 2 A9 —, b(— V) (sEK, vE B (105)
Uy (OU) 2 a(H) +,b(U) (t € K, uE B) (106)
€ (V) 2 a(s —, b(— V) (SE K, vE B). (107)

We observe that he underlying operators d,;,, from K to K®and e, _ from K to K are,
respectively, adilation and an erosion. By using Theorem 2.7—(v) of Heijmans and Ronse (6) we can deduce
that d,, , and e, _ are companions. The sameis true for d,, . and e, _.

For any increasing function afrom K to K such that a(0) = 0and a(k) = k, any nonempty subset B of E,
any function bfrom Bto K = [0,k] C Z, and any families of binary operations (+ ) ez and (— )5 in,
respectively, D* and D -, such that + ,and —, are companions for any u € B, let

(Do )u®) = At +,b() (t EK)) (u€E B) (108)
((Bap S 2 &S — b(— V) (SEK)) (veE B (109)
(s )u®) = (1) +,b(W) (t EK)) (u€E B) (110)
((Boa -9 = a(s —y B(— V) (SEK)) (vE B). (111)

We observethat the underlying families ((d,, . ).) and ((e.p _).) are, respectively, families of
dilations and erosions from K to K. The sameistrue for ((dy.-).) and ((€,.-)v)-

Proposition 1.33 (elementary parametric neural networks) — Let (E, +) bean Abelian group, and let K be
abounded chain. Let 4,,, E,;, 4,, and E,, be the elementary operators from K to KF defined, respec-
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tively, by Expressions (19) to (22). For any increasing function a from K to K such that a(0) = 0 and
a(k) = k, any nonempty subset B of E, any function b from Bto K = [0,Kk] C Z, and any families of
binary operations (+ ,),eg @nd (— o)yes iN, respectively, D+ and 9 ~, such that + ,and — , are compan-
ionsfor any u € B, we have the following statements:

ey A = Aap @d Eq = Eqp,_ (for confrontation)
Aoy, =Aaps ad o E=Eq,_ (for selection)
Agyp o =daps ad o E=E,,_ (for decomposition)
a4 = Abar @ Eq = Ep,_ (for confrontation)
Agp, =4Abas ad o E=Ey,_ (for selection)
Ay = Abar & F = Ep,_. (for decomposition)

O

Proof — Let us prove the second statement in the case of the dilations. For any g € KEand any x € E,

Aq,, @K = Vl/Btda,b,f((g = X)(W)(V) (Expression (81))
= Vl/Btda,b,-*—((g = X)W))(= V) (Expression (79))
= Vl/Bta((g — X)(V) +-y b(=V)) (Expression (104))
= a( V(@ X)) +. b(= ) (aisadilation (Prop. 1.4))
= a(v thg(V +X) +-v b(= V) (Expression (62))
=a( V\/e 9+ %)+ b(= V) (Expression (77))
= a(u\e/Bg(X — u) +,b(u)) (u=-v
= Aap+ (D). (Expression (19))

The case of the erosions can be derived from the case of the dilations by duality. The first statement derives
from the second one by observing that d,;, . and e,,,_ satisfy d,, , = €,,_and €., = d,p . (d,, . and
e,y are companions) and by applying Proposition 1.26. The third statement derives from the second one
by observingthat (((da.+).). das,+) @0 (€45, -).). €4s,-) belongtothegraphof (p,) > p (Exp. (53)) and by
applying Proposition 1.29. The last three statements can be proved in the same way as the first three ones.

O

Figures 14 and 15 show two examples of characteristic functions d,p, ., €.p_, ((dap +)u) and
((eap,-)v) for agiven increasing function afrom K = {0,1,2,3,4,5,6,7} to K such that a(0) = 0 and
a(k) = k, agivenfunction bdefinedon B,whereB = [— 2,2] C E C Z (Eisequipped with theaddition
+ modulus #E), and two given families of binary operations (+ ,),cg and (— )ues iN, respectively, D+
and 9 ~, suchthat + ,and — ,arecompanionsforany u € B. Actually, Figure 14 correspondsto the case of
the Heijmans' dilation and erosion with b(— 2) = b(2) = — 1, b(— 1) = b(1) = Oand b(0) = 1.
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(+u) (_u)

PN WS

F4+++
N
N

K K B B

Oap+(0)  daps(D) ey (2 dapi(3)  dapi(4)  dapi(B)  daps(B)  daps(7)

B B B B B B B B

ea,b, - (O) ea,b, - (1) ea,b, - (2) ea,b, - (3) ea,b, - (4) ea,b, - (5) ea,b, - (6) ea,b, - (7)

B B B B B B B B
(dap,+) -2 (dap,+) -1 (dap,+)o (dap,+ )1 (dap,+)2
7 o
0 | ¢ o
0 7 0 7 0 7 0 7 0 7
K K K K K
(ea,b,—) -2 (ea,b,—) -1 (ea,b,—)o (ea,b,—)l (ea,b,—)Z
7 o » o
0 C
0 7 0 7 0 7 0 7 0 7
K K K K K

Fig. 14 — Example of characteristic functions for the Heijmans' elementary operators.
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7 e ’
( + u) ( - u)
a ole a b +4 _4
+ 3 _3
+2 _2
0 C + 1 o _1
0 7 0 7 -2 0 2 -2 0 2
K K B B
Oap+(0)  daps(1)  dapi(?)  dapi(B)  daps(4)  dapi(B)  daps(6)  dap(7)
. {
[] ®
00000 2 o
B B B B B B B B
ea,b, - (O) ea,b, - (1) ea,b, - (2) ea,b, - (3) ea,b, - (4) ea,b, - (5) ea,b, - (6) ea,b, - (7)
B B B B B B B B
(dap,+) -2 (dap,+) -1 (dap,+)o (dap,+ )1 (dap,+)2
7 slele re
0 |ere @ (2 e
0 7 0 0 7 0 0 7
K K K K K
(ea,b,—) -2 (ea,b,—) -1 (ea,b,—)o (ea,b,—)l (ea,b,—)z
7 ) d )4
0
0 7 0 0 7 0 0 7
K K K K K

Fig. 15 — Example of characteristic functions for the elementary neura networks.
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4.2 - FLAT OPERATORS

Let us consider the case of the flat elementary operators (9). We define the following useful
expressions.

For any nonempty subset B of E, let
ds()(U) 2t (t € K, u € B) (112)

e(9(V) 2 s (sE K, v E BY. (113)

Asspecial casesof Expressions(104) and (107), we observe that the underlying operators dg
from K to K8 and e from K to K& are both a dilation and an erosion, and they are companions.

Forany u € B, let
(d)u) 2t (t € K). (114)
For any v € B!, let
€9 =5 (SE K). (115)

As specia cases of Expressions (108) and (111), we observe that the underlying families
((dg),) and ((eg),) are both families of dilations and erosions from K to K.
Proposition 1.34 (flat elementary operators) — Let (E, +) be an Abelian group, and let K be a bounded

chain. Let Azand Eg be the elementary operators from KEto KE defined, respectively, by Expressions (11)
and (12). For any nonempty subset B of E, we have the following statements:

4 = 4 and Ey, = Eg (for confrontation)
Ay, = Ag and E =FEg (for selection)
Auy = 48 and oF = Es (for decomposition).

O

Proof — Let us prove the second statement in the case of the dilations. Let id denote the identity mapping
from K to K, and let bg(u) 2 O for any u € B. We have

g Yidbg,+ (Ao + = o)
= Ay, (Proposition 1.33)
= A, (definition of id, bg, C* and Expression (13))

The case of the erosions can be derived from the case of the dilations by duality. The first statement derives
from the second one by observing that dg and e satisfy d = egand ez = dg and by applying Proposition
1.26. The third statement derives from the second one by observing that (((dg).), dg) and (((eg).), €g) belong
to the graph of (p,) — p (Exp. (53)) and by applying Proposition 1.29. O

Figure 16 shows an example of characteristic functions pgand ((pg),) derived from a subset
B,whereB =[- 2,2l CEC Z,K ={0,1,2,3,4,5, 6, 7} and Eisequipped with the addition + modu-
lus #E. In this case, Bis symmetrical with respect to the origin 0 (i.e,, B = B"), dgand e; areidentical to a
mapping from K to KBthat wewill denote by pg, andfor any u € B, (dg), and (eg), areidentical to amap-
ping from K to K that we will denote by (pg)..
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Ps(0) Ps(1) Ps(2) Ps(3) Ps(4) P&(5) P&(6) Pe(7)
7 T [
K | [srereree
O ale . a a o
-202-202-202-202-202-202-202-20 2
B B B B B B B B
(Pe) -2 (Pe) -1 (Pe)o (Pe)1 (Pg)2
7
< [ s s s s e[
0
0 7 0 7 0 7 0 7 0 7
K K K K K

Fig. 16 — Example of characteristic functions for the flat elementary operators.

4.3 - SET OPERATORS

From the above propositon, we can derive some relationship between the set elementary
operators and our general characterization. Let 1, be the characteristic function of asubset X of E and let
(E) be the collection of all subsets of E. We assumethat K = [0,1] C Z.

Proposition 1.35 (set elementary operators) — Let (E, +) be an Abelian group. Let 45and Ez bethe ele-
mentary operatorsfrom (E)to (E) defined, respectively, by Expressions (1) and (2). For any nonempty
subset Bof E, andany Xand Yin (E), we have the following statements:

Aly) =1 A5 and EdB(lx) = lEB(X> (for confrontation)
441y =1 45 and (E(l) = 1EB(X> (for selection)
Auy(ly) =1 45 and (e E(1) = 1EB(X> (for decomposition).

a

Proof — The result derives from Proposition 1.34 recalling that the mapping X — 1, isabijection (7). O
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