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Abstract

We say that a metric space is regular if a straight-line (in the metric space sense) passing through the center of a sphere and
any other point has at least two diametrically opposite points. Normed vector spaces have this property. Nevertheless, this
property might not be satisfied in some metric spaces. In this work, we give a characterization of an integer-valued translation-
invariant regular metric defined on the discrete plane, in terms of a symmetric subset B that induces through, what we call, the
Minkowski product, a chain of subsets that are morphologically closed with respect to B.
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1.  Introduction

The continuous plane or, more precisely, the two-
dimensional Euclidean vector space, has good geometrical
properties. For example, in such space, a closed ball is
included in another one only if the radius of the latter is
greater than or equal to the sum of the distance between their
centers and the radius of the former. Furthermore, in such
space, two closed balls intersect each other if the sum of
their radii is greater than or equal to the distance between
their centers. Nevertheless, not all metric spaces have these
properties.

In the first part of this work, we introduce the concept of
regular metric space in which the above two geometrical
properties are satisfied.

We say that a metric space is regular if its metric
satisfies three regularity axioms or equivalently if a straight-
line (in the metric space sense) passing through the center of
a sphere and any other point has at least two diametrically
opposite points. Minkowski spaces (i.e., finite dimensional
normed vector spaces) have this property.

This regularity is generally lost when a metric on the
continuous plane is restricted to the discrete plane, as it is
the case of the Euclidean metric.

In the second part of this work, we study the
characterization of the integer-valued translation-invariant
regular metrics on the discrete plane in terms of some
appropriate symmetric subsets.

We show that every such metric can be characterized in
terms of a symmetric subset B that induces through, what we
call, the Minkowski product, a chain of subsets that are
morphologically closed with respect to B.

Our characterization shows the unique way to construct
integer-valued translation-invariant regular metrics on the
discrete plane.

This is an important issue in digital image analysis since
the image domains are then discrete. In the sixties,
Rosenfeld and Pfaltz [8] have already introduced a metric
property and have used it to describe algorithms for
computing some distance functions by performing repeated
local operations. It appears that their property is precisely a
necessary condition for a metric to be regular.

Actually, we came across the regularity property for a
metric because we tried to find a class of metric whose
metric dilations satisfy a semigroup relation (relation (9.19)
of [3]) and whose balls are morphologically closed with
respect to the unit ball. This class contains, for example, the
chessboard distance.

In one dimension, we observed that the (discrete)
convexity is not a necessary condition to have the
morphological closure property, so it was useless to solve
our problem.

For the sake of simplicity of the presentation, in this
work, we limit ourselves to the class of integer-valued
metrics. This is not a serious limitation because on the
discrete plane the metrics assume only a countable number
of values.

In Section 2, we give an axiomatic definition of regular
metric space and we relate it to the Kiselman's properties of
upper and lower regularity for the triangle inequality. In
particular, we show that of the three axioms only two are
sufficient to define the metric regularity. Independently of
the definition of metric, in Section 3, we give a definition of
ball based on the notions of set translation and set
transposition. We introduce the Minkowski product in
Section 4, and use it in Section 5 to define the notions of
generated balls and radius of a ball. In Section 6, we study the
properties of the balls of a regular metric space. Conversely,
in Section 7, we study the properties of the metric spaces
constructed from symmetric balls having a morphological
closure property. Finally, in Section 8, we show the
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existence of a bijection between the set of integer-valued
translation-invariant regular metrics defined on the discrete
plane and the set of symmetric balls that satisfy the
morphological closure property.

2. Regular metric space

We first recall the definitions of distance, metric and
metric space.

Definition 1 (metric space) – Let E be a nonempty set. A
distance d on E is a mapping from E × E to R (the set of real
numbers) satisfying, for any x and y ∈ E:
(i) d(x, y) ≥ 0, (positiveness)
(ii) d(x, y) = 0 ⇔ x = y,
(iii) d(x, y) = d(y, x). (symmetry)
Furthermore, a distance d on E is a metric if in addtion it
satisfies, for any x, y and z ∈ E:
(iv) d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)
A metric space (E, d) is a set E provided with a metric d on
E. ♦

The mapping d0 from E × E to R defined by, for any x and
y ∈ E:
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is an example of metric, it is called the discrete metric.
In a metric space we can define the concepts of straight-

line and sphere. Furthermore, based on these concepts, we
can define what we call a regular metric and a regular metric
space.

Let (E, d) be a metric space. For any x and y ∈ E, and any
i ∈ d({x} × E) (i.e., the image of {x} × E through d), let us
define the following subsets of E:

L1(x, y) = {z ∈ E: d(x, z) = d(x, y) + d(y, z)},
L2(x, y) = {z ∈ E: d(x, y) = d(x, z) + d(z, y)},

L3(x, y) = {z ∈ E: d(z, y) = d(z, x) + d(x, y)}, and
S(x, i) = {z ∈ E: d(x, z) = i}.

The subsets L(x, y) = L1(x, y) ∪ L2(x, y) ∪ L3(x, y) and
S(x, i) are, respectively, the straight-line passing through the
points x and y, and the sphere with center at x and of radius i.

Figure 1 and Figure 2 in this section show examples of
spheres and straight-lines. We must be aware that the above
definition of straight-line is based on the concept of metric
and the resulting object is generally different from the usual
straight-line defined in the framework of linear vector space.

Because of the symmetry property of the distances, the
straight-lines have some kind of symmetry as well.

Proposition 2 (straight-line symmetry) – Let (E, d) be a
metric space. For any x and y ∈ E,
(i) L1(x, y) = L3(y, x)
(ii) L2(x, y) = L2(y, x)
(iii) L(x, y) = L(y, x). ♦

Proof
(a) Lut us prove (i). For any x, y and z ∈ E,
z ∈ L1(x, y) ⇔ d(x, z) = d(x, y) + d(y, z) (definition of L1)

⇔ d(z, x) = d(y, x) + d(z, y) (symmetry of d)
⇔ d(z, x) = d(z, y) + d(y, x)(commutativity of +)
⇔ z ∈ L3(y, x), (definition of L3)

that is, L1(x, y) = L3(y, x).
(b) Let us prove (ii). For any x, y and z ∈ E,
z ∈ L2(x, y) ⇔ d(x, y) = d(x, z) + d(z, y) (definition of L2)

⇔ d(y, x) = d(z, x) + d(y, z) (symmetry of d)
⇔ d(y, x) = d(y, z) + d(z, x)(commutativity of +)
⇔ z ∈ L2(y, x), (definition of L2)

that is, L2(x, y) = L2(y, x).
(c) Let us prove (iii). For any x and y ∈ E,
L(x, y) = L1(x, y) ∪ L2(x, y) ∪ L3(x, y) (definition of L)

= L3(y, x) ∪ L2(y, x) ∪ L1(y, x) (from (i) and (ii))
= L1(y, x) ∪ L2(y, x) ∪ L3(y, x) (commutativity of ∪)
= L(y, x), (definition of L)

that is, L(x, y) = L(y, x). ♦

We first define the regular metric space from three
axioms.

Definition 3 (regular metric space) – Let (E, d) be a metric
space. The metric d on E is
(i) lower regular of type 1 if S(x, i) ∩ L1(x, y) ≠ ∅, for
any x and y ∈ E, and any i ∈ d({x} × E), such that d(x, y) ≤ i;
(ii) lower regular of type 2 if S(x, i) ∩ L2(x, y)  ≠ ∅, for
any x and y ∈ E, and any i ∈ d({x} × E), such that i ≤ d(x, y);
(iii) upper regular if S(x, i) ∩ L3(x, y)  ≠ ∅, for any x and y
∈ E, and any i ∈ d({x} × E);
(iv) regular if it is lower regular (of type 1 and 2) and upper
regular. A metric space (E, d) is regular if its metric is
regular. ♦

Actually, the three regularity axioms are not independent
each other as we show in the next proposition.

Proposition 4 (axiom dependence) – Let (E, d) be a metric
space. The metric d on E is lower regular of type 1 if and
only if (iff) it is upper regular. ♦

Proof
(a) Let us prove that the lower regularity of type 1 implies
the upper regularity. For any x and y ∈ E, and any i ∈ d({x} ×
E),
(d is lower regular of type 1) ⇒ S(y, i + d(x, y)) ∩ L1(y, x) ≠
∅

(definition of lower regularity of type 1)
⇔ S(y, i + d(x, y)) ∩ L3(x, y) ≠ ∅

(Property (i) of Proposition 2 - straight-line symmetry)
⇔ ∃ z ∈ E: d(y, z) = i + d(x, y) and d(z, y) = d(z, x) + d(x, y)

(definitions of S and L3)
⇔ ∃ z ∈ E: d(z, y) = i + d(x, y) and d(z, y) = d(z, x) + d(x, y)

(symmetry of d)
⇔ ∃ z ∈ E: d(z, x) = i and d(z, y) = d(z, x) + d(x, y)

(transitivity of = and regularity of +)
⇔ ∃ z ∈ E: d(x, z) = i and d(z, y) = d(z, x) + d(x, y)
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(symmetry of d)
⇔ S(x, i) ∩ L3(x, y)  ≠ ∅,

(definitions of S and L3)
that is, d is upper regular.
(b) Let us prove that the upper regularity implies the lower
regularity of type 1. For any x and y ∈ E, and any i ∈ d({x} ×
E) such that d(x, y) ≤ i,
(d is upper regular) ⇒ S(y, i – d(x, y)) ∩ L3(y, x) ≠ ∅

(definition of upper regularity)
⇔ S(y, i – d(x, y)) ∩ L1(x, y) ≠ ∅

(Property (ii) of Proposition 2)
⇔∃ z ∈ E: d(y, z) = i – d(x, y) and d(x, z) = d(x, y) + d(y, z)

(definitions of S and L1)
⇔ ∃ z ∈ E: d(x, y) + d(y, z) = i and d(x, z) = d(x, y) + d(y, z)

(+ versus –)
⇔ ∃ z ∈ E: d(x, z) = i and d(x, z) = d(x, y) + d(y, z)

(transitivity of =)
⇔ S(x, i) ∩ L1(x, y)  ≠ ∅,

(definitions of S and L1)
that is, d is lower regular of type 1. ♦

The axiom dependence allows us to make an equivalent
definition of regular metric, but simpler with only two
axioms, the lower regularity of type 2 being called simply
lower regularity.

Corollary 5  (first equivalent definition of regular metric) –
Let (E, d) be a metric space. The metric d on E is
(i) lower regular if S(x, i) ∩ L2(x, y) ≠ ∅, for any x and y
∈ E, and any i ∈ d({x} × E), such that i ≤ d(x, y);
(ii) regular iff it is lower and upper regular. ♦

Proof
(a) If d is regular in the sense of Definition 3, then d is
regular in the sense of the corollary statement since lower
regularity means lower regularity of type 2.
(b) Conversely, if d is regular in the sense of the corollary
statement, then d is lower regular of type 2 and upper
regular, therefore by Proposition 4 (axiom dependence) it is
also lower regular of type 1, that is, it is regular in the sense
of Definition 3. ♦

In order to prove another equivalent definition of regular
metric, we need the following lemma.

Lemma 6 (straight-line and sphere intersection properties) –
Let d be a metric on a set E. For any x and y ∈ E, and any i ∈
d({x} × E),
(i) S(x, i) ∩ L1(x, y) ≠ ∅ ⇒ d(x, y) ≤  i;
(ii) S(x, i) ∩ L2(x, y) ≠ ∅ ⇒ i ≤ d(x, y). ♦

Proof
(a) Let us prove (i). For any x and y ∈ E, and any i ∈ d({x} ×
E),
S(x, i) ∩ L1(x, y) ≠ ∅
⇔ ∃ u ∈ E: d(x, u) = d(x, y) + d(y, u) and d(x, u) = i

(definitions of S and L1)
⇒ ∃ u ∈ E: i = d(x, y) + d(y, u)

(substitution)

⇒ d(x, y) ≤ i. (Definition 1 - positiveness of d)
(b) Let us prove (ii). For any x and y ∈ E, and any i ∈ d({x} ×
E),
S(x, i) ∩ L2(x, y) ≠ ∅
⇔ ∃ u ∈ E: d(x, y) = d(x, u) + d(u, y) and d(x, u) = i

(definitions of S and L2)
⇒ ∃ u ∈ E: d(x, y) = i + d(u, y)

(substitution)
⇒ i ≤ d(x, y). (Definition 1 - positiveness of d)

♦

The next proposition allows a geometrical interpretation
for the regular metrics.

Proposition 7 (second equivalent definition of regular
metric) – A metric d on E is regular iff for any x and y ∈ E,
and any i ∈ d({x} × E), the intersection between the straight-
line L(x, y) and the sphere S(x, i) have at least two
diametrically opposite points in the sense that it exists u and
v ∈ S(x, i) such that u ∈ (L1(x, y) ∪ L2(x, y)) and v ∈ L3(x, y).

♦

Proof
(a) Let us assume that d is a regular metric on E. Since, for
any x and y ∈ E, and any i ∈ d({x} × E), at least one of the
two conditions d(x, y) ≤ i and i ≤ d(x, y) is satisfied, by
Definition 3 (regular metric space), at least one of the two
properties L1(x, y) ∩ S(x, i) ≠ ∅ and L2(x, y) ∩ S(x, i) ≠ ∅ is
satisfied, in other words, we have (L1(x, y) ∪ L2(x, y)) ∩ S(x,
i) ≠ ∅. That is, ∃ u ∈ S(x, i): u ∈ (L1(x, y) ∪ L2(x, y)).
Furthemore, by Definition 3 again, for any x and y ∈ E, and
any i ∈ d({x} × E), L3(x, y) ∩ S(x, i) ≠ ∅. That is, ∃ v ∈ S(x,
i): v ∈ L3(x, y).
(b) Conversely, let us assume that for any x and y ∈ E, and
any i ∈ d({x} × E), ∃ u and v ∈ S(x, i): u ∈ (L1(x, y) ∪ L2(x,
y)) and v ∈ L3(x, y).
(b1) If i < d(x, y),
true ⇔ S(x, i) ∩ (L1(x, y) ∪ L2(x, y)) ≠ ∅ and

i < d(x, y) (hypotheses)
⇒ S(x, i) ∩ (L1(x, y) ∪ L2(x, y)) ≠ ∅ and

S(x, i) ∩ L1(x, y) = ∅
(Property (i) of Lemma 6)

⇔ (S(x, i) ∩ L1(x, y)) ∪ (S(x, i) ∩ L2(x, y)) ≠ ∅ and
S(x, i) ∩ L1(x, y) = ∅ (distributivity of ∩ over ∪)

⇔ S(x, i) ∩ L2(x, y) ≠ ∅ (∅ is unity for ∪)
⇒ d is lower regular.

(Corollary 5 - first equivalent definition of regular metric)
If d(x, y) = i,
true ⇔ ∃ u ∈ E: d(x, y) = d(x, u) + d(u, y) and d(x, u) = i

(namely u = y and Property (ii) of Definition 1)
⇔ S(x, i) ∩ L2(x, y) ≠ ∅ (definitions of S and L2)
⇒ d is lower regular. (Corollary 5)

(b2)
true ⇔ S(x, i) ∩ L3(x, y) ≠ ∅ (hypothesis)

⇒ d is upper regular. (Corollary 5)
That is, by Corollary 5, d is regular. ♦
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The Euclidean distance d on R2, given by, for any x = (x1,
x2) and any y = (y1, y2) ∈ Z2,

d(x, y) = 2
22

2
11 )()( yxyx −+− ,

is regular, nevertheless, when restricted to the discrete plane
Z2 it is not regular. For example, the straight-line L(x, y)
containing x = (0, 0) and y = (1, 1) consists of the points (i, i)
with i ∈ Z, and the sphere S(x, 1) of radius 1 with center at x
consists of the points (0, 1), (1, 0), (0, −1) and (−1, 0). We
observe that this line and this sphere have no intersection.
The left-hand side of Figure 1 illustrates this point. Another
example of non-regular metric in the discrete plane can be
built from the elliptic distance d given by, for any x = (x1, x2)
and any y = (y1, y2) ∈ Z2,

d(x, y) = 22
22

22
11 /)(/)( byxayx −+− ,

with a = 5/3 and b = 5/4. For example, the straight-line L(x,
y) containing x = (0, 0) and y = (2, 1) consists of the points
(2i, i) with i ∈ Z, and the sphere S(x, 1) of radius 1 with
center at x consists of the points (1, 1), (1, − 1), (− 1, −1)
and (−1, 1). Again, both have no intersection. The right-hand
side of Figure 1 illustrates this point.

x x

Figure 1 - Examples of non-regular metrics

The discrete metric is not regular despite the fact that for
any x and y ∈ E, x ≠ y and any i ∈ d0({x} × E) = {0, 1}, S(x, i)
∩ L(x, y) ≠ ∅ (since L(x, y) = {x, y}, S(x, 0) = {x} and S(x,
1) = {y}). For the discrete metric, we cannot find two
diametrically opposite points since L3(x, y) = {x} and x ∉
S(x, 1).

From now on, we restrict ourself to translation-invariant
metrics on an Abelian group. Such metric property suits
most image analysis problems.

Definition 8 (translation-invariant metric sapce) – A
distance or metric d on an Abelian group (E, +) is
translation-invariant (t.i.) if, for any u, x and y ∈ E: d(x +
u, y + u) = d(x, y). A translation-invariant metric space  (E,
d) is a set E provided with a t.i. metric d on E. ♦

As it is well known, every translation-invariant metric on
E can be characterized in terms of a mapping from E to R as
stated in the next proposition.

Let (E, +, o) be an Abelian group where o is the unit
element of +. The subtraction on E, denoted –, is the
mapping E × E ∋ (x, y) a x + (– y) ∈ E, where – y is the
inverse of y.

For any mapping d from E × E to R and any x ∈ E, let
fd (x) = d(x, o).

For any mapping f from E to R and any x and y ∈ E let
df(x, y) = f(x – y).

Proposition 9 (characterization of translation-invariant
metric) – The mapping d a fd from the set of translation-
invariant distances on an Abelian group (E, +, o) to the set of
mappings f from E to R satisfying the properties, for any x ∈
E:
(i) f(x) ≥ 0, (positiveness)
(ii) f(o) = 0,
(iii) )()( xfxf =− , (symmetry)

is a bijection and its inverse is f a df. Furthermore, d a fd

is, as well, a bijection from the set of translation-invariant
metrics on the Abelian group (E, +, o) to the set of mappings
f from E to R satisfying the properties (i) - (iii) and the
property, for any x and y ∈ E:
(iv) f(x + y) = f(x) + f(y) (subadditivity).

♦
Proof
Let us divide the proof into four parts.
(a) Let d be a mapping from E × E to R.
(a1) Let us assume that d satisfies Property (i) of Definition
1. For any x ∈ E,
fd(x) = d(x, o) (definition of fd)

≥ 0, (hypothesis)
that is fd satisfies Property (i).
(a2) Let us assume that d satisfies Property (ii) of Definition
1.
fd(o) = d(o, o) (definition of fd)

= 0, (hypothesis)
that is fd satisfies Property (ii).
(a3) Let us assume that d satisfies Property (iii) of
Definition 1. For any x ∈ E,

),()( oxdxfd −=− (definition of fd)

),( xod= (d is t.i.)

),( oxd= (hypothesis)

)(xfd= , (definition of fd)

that is fd satisfies Property (iii).
(a4) Let us assume that d satisfies Property (iv) of
Definition 1. For any x and y ∈ E,
fd(x + y) = d(x + y, o) (definition of fd)

≤ d(x + y, y) + d(y, o) (hypothesis)
= d(x, o) + d(y, o) (d is t.i.)
= fd(x) + fd(y), (definition of fd)

that is fd satisfies Property (iv).
In other words, from (a1) - (a3), if d is a t.i. distance then fd

satisfies Properties (i) - (iii), and, from (a1) - (a4), if d is a
t.i. metric then fd satisfies Properties (i) - (iv).
(b) Let f be a mapping from E to R.
(b1) Let us assume that f satisfies Property (i). For any x and
y ∈ E,
df(x, y) = f(x – y) (definition of df)

≥ 0, (hypothesis)
that is df satisfies Property (i) of Definition 1.
(b2) Let us assume that f satisfies Property (ii). For any x ∈
E,
df(x, x) = f(x – x) (definition of df)

= f(o) (group porperty)
= 0, (hypothesis)

that is df satisfies Property (ii) of Definition 1.
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(b3) Let us assume that f satisfies Property (iii). For any x
and y ∈ E,
df(x, y) = f(x – y) (definition of df)

= f(– (x – y)) (hypothesis)
= f(y – x) (group property)
= df(y, x) (definition of df)

that is df satisfies Property (iii) of Definition 1.
(b4) Let us assume that f satisfies Property (iv). For any x, y
and z ∈ E,
df(x, y) = f(x – y) (definition of df)

= f((x – z) + (z – y)) (group property)
≤ f(x – z) + f(z – y) (hypothesis)
= df(x, z) + df(z, y), (definition of df)

that is df satisfies Property (iv) of Definition 1.
In other words, from (b1) - (b3), if f satisfies Properties (i) -
(iii) then df is a t.i. distance and, from (b1) - (b4), if f
satisfies Properties (i) - (iv) then df is a t.i. metric.
(c) Let d be a t.i. distance on an Abelian group (E, +, o). For
any x and y ∈ E,

)(),( yxfyxd dfd
−= (definition of df)

= d(x – y, o) (definition of fd)
= d(x, y), (d is t.i.)

that is, f a df is the left inverse of d a fd.
(d) Let f be a mapping from E to R. For any x ∈ E,

),()( oxdxf fd f
= (definition of fd)

= f(x – o) (definition of df)
= f(x), (group properties)

that is, f a df is the right inverse of d a fd.
In other words, from (a) - (d), both mappings d a fd from
the set of distances and the set of metrics are bijections. ♦

In the case of t.i. metrics, we can make an explicit
relationship between the above concept of regular metric and
the concepts of upper and lower regularity proposed by
Kiselman [5] in order to compare balls with different
centers. Let us recall the Kiselman's definitions.

Definition 10 (first definition of Kilselman's regularity for
a metric) – Let (E, +, o) be an Abelian Group and let f a
mapping from E to R satisfying Properties (i) - (iv) of
Proposition 9 (characterization of t.i. metric), then the
translation-invariant metric df on (E, +, o) is
(i) lower regular (of type 1) for the triangle inequality
if, for any x and y ∈ E such that f(y) ≤ f(x), there exists a
point x~ ∈ E such that )()~( xfxf =  and

)()~()~( yfyxfxf +−= ;

(ii) lower regular (of type 2) for the triangle inequality
if, for any x and y ∈ E such that f(x) ≤ f(y), there exists a
point x~ ∈ E such that )()~( xfxf =  and

)~()~()( xyfxfyf −+= ;

(iii) upper regular for the triangle inequality if, for any x
and y ∈ E, there exists a point y~ ∈ E such that )()~( yfyf =
and )~()()~( yfxfyxf +=+ . ♦

In [5], Kiselman has defined Axioms (i) and (iii). For the
sake of compleness, we have added here Axiom (ii) and the
expressions "type 1" and "type 2".

Actually, we can rewrite Definition 10 as shown below.

Definition 11 (second definition of Kilseman's regularity
for a metric) – A translation-invariant metric d on an Abelian
group (E, +, o) is
(i) lower regular (of type 1) for the triangle inequality
if, for any x and y ∈ E such that fd(y) ≤ fd(x), there exists x~ ∈
E such that )()~( xfxf dd =  and )()~()~( yfyxfxf ddd +−= ;

(ii) lower regular (of type 2) for the triangle inequality
if, for any x and y ∈ E such that fd(x) ≤ fd(y), there exists x~ ∈
E such that )()~( xfxf dd =  and )~()~()( xyfxfyf ddd −+= ;

(iii) upper regular for the triangle inequality if, for any x
and y ∈ E, there exists y~ ∈ E such that )()~( yfyf dd =  and

)~()()~( yfxfyxf ddd +=+ . ♦

Because of Proposition 9 (characterization of t.i.
metric), both definitions correspond to exactly the same
class of metrics.

Proposition 12 (definition equivalence) – Let A be the
subset of mappings f from E to R satisfying Properties (i) -
(iv) of Proposition 9 (characterization of t.i. metric) and let
B be the subset of mappings f in A satisfying Conditions (i) -
(iii) of Definition 10, then the set (f a df)(B) (the image of
B through the inverse of d a fd) is equal to the set

)()( 1 Bfd d
−a (the inverse image of B through d a fd). ♦

Proof
By Proposition 9 (characterization of t.i. metric), f a df  is a
left and right inverse for the mapping d a fd  from the set of
translation-invariant metrics to the set A, therefore, for any

subset X of A, (f a df)(X) = )()( 1 Xfd d
−a . So, the equality

is also true for B. ♦

By using the second definition of Kiselman's regularity for a
metric, we show now that the t.i. regular metrics satisfy the
Kiselman's regularity axioms and conversely.

Proposition 13 (equivalent definition of translation-
invariant regular metric) – Let d be a translation-invariant
metric on an Abelian group (E, +, o), then,
(i) d is lower regular of type 1 in the sense of Definition 3
(regular metric space) iff d is lower regular of type 1 for the
triangle inequality;
(ii) d is lower regular of type 2 in the sense of Definition 3
iff d is lower regular of type 2 for the triangle inequality;
(iii) d is upper regular in the sense of Definition 3 iff d is
upper regular for the triangle inequality;
(iv) d is regular iff d is lower regular of type 2 and upper
regular for the triangle inequality. ♦

Proof
Let us divide the proof into three parts.
(a) Let us prove (i).
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(a1) Let x and y ∈ E, then fd(x) and fd(y) ∈ d({o} × E). Let us
assume that fd(y) ≤ fd(x),
(d is lower regular of type 1 in the sense of Definition 3)
⇒ S(o, fd(x)) ∩ L1(o, y) ≠ ∅ and d(o, y) ≤ fd(x)

(Definition 3 - regular metric space)
⇔ ∃ x~ ∈ E: d(o, x~ ) = d(o, y) + d(y, x~ ) and d(o, x~ ) = fd(x)

(definitions of S and L1)
⇔ ∃ x~ ∈ E: d( x~ , o) = d(y, o) + d( x~ , y) and d( x~ , o) = fd(x)

(Definition 1 - symmetry of d)
⇔ ∃ x~ ∈ E: d( x~ , o) = d(y, o) + d( x~  – y, o) and

d( x~ , o) = fd(x) (d is t.i. and group properties)
⇔ ∃ x~  ∈ E: fd( x~ ) = fd(y) + fd( x~ – y) and  fd( x~ ) = fd(x)

(definition of fd)
⇔ (d is lower regular of type 1 for the triangle inequality).

(Definition 11)
(a2) Conversely, let x and y ∈ E, and i ∈ d({x} × E) such that
d(x, y) ≤ i, then fd(y – x) ≤ i (since d is t.i. and symmetric);
furthermore,
(d is lower regular of type 1 for the triangle inequality)
⇒ ∃ x~ ∈ E: fd( x~ ) = fd(y – x) + fd( x~ – (y – x)) and  fd( x~ ) = i

(Definition 11)
⇔ ∃ x~ ∈ E: d( x~ , o) = d(y – x, o) + d( x~  – (y – x), o) and

d( x~ , o) = i
(definition of fd)

⇔ ∃ x~ ∈ E: d( x~ , o) = d(y – x, o) + d( x~ + x – y, o) and
d( x~ , o) = i (group properties)

⇔ ∃ x~ ∈ E: d( x~ + x, x) = d(y, x) + d( x~ + x, y) and
d( x~ + x, x) = i (d is t.i. and group properties)

⇔ ∃ u ∈ E: d(u, x) = d(y, x) + d(u, y) and d(u, x) = i
(namely u = x~ + x)

⇔ ∃ u ∈ E: d(x, u) = d(x, y) + d(y, u) and d(x, u) = i
(d is symmetric)

⇔ S(x, i) ∩ L1(x, y) ≠ ∅ (definitions of S and L1)
⇔ (d is lower regular of type 1 in the sense of Definition 3).

(Definition 3)
(b) Let us prove (ii).
(b1) Let x and y ∈ E, then fd(x) and fd(y) ∈ d({o} × E). Let us
assume that such that fd(x) ≤ fd(y),
(d is lower regular of type 2 in the sense of Definition 3)
⇒ S(o, fd(x)) ∩ L2(o, y) ≠ ∅ and fd(x) ≤  d(o, y)

(Definition 3)
⇔ ∃ x~ ∈ E: d(o, y) = d(o, x~ ) + d( x~ , y) and d(o, x~ ) = fd(x)

(definitions of S and L2)
⇔ ∃ x~ ∈ E: d(o, y) = d(o, x~ ) + d(o, y – x~ ) and

d(o, x~ ) = fd(x) (d is t.i. and group properties)
⇔ ∃ x~ ∈ E: d(y, o) = d( x~ , o) + d(y – x~ , o) and

d( x~ , o) = fd(x) (Definition 1 - symmetry of d)
⇔ ∃ x~  ∈ E: fd(y) = fd( x~ ) + fd(y – x~ ) and  fd( x~ ) = fd(x)

(definition of fd)
⇔ (d is lower regular of type 2 for the triangle inequality).

(Definition 11)
(b2) Conversely, let x and y ∈ E, and i ∈ d({x} × E) such that
i ≤ d(x, y), then i ≤ fd(y – x) (since d is t.i. and symmetric);
furthermore,
(d is lower regular of type 2 for the triangle inequality)
⇒ ∃ x~ ∈ E: fd(y – x) = fd( x~ ) + fd ((y – x) – x~ ) and  fd( x~ ) = i

(Definition 11)

⇔ ∃ x~ ∈ E: d(y – x, o) = d( x~ , o) + d((y – x) – x~ , o) and
d( x~ , o) = i

(definition of fd)
⇔ ∃ x~ ∈ E: d(y – x, o) = d( x~ , o) + d(y – ( x~ + x), o) and

d( x~ , o) = i (group properties)
⇔ ∃ x~ ∈ E: d(y, x) = d( x~ + x, x) + d(y, x~ + x) and

d( x~ + x, x) = i (d is t.i. and group properties)
⇔ ∃ u ∈ E: d(y, x) = d(u, x) + d(y, u) and d(u, x) = i

(namely u = x~ + x)
⇔ ∃ u ∈ E: d(x, y) = d(x, u) + d(u, y) and d(x, u) = i

(d is symmetric)
⇔ S(x, i) ∩ L2(x, y) ≠ ∅ (definitions of S and L2)
⇔ (d is lower regular of type 2 in the sense of Definition 3).

(Definition 3)
(c) Let us prove (iii).
(c1) Let x and y ∈ E, then fd(x) and fd(y) ∈ d({o} × E);
furthermore,
(d is upper regular in the sense of Definition 3)
⇒ S(o, fd(y)) ∩ L3(o, x) ≠ ∅

(Definition 3)
⇔ ∃ y~ ∈ E: d(– y~ , x) = d(– y~ , o) + d(o, x) and

d(o, y~ ) = fd(y) (definitions of S and L3)

⇔ ∃ y~ ∈ E: d(o, x + y~ ) = d(o, y~ ) + d(o, x) and

d(o, y~ ) = fd(y) (d is t.i. and group properties)

⇔ ∃ y~ ∈ E: d(x + y~ , o) = d( y~ , o) + d(x, o) and

d( y~ , o) = fd(y) (Definition 1 - symmetry of d)

⇔ ∃ y~  ∈ E: fd(x + y~ ) = fd(x) + fd( y~ )and  fd( y~ ) = fd(y)

(definition of fd)
⇔ (d is upper regular for the triangle inequality).

(Definition 11)
(c2) Conversely, let x and y ∈ E, and i ∈ d({x} × E), then,
(d is upper regular for the triangle inequality)
⇒ ∃ y~ ∈ E: fd((y – x) + y~ ) = fd ( y~ ) + fd(y – x) and

 fd( y~ ) = i

(Definition 11)
⇔ ∃ y~ ∈ E: d((y – x) + y~ , o) = d( y~ , o) + d(y – x, o) and

d( y~ , o) = i

(definition of fd)
⇔ ∃ y~ ∈ E: d(y – (x – y~ ), o) = d( y~ , o) + d(y – x, o) and

d( y~ , o) = i (group properties)

⇔ ∃ y~ ∈ E: d(y, x – y~ ) = d(x, x – y~ ) + d(y, x) and

d(x, x – y~ ) = i (d is t.i. and group properties)

⇔ ∃ v ∈ E: d(y, v) = d(x, v) + d(y, x) and d(x, v) = i
(namely v = x – y~ )

⇔ ∃ v ∈ E: d(v, y) = d(v, x) + d(x, y) and d(x, v) = i
(d is symmetric)

⇔ S(x, i) ∩ L3(x, y) ≠ ∅ (definitions of S and L3)
⇔ (d is upper regular in the sense of Definition 3).

(Definition 3)
(d) Property (iv) is a consequence of Corollary 5 (first
equivalent defintion of regular metric) and Properties (ii) -
(iii). ♦
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Actually, we have reused in this work the word "regular"
of the Kiselman's definitions for the metric satisfying
Definition 3 because of the previous proposition.

As a consequence of Property (iv), we observe that the
important Kiselman's axioms are the lower regularity of type
2 and the upper regularity for the triangle inequality and not
the lower regularity of type 1 for the triangle inequality.

Proposition 13 may be a short cut for the proof that some
t.i. metrics are regular as we show now for the chessboard
distance which is of particular interest in image processing.

The set Z2 equipped with the addition ((x1, x2), (y1, y2))
a  (x1 + y1, x2 + y2), denoted +, forms an Abelian group (Z2,
+, o) with o = (0, 0) as unitary element.

Definition 14 (chessboard distance) – The chessboard
distance d8(x, y) between x = (x1, x2) and y = (y1, y2) in Z2 is
the natural number defined by
d8(x, y) = max{| x1 – y1|, | x2 – y2|}.
The mapping d8: (x, y) a  d8(x, y) from Z2 × Z2 to R, is
called the chessboard distance. ♦

Actually, the chessboard distance d8 is a metric.
Furthermore, with respect to the Abelian group (Z2, +, o), d8

is by construction tanslation-invariant.
Let f8 =

8df , and let z = (z1, z2) be a point in Z2 then,

f8(z) = d8(z, o) (definition of fd)
= max{| z1 – 0 |, | z2 – 0 |} (Definition 14- def. of d8)
= max{| z1 |, | z2 |}. (properties of + on Z)

In other words, f8 is given by, for any z = (z1, z2) ∈ Z2,
f8(z) = max{| z1 |, | z2 |}.

Let us show that d8 is regular.

Proposition 15 (example of regular metric space) – The
metric space (Z2, d8) is regular. ♦

Proof
(a) Let us show that d8 is lower regular (of type 2) for the
triangle inequality. Let x = (x1, x2) and y = (y1, y2) ∈ Z2 such
that f8(x) ≤ f8(y), let i = f8(x) and let x~ = (sign(y1).min{| y1|,
i}, sign(y2).min{| y2 |, i}), then
f8( x~ ) = max{| sign(y1).min{| y1|, i} |, | sign(y2).min{| y2 |, i} |}

(expressions of f8 and x~ )
= max{min{| y1|, i}, min{| y2 |, i}} (i ≥ 0)
= i (by hypothesis, i ≤ max{| y1|, | y2 |})
= f8(x). (hypothesis)

Furthermore, for k = 1, 2,
| yk – kx~ | = | yk – sign(yk).min{| yk |, i} | (expression of kx~ )

= | sign(yk).yk – min{| yk |, i} |
(properties of sign and   • )

= | | yk | – min{| yk |, i} |.
(definition of   • )

If | y1| ≤ | y2 |, then
| y1 – 1

~x | = | | y1| – min{| y1|, i} | (see above, k = 1)

= 
otherwise

 if
   

0 1

1

iy
iy

≤





−
(definition of min)

and

| y2 – 2
~x | = | | y2 | – min{| y2|, i} | (see above, k = 2)

= | y2 | – i (by hypothesis, i ≤ | y2 |)
therefore, | y1 – 1

~x | ≤ | y2 – 2
~x |.

In other words, if | y1| ≤ | y2 |, then
max{| y1 – 1

~x |, | y2 – 2
~x |} = | y2 – 2

~x | (see above)

= | y2 | – i (see above)
= max{| y1 |, | y2 |} – i. (hypothesis)

If | y2 | ≤ | y1|, then, under the same arguments,
max{| y1 – 1

~x |, | y2 – 2
~x |} = max{| y1 |, | y2 |} – i. Hence, in

any case, max{| y1 – 1
~x |, | y2 – 2

~x |} = max{| y1 |, | y2 |} – i.

Finally,
f8( x~ ) + f8(y – x~ ) = i  +  f8(y – x~ ) (see above)

= i + max{| y1 – 1
~x |, | y2 – 2

~x |} (expression of f8)

= i + max{| y1 |, | y2 |} – i (see above)
= max{| y1 |, | y2 |} (cancelation)
= f8(y) (expression of f8)

That is, for any x and y ∈ Z2 such that f8(x) ≤ f8(y), there
exists a point x~ ∈ Z2 such that )()~( 88 xfxf =  and

)~()~()( 888 xyfxfyf −+= . In other words, d8 is lower

regular (of type 2) for the triangle inequality.
(b) Let us show that d8 is upper regular for the triangle
inequality. Let x = (x1, x2) and y = (y1, y2) ∈ Z2, let i = f8(y)
and let y~ = (sign(x1).i, sign(x2).i), then

f8( y~ ) = max{| sign(x1).i |, | sign(x2).i |} (expression of y~ )

= max{i, i} (i ≥ 0)
= i (max is idempotent)
= f8(y). (hypothesis)

Furthermore,
f8(x + y~ ) = max{| x1 + 1

~y |, | x2 + 2
~y |} (expression of f8)

= max{| x1 + sign(x1).i |, | x2 + sign(x2).i |}
(expression of y~ )

= max{| sign(x1).x1 + i |, | sign(x2).x2 + i |}
(properties of sign and   • )

= max{| | x1| + i |, | | x2 | + i |}
(definition of   • )

= max{| x1| + i, | x2 | + i}
(i ≥ 0)

= max{| x1 |, | x2|} + i (distribuitvity of + over max)
= f8(x) + i (expression of f8)
= f8(x) + f8( y~ ). (see above)

That is, for any x and y ∈ Z2, there exists a point y~ ∈ Z2 such

that )()~( 88 yfyf =  and )~()()~( 888 yfxfyxf +=+ . In other

words, d8 is upper regular for the triangle inequality.
Therefore, by applying Property (iv) of Proposition 13
(equivalent definition of translation-invariant regular metric),
we may conclude that d8 is regular. ♦

The upper part of Figure 2 shows the "straight-line" L(x, y)
relative to the chessboard distance d8 passing through the
point x and y and the "sphere" S(x, 2) of center x and radius 2.
As it was expected from Proposition 7, we observe that they
have a nonempty intersection (see the lower part of the
figure). Furthermore, this intersection have at least two
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diametrically opposite points, for instance, the points u and
v. In this figure, u ∈ L2(x, y) and v ∈ L3(x, y).

Rosenfeld and Pfaltz [8] have shown in their Proposition
6 that d8 satisfies the following property: for any y ∈ Z2 such
that 1 ≤ f8(y), there exists a point x~ ∈ Z2 such that 1)~(8 =xf

and )~()~()( 888 xyfxfyf −+= . This result is a consequence

of the lower regularity (of type 2) of d8. More interesting for
us is their counter example showing that the octogonal
distance doct = sup{d8, g} where g is the distance given by,
for any x = (x1, x2) and y = (y1, y2) in Z2, g(x, y) = 2(| x1 – y1|
+ | x2 – y2| + 1)/3, doesn't satisfy this property. In other
words, such octagonal distance is an example of non-regular
metric.

x
y

L(x, y)

S (x , 2)

x
y

v

u

Figure 2 - Intersection of a diameter and a sphere.

Before ending this section, we show that the good
geometrical properties of the Euclidean vector space
mencioned at the beginning of the introduction are satisfied
in a regular metric space.

First, we show that the lower regularity property for a
distance is a necessary and sufficient condition to have the
usual ball intersection property of the Euclidean vector
space.

Proposition 16 (ball intersection in a lower regular metric
space) – Let (E, d) be a metric space then,
(i) for any x and y ∈ E, any i ∈ d({x} × E) and

any j ∈ d(E × {y}),
∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j ⇒ d(x, y) ≤ i + j,

(ii) (E, d) is lower regular iff, for any x and y ∈ E,
any i ∈ d({x} × E) and any j ∈ d(E × {y}),
d(x, y) ≤ i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j. ♦

Proof
(a) Let us prove Property (i).
For any x and y ∈ E, any i ∈ d({x} × E) and any j ∈ d(E ×
{y}),
∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j
⇔ ∃ z ∈ E: d(x, z) + d(z, y) ≤ i + d(z, y) and i + d(z, y) ≤ i + j

(addition is increasing)
⇒ ∃ z ∈ E: d(x, z) + d(z, y) ≤ i + j (transitivity of ≤)
⇒ d(x, y) ≤ i + j.

(Definition 1 - triangle inequality and transitivity of ≤)
(b) Let us prove the if part of Property (ii).
For any x and y ∈ E, any i ∈ d({x} × E) and any j ∈ d(E ×
{y}),
(d(x, y) ≤ i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j)
(particular case)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j and
d(x, z) + d(z, y) ≤ i + j) (+ is increasing)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j and
d(x, y) ≤ d(x, z) + d(z, y) ≤ i + j) (triangle inequality)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j and
d(x, y) ≤ d(x, z) + d(z, y) ≤ i + j = d(x, y))

(logical derivation)
⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j and

d(x, z) + d(z, y) = i + j) (anti-symmetry of ≤)
⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j and

d(x, z) + d(z, y) = i + j and d(x, z) + d(z, y) ≤ i + d(z, y and
d(x, z) + d(z, y) ≤ d(x, z) + j) (+ is increasing)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j and
d(x, z) + d(z, y) = i + j and i + j ≤ i + d(z, y) and i + j ≤ d(x, z)
+ j) (substitution)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) = i and d(z, y) = j and
d(x, z) + d(z, y) = i + j) (anti-symmetry of ≤)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) = i and d(z, y) = j and
d(x, z) + d(z, y) = d(x, y)) (logical derivation)

⇒ (d(x, y) = i + j ⇒ ∃ z ∈ E: d(x, z) = i and d(x, z) + d(z, y)
= d(x, y)). (logical derivation)
That is, under the hypothesis, for any x and y ∈ E, any i ∈
d({x} × E) and any j ∈ d(E × {y}) such that d(x, y) = i + j, we
have ∃ z ∈ E: d(x, z) = i and d(x, z) + d(z, y) = d(x, y), but this
implies that, for any x and y ∈ E, and any i ∈ d({x} × E), i ≤
d(x, y), we have ∃ z ∈ E: d(x, z) = i and d(x, z) + d(z, y) = d(x,
y), or equivalently by definitions of S and L2, for any x and y
∈ E, and any i ∈ d({x} × E), i ≤ d(x, y), we have S(x, i) ∩
L2(x, y)  ≠ ∅ which proves, by Corollary 5 (first equivalent
definition of regular metric), that d is lower regular.
(c) Let us prove the ony-if part Property (ii).
For any x and y ∈ E, any i ∈ d({x} × E) and any j ∈ d(E ×
{y}), such that d(x, y) ≤ i + j,
(b1) if i = j = 0, then y = x, therefore ∃ z ∈ E: d(x, z) ≤ i and
d(z, y) ≤ j, namely z = y = x;
(b2) if i = 0 and j ≠ 0, then d(x, y) ≤ j, therefore ∃ z ∈ E: d(x,
z) ≤ i and d(z, y) ≤ j, namely z = x;
(b3) if i ≠ 0 and j = 0, then d(x, y) ≤ i, therefore ∃ z ∈ E: d(x,
z) ≤ i and d(z, y) ≤ j, namely z = y;
(b4) if i ≠ 0 and j ≠ 0, and if d(x, y) < i or d(x, y) < j then ∃ z
∈ E: d(x, z) ≤ i and d(z, y) < j, or d(x, z) < i and d(z, y) ≤ j,
namely z = y or z = x;
 (b5) if i ≤ d(x, y) and j ≤ d(x, y),
d is lower regular

⇔ S(x, i) ∩ L2(x, y)  ≠ ∅ (Corollary 5)
⇔ ∃ z ∈ E: d(x, z) + d(z, y) = d(x, y) and d(x, z) = i

(definitions of S and L2)
⇔ ∃ z ∈ E: i + d(z, y) = d(x, y) and d(x, z) = i;

(substitution)
furthermore,
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d(x, y) ≤ i + j ⇒ ∃ z ∈ E: d(x, z) = i and d(z, y) ≤ j
 (lower regularity of d (see above) and + is double-side

increasing)
⇒ ∃ z ∈ E: d(x, z) ≤ i and d(z, y) ≤ j

(reflexivity of ≤)
♦

In order to illustrate better the previous proposition, we
recall the definition of ball derived from a metric and we
give a corollary. We call ball of center x ∈ E and radius i ∈
d({x} × E), derived from a metric d, the subset Bd(x, i) = {z
∈ E: d(x, z) ≤ i}; in the next section we will give another
definition of ball.

Corollary 17 (ball intersection in a lower regular metric
space) – Let (E, d) be a metric space then,
(i) for any x, y ∈ E, any i ∈ d({x} × E) and

any j ∈ d(E × {y}),
Bd(x, i) ∩ Bd(y, j) ≠ ∅  ⇒ d(x, y) ≤ i + j,

(ii) (E, d) is lower regular iff, for any x, y ∈ E,
any i ∈ d({x} × E) and any j ∈ d(E × {y}),
d(x, y) ≤ i + j ⇒ Bd(x, i) ∩ Bd(y, j) ≠ ∅. ♦

Proof
Properties (i) and (ii) are, respectively, equivalent to
Properties (i) and (ii) of Proposition 16 (ball intersection in
a lower regular metric space) since (∃ z ∈ E: d(x, z) ≤ i and
d(z, y) ≤ j) is equivalent to (Bd(x, i) ∩ Bd(y, j) ≠ ∅) by
definition of Bd(x, i). ♦

Figure 3 illustrates a counter example showing that the
elliptic metric restricted to the discrete plane depicted in
Figure 1 doesn't satisfy Property (ii) of Corollary 17. This is
another way to conclude that this elliptic metric is not
regular.

In Figure 3 the ellipses are the locus of points at distance
1 to their centers of symmetry x and y and the elliptic
distance between these centers is d(x, y) = 9/5 which is less
than 2. In other words, the condition d(x, y) ≤ i + j (with i = j
= 1) is satisfied. Nevertheless, as we can see on this figure,
the ball intersection Bd(x, 1) ∩ Bd(y, 1) is empty.

x y

1 1

Figure 3 - Lack of intersection (discrete elliptic distance).

Figure 4 shows two examples of lack of intersection in
the octagonal metric space (Z2, doct). On the left hand-side
the two balls are of radius i = j = 1 and their centers x and y,
2 units apart. On the right-hand-side the two balls are of
radius i = 1 and j = 3, and their centers x and y, 4 units apart.

On both cases the two balls have no intersections despite the
fact that doct(x, y) = i + j. The right-hand side example is due
to Rosenfeld and Pfaltz [8].

Proposition 16 will be a key result to prove Proposition
53 in Section 6 and consequently Proposition 62 of Section
8 showing that the lower regular metrics can be
reconstructed from their unit balls using the Minkowski
product of Section 4.

12 1 341

x
y

y

x

Figure 4 - Lack of intersection (octagonal distance).

Finally, we show that the upper regularity property for a
distance is a sufficient condition to have the usual ball
inclusion property of the Euclidean vector space, see also [5,
Theorem 5.19].

Proposition 18 (ball inclusion in an upper regular metric
space) – Let (E, d) be a metric space then, for any x, y ∈ E,
any i ∈ d({x} × E) and any j ∈ d(E × {y}),
(i) i + d(x, y) ≤ j ⇒ Bd(x, i) ⊂ Bd(y, j),
(ii) if (E, d) is upper regular then

Bd(x, i) ⊂ Bd(y, j) ⇒ i + d(x, y) ≤ j. ♦

Proof
(a) Let us prove Property (i).
For any x, y and z ∈ E, any i ∈ d({x} × E) and any j ∈ d(E ×
{y}),
z ∈ Bd(x, i) ⇔  d(x, z) ≤ i (def. of Bd)

⇔ d(x, y) + d(x, z) ≤ d(x, y) + i
(positivness of d and + is increasing)

⇔ d(y, x) + d(x, z) ≤ d(x, y) + i (symmetry of d)
⇔ d(y, z) ≤ d(y, x) + d(x, z) ≤ d(x, y) + i

(triangle inequality)
⇒ d(y, z) ≤ d(x, y) + i (transitivity of ≤)
⇒ d(y, z) ≤ i + d(x, y) (commutativity of +)
⇒ d(y, z) ≤ d(x, y) + i ≤ j (hypothesis)
⇒ d(y, z) ≤ j (transitivity of ≤)
⇔ z ∈ Bd(y, j), (def. of Bd)

that is, by inclusion definition, under the hypothesis, Bd(x, i)
⊂ Bd(y, j).
(b) Let us prove Property (ii).
Let d be an upper regular metric, let x and y ∈ E, let i ∈
d({x} × E) and let j ∈ d(E × {y}). We divide the proof in five
parts.
(b1) Let us prove that Bd(x, i) ⊂ Bd(y, j) ⇒ d(y, x) ≤ j:
Bd(x, i) ⊂ Bd(y, j) ⇒ x ∈ Bd(y, j)

(d(x, x) = 0 ⇒ x ∈ Bd(x, i))
⇔ d(y, x) ≤ j. (def. of Bd)
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(b2) By Proposition 4 (axiom dependence), if d is upper
regular, then d is lower regular of type 1. Furthermore,
true ⇔ S(y, j) ∩ L1(y, x) ≠ ∅ and S(x, i) ∩ L3(x, y)  ≠ ∅

(d is lower regular of type 1 and by (b1) d(y, x) ≤ j,  and d is
upper regular)

⇔ ∃ u ∈ E: d(y, u) = j and d(y, u) = d(y, x) + d(x, u) and
∃ v ∈ E: d(x, v) = i and d(v, y) = d(v, x) + d(x, y)

(definitions of S, L1 and L3)
(b3) For any v ∈ E,
d(x, v) = i ⇒ v ∈ Bd(x, i) (def. of Bd)

⇒ v ∈ Bd(y, j) (Bd(x, i) ⊂ Bd(y, j))
⇔ d(y, v) ≤ j. (def. of Bd)

(b4) For some u and v ∈ E,
d(x, v) + d(x, y) = d(v, x) + d(x, y) (symmetry of d)

= d(v, y) ((b2))
= d(y, v) (symmetry of d)
≤ j ((b3))
= d(y, u) ((b2))
= d(y, x) + d(x, u) ((b2))
= d(x, y) + d(x, u), (symmetry of d)

that is, for some u and v ∈ E, by regularity of +, d(x, v) ≤
d(x, u).
(b5) For some u and v ∈ E,
i + d(x, y) = d(x, v) + d(x, y) ((b2))

≤ d(x, u) + d(x, y) ((b4))
= d(x, y) + d(x, u) (commutativity of +)
= d(y, x) + d(x, u) (symmetry of d)
= d(y, u) ((b2))
= j, ((b2))

that is, if d is upper regular, then Bd(x, i) ⊂ Bd(y, j) ⇒ i +
d(x, y) ≤ j. ♦

3. Balls

The ball definition in this section is independent of the
concept of distance seen in the previous section. Instead, it is
based on the concepts of set translation and transposition.
Because of our interest in digital image processing, the balls
will be considered as subsets of the discrete plane Z2 (the
Cartesian product of the set of integers by itself).

We denote by P(Z2) the collection of all the subsets of
Z2.

Let N be the set of natural numbers: 0, 1, 2, … A subset X
of Z2 is finite if there exists a natural number n and a
bijection between X and the subset of natural numbers {1, 2,
…, n}. We denote by #X the natural number n, and by #X < ∞
the finiteness of X.

The Abelian group (Z2, +, o) equipped with the scalar
multiplication (j, (x1, x2)) a  j(x1, x2) = (jx1, jx2) with
operand j in Z forms a module over the ring Z [6, p. 166].

We begin recalling the definition of translated version of
a subset.

Definition 19 (translated version) – The translated version
of a subset X of Z2 by a point u  in Z2 is the subset Xu = {y ∈
Z2: y – u ∈ X}. ♦

The next proposition shows a regularity property of the
translated version: if Xu = Xv then u = v. This property will be
important to prove the uniqueness of the concept of radius of
a ball in Section 5. The proof of this property relies on a
basic poset theorem.

Let X and Y be two subsets of Z2. The complement of X in
Z2 is denoted Xc, that is, for any x ∈ Z2, x ∈ Xc ⇔ x ∉ X, and
the difference between X and Y is denoted X – Y, that is, X –
Y = X ∩ Yc.

Proposition 20 (translated version property) – If the subset
X of Z2 is finite, then the mapping u a Xu from Z2 to P(Z2)
is injective. Furthermore, for any u and v in Z2 such that u ≠
v, ≠− uv XX ∅ and ≠− vu XX ∅ or, equivalently, Xu ∩ Xv

≠ Xv and Xu ∩ Xv ≠ Xu. ♦

Proof
Let u be a point in Z2 and let X be a subset of Z2, by the
regularity of the addition on Z2, the mapping x a x + u from
X to Xu is a bijection, therefore, if X is finite then Xu is finite
as well.
Let u ∈ Z2 and let Ru be the binary relation on Z2 given by,
for any x and y ∈ Z2, x Ru y ⇔ ∃ j ∈ N: y = x + ju. Let us
first prove that Ru is a partial order. For any x ∈ Z2, x Ru x is
true since for j = 0, x = x + ju by group property, that is Ru is
reflexive. If u = o, for any x, y ∈ Z2, x Ru y and y Ru x imply x
= y (and y = x). If u ≠ o, for any x and y ∈ Z2,
x Ru y and y Ru x ⇔ ∃ j, k ∈ N: y = x + ju and x = y + ku

(definition of Ru)
⇔ ∃ j, k ∈ N: y = x + ju and x = y + ku and y = y + (j + k)u

(by substitution and module property)
⇔ ∃ j, k ∈ N: y = x + ju and x = y + ku and (j + k)u = o

(o is unitary element of +)
⇔ ∃ j, k ∈ N: y = x + ju and x = y + ku and j + k = 0

(u ≠ o and Z has no zero divisor)
⇔ y = x + ju and x = y + ku and j = k = 0

(natural number property)
⇔ y = x, (natural number property)

that is, Ru is antisymmetric. For any x, y and z ∈ Z2,
x Ru y and y Ru z ⇔ ∃ j, k ∈ N: y = x + ju and z = y + ku

(definition of Ru)
⇔ ∃ j, k ∈ N: z = x + (j + k)u

(by substitution)
⇔ ∃ i ∈ N: z = x + iu (namely, i = j + k)
⇔ x Ru z, (definition of Ru)

that is, Ru is transitive.
Let u and v be two points in Z2, u ≠ v and let X be a finite
subset of Z2, then Xu is finite as well. Therefore, by Theorem
3 of Birkhoff [4] or Theorem 3 of Szász [7], ∃ x ∈ Xu such
that x is maximal with respect to Rv – u.
Let y be the point in Z2 such that y = x + v – u, then x Rv – u y
(doing j = 1 in the definition of Rv – u), y ∈ Xv (by translated
version definition) and y ≠ x (by regularity of the addition on
Z2). Since u ≠ v and x is maximal, x Rv – u z for no z in Xu –
{x}, consequently y doesn't belong to Xu. In other words,
there exists a point in Xv (namely y) which doesn't belong to
Xu, that is, ≠− uv XX ∅ and Xu ≠ Xv. Furthermore, for any u,

v ∈ Z2,
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≠− uv XX ∅ ⇔ Xv ⊄ Xu (B – A) = ∅ ⇔ B ⊂ A)

⇔ Xu ∩ Xv ≠ Xv. (B ⊂ A ⇔ (A ∩ B) = B)
Finally, by changing the role of u and v, for any u and v ∈ Z2,
u ≠ v, ≠− vu XX ∅ and Xv ∩ Xu ≠ Xu. ♦

We go on recalling the definition of transpose of a
subset.

Definition 21 (transpose) – The transpose of a subset X of
Z2 is the subset Xt = {x ∈ Z2 : – x ∈ X}. ♦

A subset X of Z2 is symmetric (with respect to the origin
o) iff it is equal to its transpose, that is X = Xt or
equivalently, iff x ∈ X ⇔ – x ∈ X. Z2 is an example of
symmetric subset. We denote by S the sub collection of all
the finite symmetric subsets of Z2, i.e., S = {X ∈ P(Z2): #X <
∞ and X = Xt} and by S+ the sub collection S + {Z2}.

From the operations of translation and transposition, we
can build the sub collection of symmetric finite subsets and
their translated versions, that we call balls. The symmetry
assumption was made in order to establish, in Sections 6 and
7, the relationship with distance (which is a symmetric
mapping).

Definition 22 (ball) – A subset X of Z2 is a ball iff ∃ u ∈ Z2

such that Xu ∈ S+. ♦

By definition of S+, the set Z2 is a ball. Symmetric
subsets are balls (doing u = o).

The 3 by 3 discrete square, denoted by B8, consisting of
the points (0, 0), (0, 1), (1, 1) (1, 0), (1, 1− ), (0, 1− ),
( 1− , 1− ), ( 1− , 0) ( 1− , 1) is ball since it is a symmetric
subset.

Another important examples of balls (important from the
theoretical point of view) are the singletons (the subsets
containing just one point).

Proposition 23 (ball example) – Any singleton of Z2 is a
ball. ♦

Proof
For any x ∈ Z2,
({x}-x)

t = {x – x}t (Definition 19 - translated version)
= {o}t (group property)
= {– o} (Definition 21 - transpose)
= {o} (group property)
= {x – x} (group property)
= {x}-x , (Definition 19)

in other words, for any x ∈ Z2, ∃ u ∈ Z2 (namely u = – x)
such ({x}u)

t = {x}u , that is, by Definition 22, {x} is a ball of
Z2. ♦

We denote by B+ the sub collection of all the balls and by
B the sub collection of finite balls, i.e., B = B+ − {Z2}. As a
consequence of these definitions, S ⊂ B ⊂ B+ ⊂ P(Z2).

The opposite – u of the point u appearing in the ball
definition is a center of symmetry for the ball, it is called its
center.

Definition 24 (ball center) – Let X be a ball (X ∈ B+), if X is
finite, u ∈ Z2 is the center of X iff X–u ∈ S, and if X is Z2, its
center is the origin o. ♦

Hence, by Definition 22 (ball), a ball of Z2 has always a
center, furthermore, if the ball is finite, this center is unique
as shown in the next proposition. If the ball is Z2, by
convention, we assume that its center is the origin o.

Proposition 25 (ball center construction) – Let X be a finite

ball (i.e., X ∈ B), u is the center of X iff u = Xx
Xx

/#∑
∈

. ♦

Proof
Let R be a relation on Z2 given by x R y ⇔ y = x or y = – x.
By group properties, R is an equivalent relation.

Let u1 be a center of X and let u2 = Xx
Xx

/#∑
∈

.

Let us prove that u1 = u2.

u2 - u1 = 









∑
∈

Xx
Xx

/# – u1 (def. of u2)

= Xux
Xx

/#1 









−∑

∈

(group property)

= ∑
−∈

1

/#
uXv

Xv (v = x – u1)

= ∑
−∈

−+
R/

1

/#))((
uXv

Xvv (u1 center of X ⇒ 
1 uX − ∈ S)

= o, (group properties)
that is, u1 = u2. ♦

We denote by center(X) the center of X ∈ B+. If the
center of X is u, then we say that X is with center at u.

The center of a ball is not sufficient to characterize a ball,
we need one more parameter that we call here the ball
matrix.

Definition 26 (ball matrix) – Let X be a ball (X ∈ B+), the
matrix of X, denoted by matrix(X), is the ball )(center XX − ,

that is, matrix(X) = )(center XX − . ♦

The ball matrix is a symmetric ball.

Proposition 27 (ball matrix property) – Let X be a ball (i.e.,
X ∈ B+), then matrix(X) ∈ S+. ♦

Proof
For any X ∈ B+,

(matrix(X))t = t
)(center )( XX − (ball matrix definition)

= )(center XX − (center definition)

= matrix(X), (ball matrix definition)
that is, matrix(X) ∈ S+. ♦
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The balls with center at origin o are symmetric and every
finite symmetric subset is a ball with center at origin. This,
and other properties of the balls with center at origin are
shown in the next proposition.

Proposition 28 (properties of a ball with center at origin) –
Let B be a ball (i.e., B ∈ B+), then the following statements
are equivalent:
(i) for any x, y ∈ Z2, x ∈ By ⇔ y ∈ Bx,
(ii) B ∈ S+,
(iii) center(B) = o,
(iv) matrix(B) = B. ♦

Proof
(a) Let us prove (i) ⇒ (ii). For any finite ball B (i.e., B ∈ B)
and any x and y ∈ Z2,
x ∈ By ⇔ y ∈ Bx (hypothesis (i))

⇔ x ∈ (Bt)y, (Property (2) of Prop. 4.10 of [2])
that is,  for y = o, Bt = B, in other words, B ∈ S. Furthermore,
for B = Z2, B ∈ S+ as a consequence of the definition of S+.
(b) Let us prove (i) ⇐ (ii). For any symmetric ball B and any
x and y ∈ Z2,
x ∈ By ⇔ x – y ∈ B (Definition 19 - translated version)

⇔ y – x ∈ B (hypothesis (ii))
⇔ y ∈ Bx . (Definition 19)

(c) Let us prove (ii) ⇔ (iii). For any finite ball B,
B ∈ S ⇔ B = Bt (definition of S)

⇔ Bo = (Bo)
t (Property (1) of Prop. 4.6 of [2])

⇔ center(B) = o. (Definition 24 - ball center)
For B = Z2, B ∈ S+ and center(B) = o are both true as a
consequence of the definitions of S+ and center of a ball.
(d) Let us prove (iii) ⇒ (iv). For any ball B,
matrix(B) = )(center BB− (Definition 26 - ball matrix)

= oB− (hypothesis (iii))

= oB (group property)

= B (Property (1) of Prop. 4.6 of [2])
(e) Let us prove (iii) ⇐ (iv). For any ball B,

)(center BB− = matrix(B) (Definition 26)

= B (hypothesis (iv))
= Bo, (Property (1) of Prop. 4.6 of [2])
= oB− (group property)

that is, if B is finite, by Proposition 20 (translated version
property), center(B) = o, if B = Z2, by convention, center(B)
= o as well. ♦

The sub collection of balls is closed under translation as
we show in the next proposition.

Proposition 29 (ball translation) – Let X be a finite ball
(i.e., X ∈ B) and let v ∈ Z2, then Xv is a finite ball (i.e., Xv ∈
B). Furthermore, center(Xv) = center(X) + v and matrix(Xv) =
matrix(X). ♦

Proof
Let X be a finite ball and let u = center(X). For any v ∈ Z2,
((Xv)– (u + v))

t = (X– u)
t (Prop. 4.6 of [2])

= X– u (X is a ball and u is its center)
= (Xv) – (u + v), (Prop. 4.6 of [2])

in other words, for any X ∈ B and any v ∈ Z2, ∃ u’ ∈ Z2 :
((Xv)u’)

t = (Xv)u’, namely u’ = – (center(X) + v), that is,
Xv ∈ B and by Definition 24 (ball center), center(Xv) =
center(X) + v.
Let us prove the last statement. For any X ∈ B and any v ∈ Z2,
matrix(Xv) = )(center )(

vXvX − (ball matrix definition)

= )(center  vXvX − (Property (2) of Prop. 4.6 of [2])

= vXvX   )(center  −− (first statement)

= )(center XX − (group property)

= matrix(X). (ball matrix definition)
♦

Their center and matrix characterize the finite balls.

Proposition 30 (ball characterization) – The mapping from
B to Z2 × S, X a (center(X), matrix(X)) is a bijection, its
inverse is (u, B) a Bu. ♦

Proof
Let us divide the proof in four parts.
(a) By definition of center, for any X ∈ B, center(X) ∈ Z2.
Furthermore, by Proposition 27 (ball matrix property), for
any X ∈ B, matrix(X) ∈ S.
(b) Let us prove that for any u ∈ Z2 and any B ∈ S, Bu ∈ B.
For any u ∈ Z2 and any B ∈ S, let v = – u, then,
((Bu)v)

t = (Bu + v)
t (Property (2) of Prop. 4.6 of [2])

= (Bo)t (v = – u and inverse definition)
= Bt (Property (1) of Prop. 4.6 of [2])
= B (B ∈ S)
= (Bu)v , (using the same arguments as above)

that is, there exists a point v in Z2 such that ((Bu)v)
t = (Bu)v.

 (c) Let us prove that (u, B) a Bu is a left inverse for X
a (center(X), matrix(X)). For any X ∈ B,

)(center)(matrix XX  = )(center)(center )( XXX −

(Definition 26 - ball matrix)
= )(center  ))(center ( XXX +−

(Property (2) of Prop. 4.6 of [2])
= Xo (inverse definition)
= X. (Property (1) of Prop. 4.6 of [2])

(d) Let us prove that (u, B) a Bu is a right inverse for X
a (center(X), matrix(X)). For any u ∈ Z2 and any B ∈ S,
(center(Bu), matrix(Bu)) =  (center(B) + u, matrix(B))

(Proposition 29 - ball translation)
= (o + u, B)

                  (B ∈ S implies (iii) and (iv) of Proposition 28 -
properties of a ball with center at origin)

= (u, B). (group property)
Therefore, from (a) - (d), X a (center(X), matrix(X)) has an
inverse (which is (u, B) a Bu), consequently it is a bijection.

♦

In order to combine geometrically the balls, we recall the
Minkowski addition and subtraction definitions [2], [3], [6].
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Definition 31 (Minkowski addition and subtraction) – Let A
and B be two subsets of Z2, their Minkowski sum is the
subset A ⊕ B = {a + b: a ∈ A, b ∈ B} and their Minkowski
difference is the subset A - B ==  {x ∈ Z2: ∀b ∈ B, ∃ a ∈ A: x
= a – b}. (A, B) a A ⊕ B is the Minkowski addition and (A,
B) a A - B is the Minkowski subtraction from P(Z2) ×
P(Z2) to P(Z2). ♦

The sub collection of balls with center at origin is closed
under Minkowski's addition as we show in the next
proposition.

Proposition 32 (symmetric ball addition) – Let X and Y be
two symmetric balls (i.e., X, Y∈ S+), then X ⊕ Y is a
symmetric ball (i.e., X ⊕ Y ∈ S+). ♦

Proof
For any X and Y∈ S+,
(X ⊕ Y)t = Xt ⊕ Yt (Minkowski's addition property)

= X ⊕ Y, (X and Y∈ S)
that is, X ⊕ Y ∈ S+. ♦

As a consequence of the above symmetric ball addition
result, in the next proposition we show that the sub
collection of balls is closed under Minkowski's addition as
well.

Proposition 33 (ball addition) – Let X and Y be two finite
balls (i.e., X and Y ∈ B), then X ⊕ Y is a ball (i.e., X ⊕ Y ∈ B),
furthermore, center(X ⊕ Y) = center(X) + center(Y) and
matrix(X ⊕ Y) = matrix(X) ⊕ matrix(Y). ♦

Proof
Let divide the proof into four parts.
(a) For any X and Y ∈ B,
X ⊕ Y = )(center)(matrix XX  ⊕ )(center)(matrix YY

(Proposition 30 - ball characterization)
= )(center)(center ))(matrix)((matrix YX YX ⊕

(Property (5) of Prop. 4.12 of [2])
= )(center)(center )))(matrix)(((matrix YXYX ⊕

(Property (5) of Prop. 4.12 of [2])
= )(center  )(center))(matrix)((matrix YXYX +⊕ .

(Property (2) of Prop. 4.6 of [2])
(b) For any X, Y ∈ B, by Proposition 27 (ball matrix
property) and by Proposition 32 (symmetric ball addition)
matrix(X) ⊕ matrix(Y) ∈ S, therefore, by Part (a) of the
proof, it exists u ∈ Z2 (namely, u = – (center(X) + center(Y))
such that (X ⊕ Y)u ∈ S. That is, by Definition 22 (ball
definition), X ⊕ Y ∈ B.
(c) For any X, Y ∈ B,
center(X ⊕ Y)

= )))(matrix)((matrix(center )(center)(center YXYX +⊕
(Part (a) of the proof)

= )(center)(center))(matrix)(rixcenter(mat YXYX ++⊕
(Proposition 29 -  ball translation)

= )(center)(center YXo ++

(matrix(X) ⊕ matrix(Y) ∈ S, therefore, by Proposition 28
(properties of a ball with center at origin),

oYX =⊕ ))(matrix)(rixcenter(mat )

= )(center)(center YX + .                        (group property)

(d) For any X and Y ∈ B,
matrix(X ⊕ Y)

= )))(matrix)((matrix(matrix )(center)(center YXYX +⊕
(Part (a) of the proof)

= ))(matrix)(rixmatrix(mat YX ⊕
(Proposition 29 -  ball translation)

= )(matrix)(matrix YX ⊕ .

(as in (c) above, by Proposition 28)
♦

Before continuing our study about the ball collection, we
need to introduce the Minkowski product.

4. Minkowski product

Within the collection of balls we can identify sub
collections in which the balls are mutually related through an
external binary operation between a natural number and a
subset, that we call the Minkowski product.

We denote by N+ the set of extended natural numbers
(i.e., the natural numbers plus an element denoted ∞) with the
usual addition extended in such a way that, for any j ∈ N+, j +
∞ = ∞ + j = ∞ and with the usual order extended in such a way
that, for any j ∈ N+, j ≤ ∞.

Definition 34 (Minkowski product) – Let B ∈ P(Z2) such
that B ≠ ∅, and let j ∈ N+, the Minkowski product of B by j
is the subset jB of Z2 given by

jB = 











∞=
∞<<

=
=

⊕−
j

j

j

j

BBj

B

o

1

1

0

   if   

   if   

   if   

   if   

))1((

}{

2Z

. ♦

The Minkowski product jB should be distinguished from
the result of the usual scaling operation of B by j used in the
continuous case.

The scaling transform of a subset B by a real number j is
the subset denoted scaling(j, B) and given by scaling(j, B) =
{jx: x ∈ B}.

In the discrete case, both results, jB and scaling(j, B), may
be different as it can be verified when B is the 3 by 3 discrete
square B8. The difference goes on even if we try to preserve
the "interior" of the square using a slightly modified version
of the scaling transform given by scaling2(j, B) = {ix: x ∈ B
and i ∈ [0, j]}.

Figure 5 shows (from left to right and top to bottom) the
B8 square, its transformation when applying the above two
scaling transformations and at last the Minkowski product,
with j = 2. We observe that these expansion definitions lead
to different results.
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In the discrete domain Z2, the Minkowski product is more
appropriate for our purpose than the scaling operation (see
Section 7).

We now verify the mix distributivity of this product and
then some other elementary properties. Based on the mix
distributivity, we could establish in Section 5 Proposition 44
and Proposition 48 about the intersection and inclusion of
generated balls.

Proposition 35 (mix distributivity of the Minkowski
product) – Let B ∈ P(Z2) such that B ≠ ∅, for any i and j ∈
N+, (i + j)B = (iB) ⊕ (jB). ♦

2B
8

B
8

scaling(2, B
8
)

scaling2(2, B
8
)

o

Figure 5 - Minkowski product versus scaling

Proof
Let us divide the proof in three parts.
(a) Let us prove that for any i ∈ N, (i + 1)B = (iB) ⊕ B. If i =
0,
(i + 1)B = 1B (hypothesis)

= B (Definition 34 - Minkowski's)
= {o}⊕ B (Property (4) of Prop. 4.12 of [2])
= (0B) ⊕ B (Definition 34)
= (iB) ⊕ B (hypothesis)

If i > 0,
(i + 1)B = (((i + 1) – 1)B) ⊕ B (product definition)

= (iB) ⊕ B. (natural number property)
(b) Let us prove the proposition statement for any i and j ∈
N. If j = 0,
(i + j)B = iB (hypothesis)

= (iB) ⊕ {o} (Property (4) of Prop. 4.12 of [2])
= (iB) ⊕  (jB); (hypothesis)

if j = 1,
(i + j)B = (i + 1)B (hypothesis)

= (iB) ⊕ B (Part (a) of the proof)
= (iB) ⊕ (1B) (Definition 34)
= (iB) ⊕  (jB); (hypothesis)

if j > 1,
(i + j)B = ((i + j – 1) + 1)B (natural number property)

= ((i + j – 1)B) ⊕  B (Part (a) of the proof)
= ((iB) ⊕ ((j – 1)B)) ⊕  B (is true for j – 1)
= (iB) ⊕ (((j – 1)B) ⊕  B) (associativity of ⊕)
= (iB) ⊕ (jB). (Part (a) of the proof)

(c) Let us prove the proposition statement for any i ∈ N+ and
j = ∞:
(i + j)B = (i + ∞)B (hypothesis)

= ∞B (assumption on the extended addition)
= Z2 (Definition 34)
= iB ⊕ Z2 (iB ≠ ∅,)
= (iB) ⊕ (∞B) (Definition 34)
= (iB) ⊕ (jB). (hypothesis)

The same result can be obtained by changing the hypotheses
on i and j.
That is, from (b) and (c), the product is mix distributive. ♦

For convenience, let us assume that # Z2 = ∞.

Proposition 36 (elementary properties of the Minkowski
product) – Let B ∈ P(Z2) such that B ≠ ∅, for any i ∈ N and
any j ∈ N+,
(i) if o ∈ B then o ∈ jB;
(ii) if o ∈ B then the mapping j a jB from N+ to P(Z2) is
increasing;
(iii) if j ≠ 0 and  #B > 1 then #(jB) > 1;
(iv) #(iB) ≤ (#B)i;
(v) if B ∈ S then jB ∈ S+. ♦

Proof
(a) Let us prove Property (i).
By Definition 34 (Minkowski product), o ∈ jB is true for j =
0, 1 and ∞. Let us assume that it was true for j – 1 (1< j < ∞),
o ∈ (j – 1)B (hypothesis)

⊂ ((j – 1)B) ⊕ B
                         (o ∈ B and Property (6) of Prop. 4.12 of [2])
= jB, (Definition 34)

that is, by inclusion definition, o ∈ jB.
(b) Let us prove Property (ii).
Let i and j ∈ N, such that i ≤ j,
iB ⊂ iB ⊕ (j – i)B
                       (o ∈ (j – i)B (Property. (i)) and Property (6) of

Prop. 4.12 of [2])
= jB. (j = i + (j – i) and Proposition 35)

Let i ∈ N+ and let j = ∞, then i ≤  j, furthermore,
iB ⊂ Z2 (Definition 34)

= ∞B (Definition 34)
= jB. (hypothesis)

That is the mapping j a jB from N+ to P(Z2) is increasing.
(c) Let us prove Property (iii).
By hypothesis, #(jB) > 1 is true for j = 1 and it is always true
for j = ∞. Let us assume that it was true for j – 1 (1 < j < ∞),
and let x ∈ (j – 1)B,
#(jB) = #(((j – 1)B) ⊕ B) (Definition 34)

≥  #({x} ⊕ B)
(Minkowski's addition is  increasing (Property (6) of Exerc.

4.9 of [2]) and cardinality property)
= #(Bx) (Property (1) of Prop. 4.12 of [2])
= #B (Xa Xx is a bijection)
> 1. (hypothesis)

(d) Let us prove Property (iv).
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#(iB) ≤  (#B)i is true for i = 1. Let us assume that it was true
for i – 1 (1 < i),
#(iB) = #(((i – 1)B) ⊕ B) (Definition 34)

= # U
Bu

uBi
  ∈

− ))1((

(equivalent definition of ⊕ (Property (1) of Prop. 4.12 of
[2]))

≤ (#B)(#( i – 1)B) (union property)
= (#B)(#(B))i - 1 (hypothesis)
= (#(B))i. (arithmetic property)

(e) Let us prove Property (v).
Let B = Bt, by Minkowski product definition, jB = (jB)t is
true for j = 0 (since {o} is symmetric), 1 and ∞ (since Z2 is
symmetric as well). Let assume that it was true for j – 1 (1 <
j < ∞),
(jB)t = (((j – 1)B) ⊕ B)t (Definition 34)

= ((j – 1)B) ⊕ B
(hypotheses and Proposition 32 (symmetric ball addition))

= jB. (Definition 34)
♦

Property (v) says that if a subset is symmetric then its
product by any natural number is still symmetric.

Next proposition about the regularity of the Minkowski
product will be useful for the definition of radius of a ball in
the next section.

Proposition 37 (regularity of the Minkowski product) – Let
B ∈ P(Z2), such that B is finite and #B > 1, then the mapping
j a #(jB) from N+ to N+, is injective and increasing.
Furthermore, under the above assumption on B, the mapping
j a jB from N+ to P(Z2) is injective (i.e. iB = jB ⇒ i = j). ♦

Proof
Let i and j ∈ N, such that i <  j,
jB = iB ⊕ (j – i)B

                   (j = i + (j – i) and Proposition 35 - mix
distributivity of the Minkowski product)

= U
Biju

uiB
)  (  

)(
−∈

.

                        (equivalent definition of ⊕ (Property (1) of
Prop. 4.12 of [2]))

By Property (iii) of Proposition 36, if i <  j, #((j – i)B) > 1.
Let u1 and u2 ∈ (j – i)B,

1
)( uiB + ))()((

12 uu iBiB − = 
1

)( uiB ∪ 
2

)( uiB

(subset addition definition)
⊂ jB .                 (see above equality)

Hence, if i <  j,
)(# iB  < )(# iB + ))()((#

12 uu iBiB −

      
12

)()( uu iBiB − ≠ ∅ by Proposition 20 - translated version

property)
= 

1
)(# uiB + ))()((#

12 uu iBiB −

(X a Xu is a bijection)
= )))()(()((#

121 uuu iBiBiB −+

                               (property of the union of disjoint subsets)

)(#  jB≤ . (see above inclusion)

Let i ∈ N and let j = ∞, then i < j, furthermore,
#(iB) ≤ (#B)i (by Property (iv) of Proposition 36)

< ∞ (B is finite)
= # Z2 (by convention)
= #(∞B) (Definition 34 - Minkowski product)
= #(jB). (hypothesis)

Furthermore, for any i and j ∈ N+

i ≠ j ⇔ i <  j or j <  i (N+ is a chain)
⇒ )(# iB < )(# jB  or )(# jB <  )(# iB

(the previous conclusion)
⇔ )(# iB ≠ )(# jB (N+ is a chain)

⇒ iB ≠ jB. (iB and jB have not the same elements)
That is, the mapping j a #(jB) from N+ to N+, is injective and
increasing, and the mapping j a jB from N+ to P(Z2), is
injective. ♦

Based on the Minkowski product, we define, in the next
section, the notions of generated balls and of ball radius. In
Section 7, the ball radius will be used to derive a metric from
a symmetric ball.

5. Generated balls

Let A and B be two subsets of Z2. If #B > 1 and B is finite,
then we say that A is a multiple of B iff there exists an
element j ∈ N+ such that A = jB. In this case, we say that the
set B divide A and we call the natural number j (which is
unique under the restrictions on B) the quotient of A by B

and we denote it 
B
A

. The uniqueness of quotient is a

consequence of Proposition 37 (regularity of the Minkowski
product): let i and j be two quotients of A by B, by definition
of the quotient, iB = A and jB = A, that is, iB = jB, therefore,
since j a jB is injective (Proposition 37), i = j.

With a finite symmetric ball B we can associate, through
the Minkowski product, a sub collection of balls. We say that
B induces a sub collection or that the sub collection is
generated by B.

Definition 38 (sub collection generated by a ball) – Let B be
a finite symmetric ball (i.e., B ∈ S), such that B ≠ {o}. The
sub collection generated by B, denoted by BB, is the set of
all the balls whose matrices are multiple of B, that is, BB =
{X ∈ B+: ∃ j ∈ N+, matrix(X) = jB}. ♦

For any j ∈ N and any B ∈ S, by Property (v) of
Proposition 36 (elementary properties of the Minkowski
product) and by Proposition 28 (property of a ball with
center at origin), matrix(jB) = jB, that is jB ∈ BB, in other
words, BB is never empty, moreover, it always contains Z2.
We call the elements of BB generated balls and we say that
they are generated from the prototype ball B.

The assumption that Z2 was a ball is convenient in the
sense that, in this way, every point in Z2 is contained in at
least one generated ball.
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Proposition 39 (example of generated balls) – Let B be a
finite symmetric ball (i.e., B ∈ S), such that B ≠ {o}. Any
singleton of Z2 belongs to BB (the sub collection generated
by B). ♦

Proof
For any x ∈ Z2, by Proposition 23 (ball example) {x} ∈ B+.
Furthermore, for any x ∈ Z2,
matrix({x}) = matrix({o}x)

(Definition 19 - translated version)
= matrix({o})  (Proposition 29 - ball translation)
= {o}

             (Proposition 28 (property of a ball with center at
origin), since {o} ∈ S+)

= 0B, (Definition 34 - Minkowski product)
that is, ∃ j ∈ N+, matrix({x}) = jB (namely, j = 0).
Consequently, by Definition 38 (sub collection generated by
a ball), for any x ∈ Z2, {x} ∈ BB. ♦

As a direct consequence of the definition of a generated
ball, we can parameterize its matrix by a natural number that
we call its radius.

Definition 40 (radius of a generated ball) – Let B be a finite
symmetric ball (i.e., B ∈ S), such that B ≠ {o}. The radius of
X ∈ BB, denoted radiusB(X) is the quotient of matrix(X) by B,

that is, radiusB(X) = 
B

X )(matrix
. ♦

The uniqueness of the quotient guarantees the uniqueness
of the radius.

We observe that the same ball generated from different
ball prototypes may have different radius. A ball prototype
plays the role of a unit ball.

We are now ready to show that the generated balls can be
completely characterized in terms of their centers and their
radius.

Proposition 41 (characterization of the generated balls) –
Let B be a finite symmetric ball (i.e., B ∈ S), such that B ≠
{o}. The mapping from BB − {Z2} to Z2 × N X a (center(X),
radiusB(X)) is a bijection and its inverse is (x, j) a (jB)x.
Furthermore, for any X ∈ BB, X = center(X)))(radius( BXB , and

for any (x, j) ∈ Z2 × N, (x, j) = (center((jB)x), radiusB((jB)x)).
♦

Proof
Let us divide the proof in four parts.
(a) For any X ∈ BB − {Z2}, by Definition 24 (ball center),
center(X) ∈ Z2 and by Definition 40 (radius of generated
ball), radiusB(X) ∈ N.
(b) For any x ∈ Z2 and any j ∈ N,
matrix((jB)x) = matrix(jB) (Proposition 29 - ball translation)

= jB,
    (Property (v) of Proposition 36 (elementary properties of

the Minkowski product) and Proposition 28 (property of a
ball with center at origin))

that is, by Proposition 37 (regularity of the Minkowski
product) ∃ i ∈ N, matrix((jB)x) = iB, namely i = j, and by
Definition 38 (sub collection generated by a ball) (jB)x ∈ BB

− {Z2}.
(c) Let us prove that (x, j) a (jB)x is a left inverse for X
a (center(X), radiusB(X)). For any X ∈ BB and any x ∈ Z2,
x ∈ ( )( ) )(center)(radius XB BX

⇔ x ∈ 
)(center

)(matrix

X

B
B

X














 (Definition 40)

⇔ x ∈ 
)(center

)(center

X

X B
B

X

















 −

(Definition 26 - ball matrix)
⇔ x ∈ )(center)(center )( XXX − (quotient property)

⇔ x ∈ )(center))(center( XXX +−

(translated version property)
⇔ x ∈ X, (group property)

that is, (x, j) a (jB)x is a left inverse.
(d) Let us prove that the (x, j) a (jB)x is a right inverse for X
a (center(X), radiusB(X)). For any x ∈ Z2 and any j ∈ N,
center((jB)x) = center(jB) + x

(Proposition 29 - ball translation)
= o + x

                                 (Property (v) of Proposition 36 and
Proposition 28 (properties of a ball with center at origin))

= x. (group property)
For any x ∈ Z2 and any j ∈ N,

radiusB((jB)x) = 
B

jB
xjBx ))((center))(( − ((Definition 40)

= 
B

jB xx −))((
(above result)

= 
B

jB xx−)(
(translated version property)

= 
B
jB

, (group property)

in other words, by quotient definition, radiusB((jB)x)B = jB,
therefore, by uniqueness of the quotient (consequence of
Proposition 37), radiusB((jB)x) = j. That is, (x, j) a (jB)x is a
right inverse.
Therefore, from (a) - (d), the mapping X a (center(X),
radiusB(X)) has an inverse (which is (x, j) a (jB)x) and
consequently is a bijection. Furthermore, from (c), for any X
∈ BB, X = center(X)))(radius( BXB , and from (d), for any (x, j)

∈ Z2 × N, (x, j) = (center((jB)x), radiusB((jB)x)). ♦

The radius inherits some properties of the Minkowski's
addition.

Proposition 42 (radius properties) – Let B be a finite
symmetric ball (i.e., B ∈ S), such that B ≠ {o}, then
(i) radiusB({o}) = 0
(ii) radiusB (B) = 1
(iii) for any X, Y ∈ BB − {Z2}, radiusB(X ⊕ Y) = radiusB(X) +
radiusB(Y). ♦
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Proof
(a) Let us prove (i).
radiusB({o}) = radiusB(0B)

(Definition 34 - Minkowski product)
= 0.

(Proposition 41 - characterization of the generated balls)
(b) Let us prove (ii).
radiusB(B) = radiusB(1B) (Definition 34)

= 1. (Proposition 41)
(c) Let us prove (iii). For any X, Y ∈ BB − {Z2},

radiusB (X ⊕ Y) = 
B

YX YX )(center)( ⊕−⊕
(Definition 40)

=

B

BYBX YXYBXB )(center)(center)(center )))(radius())(radius(( ⊕−⊕

 (Proposition 41)

=
B

BYBX BB )(radius )(radius ⊕

(Property (5) of Prop. 4.12 of [2] and center(X ⊕ Y) =
center(X) + center(Y) by Proposition 33 - ball addition)

=
B

BYX BB ))(radius )((radius ⊕
,

(Proposition 35 - mix distributivity of the Minkowski
product)

in  other words, by quotient definition, radiusB(X ⊕ Y)B =
(radiusB(X) + radiusB(Y))B, therefore, by uniqueness of the
quotient (consequence of Proposition 37), radiusB(X ⊕ Y) =
radiusB(X) + radiusB(Y). ♦

Within the poset (BB, ⊂) generated by a ball B, we can
identify some useful chains: the chains of generated balls
with center at given points.

Let B be a finite symmetric ball (i.e., B ∈ S), such that B
≠ {o}, and let BB(x) be the sub collection of BB consisting of
all the balls with center at a given point x of Z2, that is, BB(x)
= {X ∈ BB : center(X) = x}.

In particular, BB(o) = {jB: j ∈ N+} (by Property (iv) of
Proposition 28 - properties of the generated balls with
center at origin).

Proposition 43 (chain of generated balls with center at a
given point) – Let B be a finite symmetric ball (i.e., B ∈ S),
such that o ∈ B and B ≠ {o}. Then the mapping j a (jB)x

from (N+, ≤) to (BB(o), ⊂) when x = o, and from (N, ≤) to
(BB(x), ⊂) when x ≠ o, is a poset isomorphism and the sub
collection (BB(x), ⊂) is a chain. Its inverse is X a

radiusB(X). The sub collection BB(x) has a smaller element
which is {x} and a greater one which is Z2 when x = o. ♦

Proof
Let B be a finite symmetric ball (i.e., B ∈ S), such that o ∈ B
and B ≠ {o}, and let x ∈ Z2. We observe that o ∈ B and B ≠
{o} ⇒ #B > 1. For any j1 and j2 ∈ N+,
j1 ≠ j2 ⇒ j1B ≠ j2B

(Proposition 37 – regularity of the Minkowski product)
⇔ (j1B)x ≠ (j2B)x ,    (translation is injective)

that is, the mapping j a (jB)x from N+ to BB(o) when x = o,
and from N to BB(x) when x ≠ o, is injective. By definition of
BB(x), it is surjective, that is it a bijection. From Proposition
41 (characterization of the generated balls), its inverse is X
a  radiusB(X).
Furthermore, for any j1, j2 ∈ N+,
j1 ≤ j2 ⇒ j1B ⊂ j2B

(j a jB is increasing (Property (ii) of Proposition 36))
⇒ (j1B)x ⊂ (j2B)x , (translation is increasing)

that is, the mapping j a (jB)x from N+ to BB(o) when x = o,
and from N to BB(x) when x ≠ o, is increasing.
Conversely, let B1 and B2 be two balls in BB with center at x,
and let j1 and j2 their respective radius,
j2 ≤ j1 and j1 ≠ j2 ⇒ B2 ⊂ B1 and B1 ≠ B2

 (j a (jB)x is injective and increasing)
⇔ B2 ⊂ B1 and (B1 ⊄ B2 or B2 ⊄ B1)

(anti-symmetry of inclusion)
⇔ B2 ⊂ B1 and B1 ⊄ B2  (logical derivation)
⇒ B1 ⊄ B2 , (logical derivation)

in other words,
B1 ⊂ B2 ⇒  j1 < j2 or j1 = j2 (above result)

⇔ j1 ≤ j2 , ((N+, ≤) is a chain)
this proves that the mapping j a (jB)x is two-sided
increasing.
Consequently, the mapping j a (jB)x is a poset
isomorphism, and the sub collection (BB(x), ⊂) is
isomorphic to the chain (N+, ≤). That is, this sub collection is
a chain as well. The smaller element (0) of N+ maps to {x}
which is therefore the smaller element of BB(x), and the
greater element (∞) of N+ maps to Z2 which is therefore the
greater element of BB(x). ♦

Based on the mixt distributivity of the Minkowski
product, we can establish the following geometrical
property. This proposition shows that the intersection
between generated balls occurs under the same condition as
for the balls derived from an Euclidean distance on the
continuous plane for example.

Proposition 44 (generated balls versus intersection) – Let B
be a finite symmetric ball (i.e., B ∈ S), for any points x and y
in Z2 and any numbers i and j in N+, y ∈ ((i + j)B)x ⇔ (iB)x ∩
(jB)y ≠ ∅. ♦

Proof
Let x and y ∈ Z2 and let i and j ∈ N+,
y ∈ ((i + j)B)x ⇔ y ∈ ((iB) ⊕ (jB))x

(Proposition 35 - mix distributivity of the product)
⇔ y ∈ (iB)x ⊕ (jB)

(translation invariance of ⊕
(Property (5) of Prop. 4.12 of [2]))

⇔ y ∈ U
xiBz

zjB
)(  

)(
∈

                      (equivalent definition of ⊕
(Property (1) of Prop. 4.12 of [2]))

⇔ ∃ z ∈ (iB)x : y ∈ (jB)z
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(union definition)
⇔ ∃ z ∈ (iB)x : z ∈ (jB)y

(Proposition 28 - properties of a ball with center at origin)
⇔ (iB)x ∩ (jB)y ≠ ∅.

(definition of empty set)
♦

We now recall the definitions of erosion by a structuring
element and of B-border. We will use the latter definition in
the study of the generated ball border.

Definition 45 (erosion by a structuring element) – Let B be
a subset of Z2. The erosion by B is the mappings from P(Z2)
to P(Z2) εB : X a X - B. The subset B is the structuring
element of εB. ♦

Definition 46 (B-border) – Let B be a subset of Z2. The B-
border of a subset X of Z2 is the subset ∂B(X) = X – εB (X). ♦

We observe that the B-border is an inner border: ∂B(X) ⊂
X.

Proposition 47 (B-border properties) – Let B and X be two
subsets of Z2 and let x be a point in Z2, then
(i) if #B > 1 then (∂B({o}) = {o} ({o} is an invariant)
(ii)  (∂B(X))x = ∂B(Xx) (translation-invariance)
(iii) X and B ∈ S ⇒ ∂B(X) ∈ S. (symmetry preservation)

♦
Proof
(a) Let us prove (i).
∂B({o}) = {o} – εB ({o}) (Definition 46 - B-border)

= {o} – {u ∈ Z2: ∀b ∈ B, ∃ x ∈ {o}: u = x – b}
(Definition 31- Minkowski's addition and subtraction)
= {o} – {u ∈ Z2: ∀b ∈ B, u = o – b}

(logical derivation)
= {o} – {u ∈ Z2: ∀b ∈ B, u = – b} (o is unity of +)
= {o} – ∅ (#B > 1)
= {o} (definition of – and ∅)

 (b) Let us prove (ii). For any x ∈ Z2,
(∂B(X))x = (X – εB (X))x (Definition 46)

= Xx – (εB (X))x (translation-invariance of –)
= Xx – (X - B)x (Definition 45 - erosion by a subset)
= Xx – Xx - B

(translation invariance of - (Property (4) of Prop. 4.13 of
[2]))

= Xx – εB (Xx) (Definition 45)
= ∂B(Xx). (Definition 46)

(c) Let us prove (iii). For any u ∈ Z2,
u ∈ ∂B(X) ⇔ u ∈ X – εB (X) (Definition 46)

⇔ u ∈ X – (X - B) (Definition 45)
⇔ u ∈ X and ¬  u ∈ (X - B) (def. of –)
⇔ u ∈ X and ¬ ∀b ∈ B, ∃ x ∈ X: u = x – b

(Definition 31 - Minkowski's addition and subtraction)
⇔ – u ∈ X and ¬ ∀ b′ ∈ B, ∃ x ′ ∈ X: – u = x ′ – b′

(writing x ′ = – x and b′ = – b, and hypothesis X and B ∈ S)
⇔ – u ∈ X and ¬ –  u ∈ (X - B) (Definition 31)
⇔ – u ∈ X and ¬ –  u ∈ εB (X) (Definition 45)
⇔ – u ∈ ∂B(X). (Definition 46)

♦

In order to be able to characterize the integer-valued t.i.
regular metrics later on, we now introduce the concept of
"closed" sub collection of balls. A sub collection of balls BB

is B-closed if any members of BB is morphologically B-
closed, that is, for any X ∈ BB, X satisfies the equation X = (X
⊕ B) - B. If BB is B-closed then we say for convenience that
B has the closure property.

The balls multiple of the 3 by 3 discrete square B8 of
Section 3, are examples of morphologically closed balls with
respect to B8 (see Section 6).

But, for example, the ball B = (2B8 – 1B8) + 0B8 is not
morphologically closed with respect to itself since, in this
case, (B ⊕ B) - B = 2B8 and consequently (B ⊕ B) - B ≠ B.

Under the closure property the sufficient condition to
have nested balls becomes necessary.

Proposition 48 (generated balls versus inclusion) – Let B
be a finite symmetric ball (i.e., B ∈ S). For any points x and y
in Z2 and any numbers i in N and j in N+,
(i) x ∈ (jB)y ⇒ (iB)x ⊂ ((i + j)B)y;
(ii) if B has the closure property, then

(iB)x ⊂ ((i + j)B)y ⇒ x ∈ (jB)y. ♦

Proof
Let B be a finite symmetric ball (i.e., B ∈ S).
(a) Let us prove Property (i). For any x and y ∈ Z2, any i ∈ N
and j ∈ N+,

(iB)x ⊂ U
yjBu

uiB
)(  

)(
∈

(x ∈ (jB)y)

= (jB)y ⊕ iB
                                       (equivalent definition of ⊕ (Property

(1) of Prop. 4.12 of [2]))
= (jB ⊕ iB)y

                                        (translation invariance of ⊕
(Property (5) of Prop. 4.12 of [2]))

= ((i + j)B)y ,
(Proposition 35- mix distributivity of the Minkowski

product)
that is, x ∈ (jB)y ⇒ (iB)x ⊂ ((i + j)B)y.
(b) Let us prove Property (ii). Let x and y ∈ Z2, let i ∈ N and
let j ∈ N+. If i = 0,
x ∈ {x} (singleton definition)

= {o}x (Definition 19 - translated version)
= (0B)x (Definition 34 - Minkowski product)
⊂ ((i + 0)B)y (hypothesis)
⊂ (iB)y, (natural number property)

that is, (0B)x ⊂ ((0 + j)B)y ⇒ x ∈ (jB)y .
If i ≠ 0,
x∈ {x} (singleton definition)
  = (iB)x - iB (- property)
  ⊂ ((i + j)B)y - iB (hypothesis and - is increasing)
  = ((((i – 1) + j) + 1)B)y - iB (properties of + on N+)
  = ((((i – 1) + j)B) ⊕ B)y - iB

 (Proposition 35)
  = ((((i – 1) + j)B)y ⊕ B) - iB
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(Property (5) of Prop. 4.12 of [2])
  = ((((i – 1) + j)B)y ⊕ B) - (B ⊕ (i – 1)B) (Proposition 35)
  = (((((i – 1) + j)B)y ⊕ B) - B) - (i – 1)B

                                         (Property (2) of Prop. 4.13 of [2])
  = (((i – 1) + j)B)y - (i – 1)B

(B has the closure property and Proposition 41 -
characterization of the generated balls)

  = (jB)y , (repeating the four previous steps (i – 1) times)
that is, (iB)x ⊂ ((i + j)B)y ⇒ x ∈ (jB)y . ♦

We observe that the last implication in Property (ii) of
Proposition 48 may be false when B has not the closure
property. We can construct the following counter example:
let B = (2B8 – 1B8) + 0B8, let x ∈ 1B8 – 0B8 and let y = o,
then (1B)x ⊂ (2B)y but x ∉ (1B)y.

Figure 6 illustrates this counter example. On the left-
hand side we see that the dark gray ball (1B)x is included in
the light gray ball (2B)y (the 9 by 9 square), nevertheless we
see on the right-hand side that x doesn't belong to (1B)y.

y

xx

y

(2 B )y

(1B )x

(1B )y

Figure 6 - Counter example for Proposition 48.

The closure property for a propotype ball allows us to "go
backward" along a chain of generated balls.

Proposition 49 (erosion of a generated ball) – Let B be a
subset of Z2. For any x ∈ Z2 and j ∈ N – {0},
(i) εB((jB)x) ⊃ ((j – 1)B)x

(ii) if B has the closure property, then εB((jB)x) = ((j –
1)B)x. ♦

Proof
For any subset B of Z2 having the closure property, any x ∈
Z2 and any j ∈ N – {0},
εB ((jB)x) = (jB)x - B (Definition 45 - erosion by a subset)

= (jB - B)x

(translation invariance of - (Property (4) of Prop. 4.13 of
[2]))

= (((j – 1)B) ⊕ B)x - B
 (Definition 34 - Minkowski product)

= (((j – 1)B)x ⊕ B) - B
(translation invariance of - (Property (5) of Prop. 4.12 of

[2]))
=
⊃  ((j – 1)B)x

 (=  since B has the closure property and Proposition 41
(characterization of the generated balls); ⊃ since closing is

extensive)
♦

Next proposition will be useful in Section 7 to show that
a metric induced by a ball having the closure property is
regular (Proposition 61).

Proposition 50 (generated balls versus B-border) – Let B be
a finite symmetric ball (i.e., B ∈ S) 1 having the closure
property and such that #B > 1. For any points x and y in Z2

and any numbers i in N and j in N+,
(i) x ∈ ∂B((jB)y) ⇒ ∂B(((i + j)B)y) ∩ ∂B((iB)x) ≠ ∅;
(ii) x ∈ ∂B(((i + j)B)y) ⇒ ∂B((iB)x) ∩ ∂B((jB)y) ≠ ∅. ♦

Proof
(a) Let us prove Property (i). Let x and y ∈ Z2, let i ∈ N and
let j ∈ N+. If j = 0,
x ∈ ∂B((0B)y) ⇔ x ∈ ∂B({o}y)

(Definition 34 - Minkowski product)
⇔ x ∈ (∂B({o}))y

(Property (ii) of Proposition 47 - B-border properties)
⇔ x ∈ {o}y

(#B > 1 and Property (i) of Proposition 47)
⇔ x ∈ {y} (Definition 19 - translated version)
⇔ x = y. (singleton definition)

Furthermore, if x ∈ ∂B((0B)y)
∂B(((i + 0)B)y) ∩ ∂B((iB)x) = ∂B((iB)y) ∩ ∂B((iB)x)

(natural number property)
= ∂B((iB)x) ∩ ∂B((iB)x)

(by hypothesis, as shown above x = y)
= ∂B((iB)x) (∩ is idempotent)
= (iB)x – εB((iB)x)

(Definition 46 - B-border)
= (iB)x – ((i – 1)B)x

(B has the closure porperty and Property (ii) of Proposition
49 - erosion of a generated ball)

≠ ∅,
(Proposition 37 - regularity of the Minkowski product)

that is, x ∈ ∂B((0B)y) ⇒ ∂B(((i + 0)B)y) ∩ ∂B((iB)x) ≠ ∅.
If j ≠ 0,
x ∈ ∂B((jB)y) ⇔ x ∈ (jB)y – εB((jB)y) (Definition 46)

⇒ x ∉ εB((jB)y) (def. of –)
⇒ x ∉ ((j – 1) B)y

(Property (i) of Proposition 49)
⇒ (iB)x ⊄ ((i + j – 1)B)y

(B has the closure property and Property (ii) of Proposition
48 - generated balls versus inclusion)

⇔ (iB)x ⊄ εB(((i + j)B)y)
(B has the closure property and Property (ii) of Proposition

49)
⇔ (iB)x ∩ (εB(((i + j)B)y))

c ≠ ∅;
(inclusion property)

that is, x ∈ ∂B((jB)y) ⇒ X ∩ (εB(Y))c ≠ ∅, where X = (iB)x

and Y = ((i + j)B)y. Furthermore, for any j ∈ N+,
x ∈ ∂B((jB)y) ⇔ x ∈ (jB)y – εB((jB)y) (Definition 46)

⇒ x ∈ (jB)y (def. of –)
⇒ (iB)x ⊂ ((i + j)B)y

(Property (i) of Proposition 48)
⇔ X ⊂ Y (definitions of X and Y)
⇒ εB(X) ⊂ εB(Y)
(erosion is increasing (Proposition. 3.3 of [2]))
⇔ (εB(Y))c ⊂ (εB(X))c.

(complementation is decreasing)
Hence,
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x ∈ ∂B((jB)y) ⇒ 
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(intersection property)
⇒ (X ∩ Y) ∩ ((εB(Y))c ∩ (εB(X))c) ≠ ∅

(substitution)
⇔ (X ∩ (εB(X))c) ∩ (Y ∩ (εB(Y))c) ≠ ∅

(associativity and commutativity of intersection)
⇔ ∂B(X ) ∩ ∂B(Y) ≠ ∅. (Definition 46)

That is, for any j ∈ N+, x ∈ ∂B((jB)y) ⇒ ∂B(((i + j)B)y) ∩
∂B((iB)x) ≠ ∅.
(b) Let us prove Property (ii). For any x and y ∈ Z2, any i ∈ N
and j ∈ N+. If j = 0,
x ∈ ∂B(((i + 0)B)y) ⇔ x ∈ ∂B((iB)y)

(natural number property)
⇔ x ∈ (∂B((iB))y

(Property (ii) of Proposition 47)
⇔ y ∈ (∂B((iB))x

 (Proposition 28 (properties of a ball with center at origin)
and Property (iii) of Proposition 47)

⇔ y ∈ (∂B((iB))x and y ∈ {y}
(singleton definition)

⇔ y ∈ (∂B((iB))x and y ∈ {o}y

(Definition 19)
⇔ y ∈ (∂B((iB))x and y ∈ (∂B({o}))y

(#B > 1 and Property (i) of Proposition 47)
⇔ y ∈ (∂B((iB))x and y ∈ ∂B({o}y)

(Property (ii) of Proposition 47 - B-border properties)
⇔ y ∈ (∂B((iB))x and y ∈ ∂B((0B)y)

(Definition 34)
⇔ (∂B((iB))x ∩ ∂B((0B)y) ≠ ∅.

(intersection and empty set definitions)
If j ≠ 0,
x ∈ ∂B(((i + j)B)y) ⇔ x ∈ ((i + j)B)y – εB(((i + j)B)y)

(Definition 46)
⇒ x ∉ εB(((i + j)B)y) (def. of –)
⇔ x ∉ ((i + j – 1) B)y

(Proprety (i) of Proposition 49)
⇔ (iB)x ∩ ((j – 1) B)y = ∅,

 (Proposition 44 - generated balls versus intersection)
⇔ (iB)x ⊂ (((j – 1) B)y)

c (property of ∩)
⇔ (iB)x ⊂ (εB((jB)y))

c,
(B has the closure porperty and Property (ii) of Proposition

49)
that is, x ∈ ∂B(((i + j)B)y) ⇒ X ⊂ (εB(Y))c, where X = (iB)x

and Y = (jB)y. Exploring the symmetry role between X and Y,
x ∈ ∂B(((i + j)B)y) ⇔ x ∈ (∂B((i + j)B))y

(Property (ii) of Proposition 47)
⇔ y ∈ (∂B((i + j)B))x

(Proposition 28 (properties of a ball with center at origin)
and Property (iii) of Proposition 47)

⇒ (jB)y ⊂ (εB((iB)x))
c, (as above)

that is, x ∈ ∂B(((i + j)B)y) ⇒ Y ⊂ (εB(X))c. Furthermore,

x ∈ ∂B(((i + j)B)y) ⇔ x ∈ ((i + j)B)y – εB(((i + j)B)y)
(Definition 46)

⇒ x ∈ ((i + j)B)y (def. of –)
⇔ (iB)x ∩ (jB)y ≠ ∅.

(Proposition 44 - generated balls versus intersection)
⇔ X ∩ Y ≠ ∅. (definitions of X and Y)

Hence,

x ∈ ∂B(((i + j)B)y) ⇒ 

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


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(intersection property)
⇒ (X ∩ (εB(Y))c) ∩ (Y ∩ (εB(X))c) ≠ ∅

(substitution)
⇔ (X ∩ (εB(X))c) ∩ (Y ∩ (εB(Y))c) ≠ ∅

(associativity and commutativity of intersection)
⇔ ∂B(X ) ∩ ∂B(Y) ≠ ∅.

(Definition 46)
That is, for any j ∈ N+, x ∈ ∂B(((i + j)B)y) ⇒ ∂B((iB)x) ∩
∂B((jB)y) ≠ ∅. ♦

We observe that the implication in Property (i) of
Proposition 50 may be false when BB is not B-closed, for
example, let B = (2B8 – 1B8) + 0B8, let x ∈ 1B8 – 0B8 and let
y = o, then x ∈ ∂B((2B)y) but ∂B((3B)y) ∩ ∂B((1B)x) = ∅.

Figure 7 illustrates this counter example. On this figure
we see that the point x belongs to the dark gray ball border
∂B((2B)y), nevertheless we see that the light gray ball border
∂B((3B)y) has no intersection with the ball border ∂B((1B)x)
(depicted as a set of squares).

y

x

∂ ((3B) )
yB

∂ ((2B ) )
yB

∂ ((1B) )
xB

Figure 7 - Counter example for Proposition 50.

In the last proposition of this section we present some
properties of the radii of generated balls. Part of these
properties will be used in the proof of Proposition 59.
Properties (ii) and (iii) will be used in future work.

Proposition 51 (radius properties of nested generated balls)
Let B be a finite symmetric ball (i.e., B ∈ S), such that o ∈ B
and B ≠ {o}. For any balls X and Y in BB,
(i) X ⊂ Y ⇒ radiusB(X) ≤ radiusB(Y);
(ii) X ≠ Y and X ⊂ Y ⇒ radiusB(X) < radiusB(Y);
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(iii) (center(Y) ∈ Bcenter(X) and radiusB(X) < radiusB(Y)) ⇒ X
⊂ Y.
(iv) (center(Y) = center(X) and radiusB(X) ≤ radiusB(Y)) ⇒ X
⊂ Y. ♦

Proof
For any balls X and Y in BB, let x = center(X), let y =
center(Y), let i = radiusB(X) and let j = radiusB(Y).
(a) Let us prove (i):
X ⊂ Y ⇔  (radiusB(X)B)center(X) ⊂ (radiusB(Y)B)center(Y)

(Proposition 41 - characterization of the generated balls)
⇔  (iB)x ⊂ (jB)y (definitions of x, y, i and j)
⇒  #(iB)x ≤ #(jB)y

(property of the cardinality of nested subsets)
⇔ #(iB) ≤ #(jB) (X a Xu is a bijection)
⇒ iB = jB or jB ⊄ iB

 (property of the cardinality of nested subsets)
⇔ iB ⊂ jB

(Proposition 43 - chain of generated balls with center at a
given point (here the point is the origin o))

⇔ i ≤ j
(j a jB is a poset isomorphism (Proposition 43))

⇔ radiusB(X) ≤ radiusB(Y) (definitions of i and j)
(b) Let us prove (ii):
X ≠ Y and X ⊂ Y ⇔  (iB)x ≠ (jB)y and (iB)x ⊂ (jB)y

(Proposition 41 and definitions of x, y, i and j)
⇒  #(iB)x < #(jB)y

(property of the cardinality of nested subsets)
⇔ #(iB) < #(jB) (X a Xu is a bijection)
⇒ jB ⊄ iB

(property of the cardinality of nested subsets)
⇔ iB ≠ jB and iB ⊂ jB (Proposition 43)
⇔ i < j

                   (j a jB is a poset isomorphism (Proposition 43))
⇔ radiusB(X) < radiusB(Y)

(definitions of i and j)
(c) Let us prove (iii):
center(Y) ∈ Bcenter(X) ⇔ y ∈ Bx (definitions of x and y)

⇔ x ∈ By

(Proposition 28 - properties of a ball with center at origin)
⇒ (iB)x ⊂ ((i + 1)B)y

(Property (i) of Proposition 48 (generated balls versus
inclusion) with j = 1)

⇔ (radiusB(X)B)center(X) ⊂ ((i + 1)B)y

(definitions of x and i)
⇔ X ⊂ ((i + 1)B)y (Proposition 41)
⇔ X ⊂ ((radiusB(X) + 1)B)y

(definitions of i)
⇔ X ⊂ ((radiusB(Y))B)y

(radiusB(X) + 1 ≤ radiusB(Y) and the mapping j a (jB)y is a
poset isomorphism (Proposition 43))

⇔ X ⊂ ((radiusB(Y))B)center(Y)

(definitions of y)
⇔ X ⊂ Y. (Proposition 41)

(d) Let us prove (iv):
true ⇔ center(Y) = center(X) and radiusB(X) ≤ radiusB(Y)

(hypothesis)
⇔ x = y and i ≤ j (def. of x, y, i and j)

 ⇔ x = y and (iB)x ⊂ (jB)y

 (the mapping j a (jB)x is a poset isomorphism (Proposition
43))

⇒ (iB)x ⊂ (jB)y (logical derivation)
⇔ (radiusB(X)B)center(X) ⊂ (radiusB(Y)B)center(Y)

(def. of x, y, i and j)
⇔ X ⊂ Y. (Proposition 41)

♦

We are now ready to begin the study of the relationship
between metrics and symmetric balls.

6. From metric to symmetric ball

With a t.i. metric, we can associate a ball with center at
origin. Let (Z2, d) be a t.i. metric space, the unit ball of (Z2,
d), denoted by Bd, is the set of all the points at a distance less
than or equal to one from the origin, that is,

Bd = {u ∈ Z2: fd(u) ≤ 1}.

An exhaustive inspection of the nine points of B8 shows
that 88

BBd = , in other words, the 3 by 3 discrete square is

the unit ball of the chessboard metric space (Z2, d8).
In the next proposition, we show three properties of the

unit ball.

Proposition 52 (properties of the unit ball) – For any
metric d on Z2,
(i) Bd ∈ S,
(ii) o ∈ Bd and
(iii) Bd ≠ {o}. ♦

Proof
(a) Let us prove (i). For any u ∈ Z2,
u ∈ Bd ⇔ d(u, o) ≤ 1 (def. of Bd)

⇔ d(– u, o) ≤ 1 (symmetry of d)
⇔ – u ∈ Bd, (def. of Bd)

that is, Bd ∈ S.
(b) Let us prove (ii):
true ⇔ d(o, o) = 0

(⇐ of Properties (i) of Definition 1 - metric space)
⇒ d(o, o) ≤ 1, (natural number property)

that is, by definition of Bd, o ∈ Bd.
(c) Let us prove (iii). For any u ∈ Z2,
d(u, o) = 1 ⇒ u ≠ o,

(⇒ of Properties (i) of Definition 1 - metric space)
that is, Bd ≠ {o}. ♦

Property (i) of the previous proposition shows that the
unit ball is really a ball in the sense of Definition 22 and that
its center is the origin.

In the next proposition, we show a relationship between a
t.i. lower regular metric and the Minkowski product of its
unit ball.
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Proposition 53 (property of the generated balls in a lower
regular metric space) – Let (Z2, d) be a t.i. metric space, for
any x and y ∈ Z2 and any j ∈ N,
(i) x – y ∈ jBd ⇒ d(x, y) ≤ j
(ii) if d is lower regular, then

d(x, y) ≤ j ⇒ x – y ∈ jBd. ♦

Proof
Let us make a recursive proof. For any x and y ∈ Z2,
x – y ∈ 1Bd ⇔ x – y ∈ Bd

(Definition 34 - Minkowski product)                   
⇔ fd(x – y) ≤ 1 (unit ball def.)
⇔ d(x – y, o) ≤ 1 (fd def.)
⇔ d(x, y) ≤ 1, (translation-invariance of d)

That is, x – y ∈ jBd ⇔ d(x, y) ≤ j is true for j = 1.
Let us assume it was true for j – 1 (j > 1), for any x and y ∈
Z2,
x – y ∈ jBd ⇔ x – y ∈ ((j – 1)Bd) ⊕ Bd

(Definition 34)
⇔ ∃u ∈ Bd : x – y ∈ ((j – 1)Bd)u  

                 (equivalent definition of ⊕ (Property (1) of
Prop. 4.12 of [2]))

⇔ ∃u ∈ Bd : x – (y + u) ∈ (j – 1)Bd

(Definition 19 - translated version)
⇔ ∃u ∈ Z2 : u ∈ Bd  and x – (y + u) ∈ (j – 1)Bd

(logical derivation)
⇔ ∃v ∈ Z2 : x – v ∈ Bd  and v – y ∈ (j – 1)Bd

(v = x – u)
⇔ ∃v ∈ Z2 : x – v ∈ 1Bd  and v – y ∈ (j – 1)Bd

(Definition 34)
⇔ ∃v ∈ Z2 : d(x, v) ≤ 1 and d(v, y) ≤ j – 1

(hypothesis and first part of the proof)
⇔ d(x, y) ≤  j.
(by substitution of i and j of Proposition 16 (ball

intersection in a lower regular metric space), by j – 1 and 1,
respectively; hence, ⇐ is true under the hypothesis that d is

lower regular)
♦

The next corollary illustrates better the previous
proposition. We recall that Bd(y, j) is the ball of center y and
radius j, derived from the distance d (see Section 3).
Comparing the notations, we have Bd(o, 1) = Bd.

Corollary 54 (property of the generated balls in a lower
regular metric space) – Let (Z2, d) be a t.i. metric space, for
any y ∈ Z2 and any j ∈ N,
(i) (jBd(o, 1))y ⊂ Bd(y, j)
(ii) if d is lower regular, then

Bd(y, j) ⊂ (jBd(o, 1))y. ♦

Proof
For any x and y ∈ Z2, and any j ∈ N,
x ∈ (jBd(o, 1))y ⇔ x ∈ (j{z ∈ Z2: d(o, z) ≤ 1})y

(def. of Bd(y, j))
⇔ x – y ∈ j{z ∈ Z2: d(o, z) ≤ 1}

Definition 19 - translated version)
⇔ x – y ∈ j{z ∈ Z2: d(z, o) ≤ 1}

(symmetry of d)
⇔ x – y ∈ jBd (def. of Bd)
⇔ d(x, y) ≤ j

(⇒ by Property (i) of Proposition 53 (property of the
generated balls in a lower regular metric space); ⇐ by

Property (ii) of Proposition 53 and hypothesis)
⇔ d(y, x) ≤ j (symmetry of d)
⇔ x ∈ Bd(y, j). (def. of Bd(y, j))

♦

We can apply Proposition 53 to the chessboard distance.
In this way, we see how to obtain the chessboard balls by
using the Minkowski product.

Corollary 55 (property of the Minkowski product of the
unit ball of the chessboard metric space) – If d8 is the
chessboard distance, then for any x and y ∈ Z2, and any j ∈ N,
x – y ∈ jB8 ⇔ d8(x, y) ≤ j. ♦

Proof
The result is a consequence of Proposition 53 (property of
the generated balls in a lower regular metric space) since B8

is the unit ball of the chessboard metric space and d8 is
regular by Proposition 15 (example of regular metric space).

♦

Next proposition, which is consequence Proposition 53,
will be used in Section 8 to characterize the regular metric.

Proposition 56 (closure property of the unit ball of a
regular metric space) – Let (Z2, d) be a t.i. metric space. If d
is regular, then Bd has the closure property. ♦

Proof
Let assume that d is regular. We divide the proof in four
parts.
(a) Let us prove that for any j ∈ N and any x ∈ Z2, (Bd)x ⊂ (j
+ 1)Bd ⇒ d(x, o) ≤ j,
(Bd)x ⊂ (j + 1)Bd  ⇔ (1Bd)x ⊂ (j + 1)Bd

(Definition 34 - Minkowski product)
⇔ (1Bd(o, 1))x ⊂ (j + 1)Bd(o, 1)

(definitions of Bd(y, j) and Bd)
⇔ (1Bd(o, 1))x ⊂ ((j + 1)Bd(o, 1))o

(o is unit element of +)
⇔ Bd(x, 1) ⊂ Bd(o, j + 1)

(Corollary 54 (property of the generated balls in a lower
regular metric space) , ⇐ is true under the hypothesis that d

is lower regular)
⇒ 1 + d(x, o) ≤ j + 1.

(d is upper regular and Property (ii) of Proposition 18 - ball
inclusion in an upper regular metric space)

⇔ d(x, o) ≤ j. (+ is double-side increasing)
(b) Let us prove that, for any j ∈ N, (((jBd) ⊕ Bd) - Bd) ⊂
jBd. For any j ∈ N and any x ∈ Z2,
x ∈ ((jBd) ⊕ Bd) -  Bd ⇔ x ∈ ((j +1)Bd) -  Bd (product def.)

⇔ (Bd)x ⊂ (j + 1)Bd

(Minkowski's subtraction property)
⇒ d(x, o) ≤ j (Part (a))
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⇒ x ∈ jBd,
(hypothesis (d is lower regular) and Property (ii) of

Proposition 53)
that is, for any j ∈ N, (((jBd) ⊕ Bd) - Bd) ⊂ jBd .
(c) For any j ∈ N, ((jBd) ⊕ Bd) - Bd is the closing of jBd by
Bd, therefore by closing extensivity (Property (3) of Prop.
6.21 of [2]) jBd ⊂ (((jBd) ⊕ Bd) - Bd).
Hence, from Parts (b) and (c), if d is regular, then, for any j
∈ N, (((jBd) ⊕ Bd) - Bd) = jBd, in other words, jBd is Bd-
closed.
(d) For any X ∈ BB, let x = center(X) and let i = radiusB(X),
(X ⊕ Bd) - Bd) = ((radiusB(X)Bd)center(X) ⊕ Bd) - Bd

(Proposition 41 - characterization of the generated balls)
= ((iBd)x ⊕ Bd) - Bd (def. of x and i)
= ((iBd) ⊕ Bd)x - Bd

(Property (5) of Prop. 4.12 of [2])
= (((iBd) ⊕ Bd) - Bd)x

(Property (5) of Prop. 4.12 of [2])
= (iBd)x (Part (c))
= (radiusB(X)Bd)center(X)

= X, (Proposition 41)
that is, if d is regular, then

dBB is Bd-closed. ♦

Based on the regularity of the Chessboard distance, we
have the following result.

Corollary 57 (closure property of the Minkowski product
of the 3 by 3 discrete square) – Let B8 be the 3 by 3 discrete
square with center at origin, for any j ∈ N, jB8 is B8-closed.♦

Proof
By Proposition 15 (example of geometrical metric space)
(Z2, d8) is regular. Furthermore, B8 is the unit ball of (Z2, d8):

88
BBd = . Therefore, by Proposition 56 (closure property of

the unit ball of a regular metric space), for any j ∈ N, jB8 is
B8-closed. ♦

Let Bc be the collection of finite symmetric balls (i.e., B
∈ S) having the closure property and such that o ∈ B and B ≠
{o}, that is, Bc = {B ∈ S: BB is B-closed, o ∈ B and B ≠ {o}}.

Let Mr be the set of integer-valued t.i. regular metrics,

that is, Mr = {d ∈ 
22 ZZN × : d is t.i. and regular}.

Before closing this section, we verify that the image of
Mr through d a Bd is contained in Bc. In other words, the
unit ball of a metric space which metric is integer-valued t.i.
regular and defined on the discrete plane has the closure
property.

Proposition 58 (properties of the Minkowski product of the
unit ball of a regular metric space) – (d a Bd)(Mr) ⊂ Bc. ♦

Proof
By Proposition 52 (properties of the unit ball) Bd ∈ S, o ∈ B
and B ≠ {o}, and by Proposition 56 (closure property of the
unit ball of a regular metric space) d being regular, BB is Bd-
closed. Therefore, for any d ∈ Mr, Bd ∈ Bc. ♦

7. From symmetric ball to metric

By using the Minkowski product, with a symmetric ball
containing the origin, we can associate a t.i. metric.

Let B be a finite symmetric ball (i.e., B ∈ S), such that o
∈ B and B ≠ {o}.

For any x ∈ Z2, let

Mx = I }:)({ XxoX B ∈∈ B .

By Proposition 43 (chain of generated balls with center
at a given point), Mx ∈ BB(o) and it is the smallest ball with
center at origin that contains the point x.

Let fB be the mapping from Z2 to N+ given by, for any x ∈
Z2,

fB(x) = radiusB(Mx).

In the next proposition, we give the relationship between
the ball border and its radius. Property (i) will be useful to
prove the subadditivity of fB, and Property (iii) to prove its
regularity.

Proposition 59 (ball border versus ball radius) – Let B be a
finite symmetric ball (i.e., B ∈ S), such that o ∈ B and B ≠
{o}. For any x ∈ Z2 and any finite X ∈ BB(o),
(i) x ∈ X ⇔ fB(x) ≤ radiusB(X),
(ii) x ∈ ∂BX ⇒ fB(x) = radiusB(X),
(iii) if B has the closure property, then fB(x) = radiusB(X) ⇒
x ∈ ∂BX. ♦

Proof

Let x ∈ Z2, let Mx =I }:)({ UxoU B ∈∈B  and let X ∈

BB(o).
(a) Let us prove ⇒ of (i). First,
x ∈ X ⇔ X ∈ {U ∈ BB(o): x ∈ U} (set definition)

⇒ Mx ⊂ X. (definition of Mx and property of I )
Second,
fB(x) = radiusB(Mx) (definitions of Mx and fB(x))

≤ radiusB(X).
                  (Mx ⊂ X and Property (i) of Proposition 51 -

radius properties of nested generated balls)
(b) Let us prove ⇐ of (i). First,
radiusB(Mx) = fB(x) (definitions of Mx and fB(x))
                  ≤ radiusB(X), (hypothesis)
that is, under the hypothesis, radiusB(Mx) ≤ radiusB(X).
Second,
x ∈ M (property of I )

⊂ X,
(radiusB(Mx) ≤ radiusB(X) and Property (iv) of Proposition
51)
that is, under the hypothesis x ∈ X.
(c) Let us prove Properties (ii) and (iii). Let us assume that B
has the closure property and let j = radiusB(X),
x ∈ ∂B(X) ⇔ x ∈ X  – )( XBε (Definition 46 - B-border)

⇔ x ∈ jB  – )( jBBε
(X = jB by Proposition 41 - characterization of the generated

balls)
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⇔ x ∈ jB  – ((j – 1)B)
(⇒ by Property (i) of Proposition 49 (erosion of a generated

ball) and ⇐ by Property (ii) of Proposition 49 since B has
the closure property)

⇔ x ∈ jB  and x ∉ (j – 1)B
(def. of the set difference)

⇔ fB(x) ≤ radiusB(jB) and radiusB((j – 1)B) < fB(x)
(Property (i))

⇔ fB(x) ≤ j and (j – 1) < fB(x)
(Proposition 41)

⇔ j ≤ fB(x) ≤ j (property of < on N)
⇔ fB(x) = j (anti-symmetry of ≤)
⇔ fB(x) = radiusB(X). (definition of j)

♦

The mapping fB has almost all the properties of a norm as
shown in the next proposition. Nevertheless, it doesn't verify
the property: fB(jx) = j fB(x) for any j ∈ Z (for example, if B

is a five by five square and x = (1, 1), then fB(2x) = 1 and
2fB(x) = 2), instead it has a weaker property: the symmetry.

Proposition 60 (properties of fB) – Let B be a finite
symmetric ball (i.e., B ∈ S), such that o ∈ B and B ≠ {o}. For
any x and y ∈ Z2,
(i) fB(x) ≥ 0, (positiveness)
(ii) x = o ⇔ fB(x)  ==  0,
(iii) fB(− x)  ==  fB(x), (symmetry)
(iv) fB(x + y) ≤ fB(x)  + fB(y). (subadditivity)

♦♦
Proof
Let us prove (i). Since the radius of a ball is a natural number
(see Definition 40 - radius of a generated ball), for any x ∈
Z2, fB(x) ≥ 0.
Let us prove (ii).For any x ∈ Z2,

x = o ⇔ fB(x) = radiusB(I }:)({ XooX B ∈∈ B )

(def. of fB(x))
⇔ fB(x) = radiusB({o})

(Proposition 43 - chain of generated balls with center at a
given point)

  ⇔ fB(x) = 0.
(Property (i) of Proposition 42 - radius property)

Let us prove (iii). For any x ∈ Z2,

fB(− x) = radiusB(I }:)({ XxoX B ∈−∈ B ) (def. of fB(x))

= radiusB(I }:)({ XxoX B ∈∈ B ) (BB(o) ⊂ S+)

= fB(x). (def. of fB(x))
Let us prove (iv). Let us divide the proof in three parts.
(a) For any x ∈ Z2, let us prove that x ∈ fB(x)B,
true ⇔ fB(x) ≤ fB(x) (reflexivity of ≤)

⇔ fB(x) ≤ radiusB(fB(x)B)
(fB(x)B ∈ BB(o) (definition of BB(o)) and Proposition 41 -

characterization of the generated balls)
⇔ x ∈ fB(x)B.
(Property (i) of Proposition 59 - ball border versus ball

radius)

(b) For any x, y ∈ Z2, let prove that x + y ∈ (fB(x) + fB(x))B:
true ⇔ x ∈ fB(x)B and y ∈ fB(y)B (Part (a))

⇒ x + y ∈ (fB(x)B) ⊕ (fB(y)B)
(Definition 31 - Minkowski's addition)

⇔ x + y ∈ (fB(x) + fB(y))B
(Proposition 35 - mix distributivity of the product)

(c) For any x, y ∈ Z2,
fB(x + y) ≤ radiusB((fB(x) + fB(y))B)

      (Part (b) and Property (i) of Proposition 59)
= fB(x) + fB(y). (Proposition 41)

♦

With a mapping fB we can associate the mapping dB =
Bf

d . By Proposition 9 (characterization of translation-

invariant metric) and Proposition 60 (properties of fB) dB is a
t.i. metric; we call it the metric induced by B or simply
induced metric. Let x and y ∈ Z2, from the definition of df in
Section 2, we have

dB(x, y) = fB(x – y).

It is interesting to note that by substituing the Minkowski
product by the scaling operations: scaling or scaling2, of
Section 4, the above construction doesn't lead to a metric.

As we can see in Figure 8, the triangle inequality is not
satisfied when the induced distance is obtained by using the
scaling transformations.

Before closing this section, we verify that the image of
Bc through B a dB is contained in Mr.

o

∞
1

1

21

1

o

2 ≤ 1 + 1 ∞ ≤ 1 + 1

true false

Figure 8 - Induced distances using Minkowski product and
scaling.

Proposition 61 (properties of the metric induced by a ball
having the closure property) – (B a dB)(Bc) ⊂ Mr. ♦

Proof
We must verify four properties.
(a) By Proposition 9 (characterization of translation-
invariant metric) and Proposition 60 (properties of fB) dB is a
t.i. metric.
(b) For any B in Bc, by construction, fB is a mapping from Z2

to N+, therefore, by definition of induced metric, dB(Z2 × Z2)
= N+.
(c) Let us prove the lower regularity. Let x and y ∈ Z2, let i ∈
N, and let j = dB(x, y) such that i ≤ j,
true ⇔ dB(x, y) = j (definition of j)

⇔ fB(x – y) = j (definition of induced metric)
⇔ fB(x – y) = radiusB(jB)
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(Proposition 41 - characterization of the generated balls)
 ⇒ x – y ∈ ∂B(jB)
 (B has the closure property and Property (iii) of Proposition

59 - ball border versus ball radius)
⇔ x ∈ (∂B((jB))y (Definition 19 - translated version)
⇔ x ∈ ∂B((jB)y)

(Property (ii) of Proposition 47 - B-border properties)
⇒ ∂B((iB)x) ∩ ∂B(((j – i)B)y) ≠ ∅

(Property (ii) of Proposition 50 - generated balls versus B-
border)

⇔ ∃ u ∈ Z2: u ∈ ∂B((iB)x) and u ∈ ∂B(((j – i)B)y)
(intersection and empty set definitions)

⇔ ∃ u ∈ Z2: u ∈ (∂B(iB))x and u ∈ (∂B((j – i)B))y

(Property (ii) of Proposition 47)
⇔ ∃ u ∈ Z2: u – x ∈ ∂B(iB) and u – y ∈ ∂B((j – i)B)

(Definition 19)
⇒ ∃ u ∈ Z2: fB(u – x) = radiusB(iB) and

fB(u – y) = radiusB((j – i)B)
(Property (ii) of Proposition 59)

⇔ ∃ u ∈ Z2: fB(u – x) = i and fB(u – y) = j – i
(Proposition 41)

⇔ ∃ u ∈ Z2: dB(u, x) = i and dB(u, y) = j – i
(definition of induced metric)

⇔ ∃ u ∈ Z2: dB(x, u) = i and dB(u, y) = j – i
(symmetry of dB)

⇔ ∃ u ∈ Z2: dB(x, y) = dB(x, u) + dB(u, y) and dB(x, u) =
i

(definition of j and substitution)
⇔ S(x, i) ∩ L2(x, y) ≠ ∅

(definitions of S and L2 with respect to dB)
⇒ dB is lower regular.

(Corollary 5 - first equivalent definition of regular metric)
(d) Let us prove the upper regularity. Let x and y ∈ Z2, let i ∈
N, and let j = dB(x, y),
true ⇔ dB(x, y) = j (definition of j)

⇔ x ∈ ∂B((jB)y) (as in (b))
⇒ ∂B(((i + j)B)y) ∩ ∂B((iB)x) ≠ ∅

(Property (i) of Proposition 50)
⇔ ∃ u ∈ Z2: dB(u, y) = i + j and dB(u, x) = i

(as in (b))
⇔ ∃ u ∈ Z2: dB(u, y) = dB(u, x) + dB(x, y) and dB(u, x) =

i
(definition of j and substitution)

⇔ S(x, i) ∩ L3(x, y) ≠ ∅
(definitions of S and L3 with respect to dB)

⇒ dB is upper regular. (Definition 3)
Hence, from (a) - (d) and by Corollary 5, for any B ∈ Bc, dB

∈ Mr. ♦

8. Relationship between regular metrics and
symmetric balls having the closure property

We now establish two propositions showing that the
mapping B a dB of the Section 7 is a left and right inverse
of the mapping d a Bd of Section 6.

Let M2 be the set of integer-valued t.i. lower regular

metrics, that is, M2 = {d ∈ 
22 ZZN × : d is t.i. and lower

regular}.

Proposition 62 (existence of a left inverse) – The mapping
B a dB is a left inverse for the mapping d a Bd from M2 to
the collection of finite symmetric balls B (i.e., B ∈ S), such
that o ∈ B and B ≠ {o}. ♦

Proof
(a) From Proposition 52 (properties of the unit ball), for any
metric d,  Bd ∈ S, o ∈ Bd and Bd ≠ {o}.
(b) For any d ∈ M2, any x and y ∈ Z2 and any j ∈ N,
d(x, y) ≤ j ⇔ x – y ∈ jBd

(d is lower regular and Proposition 53 - property of the
generated balls in a lower regular metric space)

⇔ )(radius)( dBB jByxf
dd

≤−

(Property (i) of Proposition 59 - ball border versus ball
radius)

⇔ jyxf
dB  )( ≤−

 (Proposition 41 - characterization of the generated balls)
⇔ jyxd

dB ≤),( . (definition of induced metric)

That is, by anti-symmetry of ≤, for any x and y ∈ Z2, d(x, y) =
),( yxd

dB . In other words, by mapping equality definition, d

= 
dBd . ♦

Proposition 62 shows that every integer-valued t.i. lower
regular metric can be reconstructed from its unit ball using
the Minkowski product. Since Mr ⊂ M2, this is also true for
the regular metric. In other words, its unit ball uniquely
defines any (lower) regular metric space.

Corollary 63 (chessboard distance as a derived distance) –
If d8 is the chessboard distance, then d8 =

8Bd . ♦

Proof
Since B8 is the unit ball of the chessboard metric space,
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BBd = . By Proposition 15 (example of regular metric

space) (d8, Z2) is a regular metric space, therefore by
Proposition 62 (existence of a left inverse) d8 =

8Bd . ♦

Proposition 64 (existence of a right inverse) – The mapping
B a dB is a right inverse for the mapping d a Bd from Mr to
Bc. ♦

Proof
(a) By Proposition 61 (properties of the metric induced by a
ball having the closure property) for any B ∈ Bc, dB ∈ Mr.
(b) For any B ∈ Bc,

BdB = {u ∈ Z2: dB(u, o) ≤ 1} (definition of Bd)

= {u ∈ Z2: fB(u) ≤ 1} (definition of induced metric)

= {u ∈ Z2: radiusB(I }:)({ XuoX B ∈∈ B ) ≤ 1}

(definition of fB)
= {u ∈ Z2: u ∈ {o} or u ∈ B}



26

(by Proposition 43 (chain of generated balls with center at a
given point) BB(o) is a chain and {o} and B are the only two

generated balls with radius less than or equal to 1)
= {u ∈ Z2: u ∈ B} (o ∈ B)
= B. (set definition)

That is, 
BdB = B. ♦

We are now ready to state our characterization theorem.

Theorem 65 (characterization of integer-valued translation-
invariant regular metrics) – The mapping d a Bd from Mr to
Bc is a bijection. Its inverse is the mapping B a dB. ♦

Proof
Let us divide the proof into two parts.
(a) By Proposition 58 (properties of the Minkowski product
of the unit ball of a regular metric space) for any d ∈ Mr, Bd

∈ Bc. By Proposition 62 (existence of a left inverse), d
a Bd from Mr ⊂ M2 to Bc is one-to-one.
(b) By Proposition 64 (existence of a right inverse), d a Bd

from Mr to Bc is onto.
Hence, from (a) and (b), d a Bd from Mr to Bc is a bijection
and its inverse is B a dB. ♦

9. Conclusion

In the first part of this work we have introduced a
definition of regular metric space and showed its relation to
the Kiselman's regularity axioms for translation-invariant
metrics. We have shown, in particular, that the lower
regularity of type 1 is a redundant axiom in the definition of
regular metrics.

In the second part, we have established a one-to-one
relationship between the set of integer-valued and
translation-invariant regular metrics defined on the discrete
plane, and the set of symmetric balls satisfying a special
closure property.

From this result we now know how to construct a regular
metric on the discrete plane.

To this end, we choose in the discrete plane a symmetric
ball B that has the closure property, i.e., that induces, through
the Minkowski product, a chain of generated balls that are
morphologically closed with respect to B.

Then the distance of a point x to the origin is given by the
radius (in the sense of the Minkowski product) of the
smallest ball of the chain, that contains x.

This construction shows that to preserve in the discrete
plane the regularity property of the Euclidean metric on the
continuous plane, we have to reach a compromise between a
good approximation of a continuous ball and thin contours.
"Closer" B from an Euclidean continuous ball, bigger B and
thicker the borders in the discrete plane.

Actually it will be interesting in a future work to give a
proof that if B is the intersection of an Euclidean continuous
ball with the discrete plane then the generated balls are
morphologically closed with respect to B.

The proof should be based on a closure property of the
convex subsets of the continuous plane [3, Proposition 9.8].

The regular metric characterization we have proved will
also be very useful to derive in future work some important
geometrical properties of the skeletons of "expanded"
subsets of the discrete plane [1].
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