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Abstract

We say that a metric space is regular if a straight-line (in the metric space sense) passing through the center of a sphere and
any other point has at least two diametrically opposite points. Normed vector spaces have this property. Nevertheless, this
property might not be satisfied in some metric spaces. In this work, we give a characterization of an integer-valued translation-
invariant regular metric defined on the discrete plane, in terms of a symmetric subset B that induces through, what we call, the
Minkowski product, a chain of subsets that are morphologically closed with respect to B.
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1. Introduction

The continuous plane or, more precisely, the two-
dimensional Euclidean vector space, has good geometrical
properties. For example, in such space, a closed bal is
included in another one only if the radius of the latter is
greater than or equal to the sum of the distance between their
centers and the radius of the former. Furthermore, in such
space, two closed balls intersect each other if the sum of
their radii is greater than or equal to the distance between
their centers. Nevertheless, not al metric spaces have these
properties.

In the first part of this work, we introduce the concept of
regular metric space in which the above two geometrica
properties are satisfied.

We say that a metric space is regular if its metric
satisfies three regularity axioms or equivalently if a straight-
line (in the metric space sense) passing through the center of
a sphere and any other point has at least two diametrically
opposite points. Minkowski spaces (i.e., finite dimensiona
normed vector spaces) have this property.

This regularity is generaly lost when a metric on the
continuous plane is restricted to the discrete plane, as it is
the case of the Euclidean metric.

In the second part of this work, we study the
characterization of the integer-valued trandation-invariant
regular metrics on the discrete plane in terms of some
appropriate symmetric subsets.

We show that every such metric can be characterized in
terms of a symmetric subset B that induces through, what we
cal, the Minkowski product, a chain of subsets that are
morphologically closed with respect to B.

Our characterization shows the unique way to construct
integer-valued trandation-invariant regular metrics on the
discrete plane.

This is an important issue in digital image analysis since
the image domains are then discrete. In the sixties,
Rosenfeld and Pfatz [8] have aready introduced a metric
property and have used it to describe agorithms for
computing some distance functions by performing repeated
local operations. It appears that their property is precisely a
necessary condition for a metric to beregular.

Actually, we came across the regularity property for a
metric because we tried to find a class of metric whose
metric dilations satisfy a semigroup relation (relation (9.19)
of [3]) and whose bals are morphologicaly closed with
respect to the unit ball. This class contains, for example, the
chessboard distance.

In one dimension, we observed that the (discrete)
convexity is not a necessary condition to have the
morphological closure property, so it was useless to solve
our problem.

For the sake of simplicity of the presentation, in this
work, we limit ourselves to the class of integer-valued
metrics. This is not a serious limitation because on the
discrete plane the metrics assume only a countable number
of values.

In Section 2, we give an axiomatic definition of regular
metric space and we relate it to the Kiselman's properties of
upper and lower regularity for the triangle inequality. In
particular, we show that of the three axioms only two are
sufficient to define the metric regularity. Independently of
the definition of metric, in Section 3, we give a definition of
ball based on the notions of set trandation and set
transposition. We introduce the Minkowski product in
Section 4, and use it in Section 5 to define the notions of
generated balls and radius of aball. In Section 6, we study the
properties of the balls of aregular metric space. Conversely,
in Section 7, we study the properties of the metric spaces
constructed from symmetric balls having a morphological
closure property. Finally, in Section 8, we show the
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existence of a bijection between the set of integer-valued
tranglation-invariant regular metrics defined on the discrete
plane and the set of symmetric balls that satisfy the
morphological closure property.

2. Regular metric space

We first recall the definitions of distance, metric and
metric space.

Definition 1 (metric space) — Let E be a nonempty set. A
distanced on E isamappingfromE"~ EtoR (the set of real
numbers) satisfying, for any x andy 1 E:

() dx,y)? 0, (positiveness)
(i) d(xy)=00 x=y,
(iii) d(x, y) =d(y, ). (symmetry)

Furthermore, a distance d on E isa metric if in addtion it
satisfies, for any x, yandz1 E:

(iv) d(x,y) £d(x,2) +d(zy). (triangle inequality)
A metric space (E, d) is a set E provided with ametric d on
E -

The mapping do from E” E to R defined by, for any x and
yl E
i0  if X=y

do(X,y) =1 ,
o(x¥) %1otherW|se

isan example of metric, it is called thediscrete metric.

In a metric space we can define the concepts of straight-
line and sphere. Furthermore, based on these concepts, we
can define what we call aregular metric and a regular metric
space.

Let (E, d) beametric space. Forany x andy T E, and any
iT d{x} ~ E) (i.e., theimage of {x} ~ E through d), let us
define the following subsets of E:

Li(x, y) ={z] E:d(x,2) =d(x,y) +d(y, 2)},
L2(Xv y) = {Z | E: d(Xv y) = d(Xv Z) + d(Z, Y)},
La(x,y) ={z1 E: d(zy) =d(z x) +d(x, y)}, and
S(x,i) ={z1 E: d(x,2) =i}.

The subsets L(x, y) = Li(X, y) E La(X, y) E Ls(x, y) and
S(x, 1) are, respectively, the straight-line passing through the
points x and y, and the sphere with center at x and of radiusi.

Figure 1 and Figure 2 in this section show examples of
spheres and straight-lines. We must be aware that the above
definition of straight-line is based on the concept of metric
and the resulting object is generally different from the usua
straight-line defined in the framework of linear vector space.

Because of the symmetry property of the distances, the
straight-lines have some kind of symmetry aswell.

Proposition 2 (straight-line symmetry) — Let (E, d) be a
metric space. For any x andy 1 E,

(1) Lixy) =Ls(y.x)

(i) La(xy) = La(y, X)

(i) L(x,y) =L(y, ).

Proof

(a) Lut usprove (i). Forany x,yand z1 E,

z1 Lix,y) U d(x,2) =d(x,y) +d(y,2)  (definition of L,)
0 d(z, x) =d(y,x) +d(z,y) (symmetry of d)
U d(z x) =d(z y) + d(y, X)(commutativity of +)
O z1 Ls(y, x), (definition of Ls)

that is, La(X, ¥) = La(y, X).

(b) Let us prove (ii). For any x,yandz1 E,

z1 Lo(x, y)l:J d(x,y) =d(x,2) +d(z,y) (definition of L)

U d(y, x) =d(z,x) +d(y, 2 (symmetry of d)
U d(y, x) =d(y, 2) + d(z, X)(commutativity of +)
0 z1 Ly, x), (definition of Ly)

that is, La(X, y) = Lao(y, X).

(c) Let usprove (iii). For any x andy 1 E,

L(x,y) =Li(x,y) E La(x, y) E La(x, y) (definition of L)
=Ls(y,x) E La(y,¥) E Lu(y,¥)  (from (i) and (ii))
=La(y, X) E La(y, X) E Ls(y, X) (commutativity of E)
=L(y, %), (definition of L)

that is, L(x, y) = L(y, X). "

We first define the regular metric space from three
axioms.

Definition 3 (regular metric space) — Let (E, d) be a metric
space. Themetricdon Eis

(i) lower regular of type 1if S(x, i) C Li(x,y) * A for
ayxandyl E,andanyil d({x} ~ E), suchthatd(x,y) £i;
(ii) lower regular of type 2 if S(x, i) C La(x,y) * A for
ayxandyl E,andanyil d({x} ~ E), suchthati £d(x,y);
(iii) upper regular if §(x,i) C Ls(x,y) * A forany xandy
T Eandanyil d({x} " E);

(iv) regular if itislower regular (of type 1 and 2) and upper
regular. A metric space (E, d) is regular if its metric is
regular. "

Actually, the three regularity axioms are not independent
each other as we show in the next proposition.

Proposition 4 (axiom dependence) — Let (E, d) be a metric
space. The metric d on E is lower regular of type 1 if and
only if (iff) it isupper regular. "

Proof
(a) Let us prove that the lower regularity of type 1 implies
the upper regularity. For any xandy1 E,andany i T d({x}

(dislower regular of type 1) P Sy, i +d(X,y)) C La(y, x) *
£
(definition of lower regularity of type 1)
Sy,i +d(x,y)) C Ls(x,y) * &£
(Property (i) of Proposition 2 - straight-line symmetry)
$z1 Ed(y,2) =i +d(x,y) and d(z,y) =d(z, x) + d(x, y)
(definitions of Sand Ls)
$z1 Ed(zy) =i +d(x,y) andd(z,y) =d(z, x) + d(x, y)
(symmetry of d)
$z1 Ed(z, x) =iandd(z, y) =d(z x) +d(x, y)
(transitivity of = and regularity of +)
$z1 Ed(x,2) =iandd(z,y) =d(z, x) +d(x, y)

([an) () ([an) ()

([an)



(symmetry of d)
U S(X, I) C L3(Xv y) t /Ev
(definitions of Sand Ls)
that is, d is upper regular.
(b) Let us prove that the upper regularity implies the lower
regularity of type 1. For any xandy 1 E,andany i T d({x}
E) such thatd(x,y) £1,
(disupperregular) b Sy, i —d(x,y)) C Ls(y,X) * A&
(definition of upper regularity)

U S(y, I —d(X, y)) C Ll(xv y) 1 AE
(Property (ii) of Proposition 2)
U$z1 Exd(y,2 =i-d(x,y)andd(x, 2) =d(x,y) +d(y, 2)

(definitions of Sand L;)

U $z1 Ed(x,y) +d(y,2) =i andd(x, 2) =d(x, y) +d(y, 2)
(+ versus-)
U $z1 Ed(x,2) =iandd(x,2) =d(x,y) +d(y, 2
(transitivity of =)
U Sixi) CLixy) * A&

(definitions of Sand L;)
that is, d islower regular of type 1. "

The axiom dependence alows us to make an equivaent
definition of regular metric, but simpler with only two
axioms, the lower regularity of type 2 being called simply
lower regularity.

Corollary 5 (first equivalent definition of regular metric) —
Let (E, d) be ametric space. Themetricdon Eis

(i) lower regular if S(x,i) C La(x,y) * A forany xandy
T Eandanyil d({x} ~ E), suchthati £ d(x, y):

(ii) regular iff it islower and upper regular.

Pr oof

(@) If disregular in the sense of Definition 3, then d is
regular in the sense of the corollary statement since lower
regularity means lower regularity of type 2.

(b) Conversely, if d is regular in the sense of the corollary
statement, then d is lower regular of type 2 and upper
regular, therefore by Proposition 4 (axiom dependence) it is
aso lower regular of type 1, that is, it isregular in the sense
of Definition 3. N

In order to prove another equivalent definition of regular
metric, we need the following lemma.

Lemma 6 (straight-line and sphere intersection properties) —
Letd beametriconasetE. Foranyxandy 1 E, andany il
d{x} * B),

(i) Sxi)CLMxy* AP dxy)£i

@ii) S(x,1) CLax, )t P i £d(X,Y).

Pr oof
(@) Letusprove(i). Foranyxandy1 E,andany il d({x}~
B),
?(X, I) 9 Ll(xv y) YA
U $ul E d(x,u) =d(x,y) +d(y, u) and d(x, u) =i

(definitions of Sand L;)
P $ul Ei=d(xy)+d(y,u)

(substitution)

P d(xy)£i. (Definition 1 - positiveness of d)
(b) Let us prove (ii). For any xandy 1 E,andanyi T d({x}
B),
§(Xv I) 9 I—Z(Xl y) YA
U $ul E d(x,y)=d(x,u) +d(u,y) and d(x, u) =i

(definitions of Sand L,)
P $ul Ed(xy)=i+d(u,y)

(substitution)

P i £d(x,Y). (Definition 1 - positiveness of d)

The next proposition alows a geometrical interpretation
for the regular metrics.

Proposition 7 (second equivalent definition of regular
metric) — A metricd on E isregular iff for any xandy 1 E,
andanyil d({x} ~ E), the intersection between the straight-
line L(x, y) and the sphere S(x, i) have a least two
diametrically opposite pointsin the sense that it exists u and
vl S(x,i)suchthatul (Li(x,y) E La(x,y)) andv i Ls(X,Y).

Pr oof
(a) Let us assume that d is aregular metric on E. Since, for
ayxandyl E andanyil d{x} ~ E), at least one of the
two conditions d(x, y) £ i and i £ d(x, y) is satisfied, by
Definition 3 (regular metric space), at least one of the two
propertiesLi(x,y) C S(x,i) T AandLx(X,y) C S(x,i) * AEis
satisfied, in other words, we have (Ly(x, y) E La(X, y)) C S(x,
)L A Thatis, $ul S i):ul (Lix y) E Ly(x Y)).
Furthemore, by Definition 3 again, for any x and y 1 E, and
awyil d{x} E),Ls(x,y) C S(x,i)* /£ Thatis, $vIi Sx,
i: vl Ls(x,y).
(b) Conversely, let us assume that for any x and y 1 E, and
ayil d{x} E),$uadvi Sxi):ul (Li(x y) E La(x,
y)andvi La(x,y).
(bD) If i <d(x,y),
true 0 S(x,i) C (Li(x, y) E Lo(x,y)) * A£and
i <d(x,y)
P S(x,i) C (Li(x Y) E Ly(x,y)) * Eand

S(X! I) C Ll(xv y) =K
(Property (i) of Lemma6)
(Sx,1) € La(x, y)) E (S(x,1) C La(x,y)) * Aand
S(x, 1) C Li(x,y) =/  (distributivity of C over E)
S(x,1) C Lo(x,y) * A (Aisunity for E)
dislower regular.
(Corallary 5 - first equivalent definition of regular metric)
If d(x,y) =i,
true0 $ul E d(x,y) =d(x, u) +d(u,y) andd(x, u) =i
(namely u =y and Property (ii) of Definition 1)
U S(x,i) C Ly(x,y)* £ (definitions of Sand L)

(hypotheses)

(e}

T O

P dislower regular. (Corollary 5)
(b2)
true0 S(x,i) C La(x,y) * A& (hypothesis)
P disupper regular. (Corallary 5)

That is, by Corollary 5, disregular.



The Euclidean distanced on R?, given by, for any X = (xs,
x2) andanyy = (yn,y2) T Z%,

A0, y) = (% - y2)? + (% - ¥2)?
is regular, nevertheless, when restricted to the discrete plane
Z? it is not regular. For example, the straight-line L(x, Y)
containing x = (0, 0) and y = (1, 1) consists of the points (i, i)
withi T Z, and the sphere S(x, 1) of radius 1 with center at x
consists of the points (0, 1), (1, 0), (0, -1) and (- 1, 0). We
observe that this line and this sphere have no intersection.
The left-hand side of Figure 1 illustrates this point. Another
example of non-regular metric in the discrete plane can be
built from the elliptic distanced given by, for any x = (X1, X2)

andanyy=(yny2) 1 2%
d(x,y) = (- y2)? /8% +(x; - y2)? /b2 |

with a = 5/3 and b = 5/4. For example, the straight-line L(x,
y) containing x = (0, 0) and y = (2, 1) consists of the points
(2i, iywith i T Z, and the sphere S(x, 1) of radius 1 with
center at x consists of the points (1, 1), (1, - 1), (- 1, -1)
and (- 1, 1). Again, both have no intersection. The right-hand
side of Figure 1 illustrates this point.

-----

Figure 1 - Examples of non-regular metrics

The discrete metric is not regular despite the fact that for
ayxandyl Ext yandawyil do({x} " E)={0, 1}, S(x, )
CL(x,y)* A(since L(x,y) ={x, y}, S(x, 0) ={x} and
1) = {y}). For the discrete metric, we cannot find two
diametrically opposite points since La(x, y) = {x} and x |
S(x, 1).

From now on, we restrict ourself to trandation-invariant
metrics on an Abelian group. Such metric property suits
most image analysis problems.

Definition 8 (trandation-invariant metric sapce) — A
distance or metric d on an Abdian group (E, +) is
translation-invariant (t.i.) if, forany u, xandy 1 E: d(x +
u,y +u) =d(x, y). A translation-invariant metric space (E,
d) isaset E provided with at.i. metricd on E. "

As it iswell known, every trandation-invariant metric on
E can be characterized in terms of a mapping from Eto R as
stated in the next proposition.

Let (E, +, 0) be an Abelian group where o is the unit
element of +. The subtraction on E, denoted — is the
mapping E” E' (X, y) »x+ (-y) 1T E where—y isthe
inverse of y.

For any mappingd fromE”~ EtoRandany x1 E, let

fa (X) =d(x, 0).
For any mapping f from EtoR andany x andy 1 Elet
di(x, y) =f(x -y).

Proposition 9 (characterization of trandation-invariant
metric) — The mapping d — fy from the set of trandation-
invariant distances on an Abdlian group (E, +, 0) to the set of
mappingsf from E to R satisfying the properties, for any x T
E:

(i) f)20,

(positiveness)
(i) f(o)=0,
(iii) f(-x)="f(x), (symmetry)

isabijection and itsinverseis f i dr. Furthermore, d ~ fy

is, as well, a bijection from the set of trandation-invariant

metrics on the Abelian group (E, +, 0) to the set of mappings

f from E to R satisfying the properties (i) - (iii) and the

property, for any xandy 1 E:

(iv) f(x+y)=1f(x) +f(y) (subadditivity).

Proof

Let us divide the proof into four parts.

(@ LetdbeamappingfromE”~ EtoR.

(al) Let usassume that d satisfies Property (i) of Definition

1. Forany x1 E,

fa(x) =d(x, 0) (definition of fg)
30, (hypothesis)

that isfq satisfies Property (i).

(a2) Let us assume that d satisfies Property (ii) of Definition

1.

fa(o) =d(o, 0) (definition of fg)
=0, (hypothesis)

that isfq satisfies Property (ii).

(a3) Let us assume that d satisfies Property (iii) of

Definition 1. Forany x1 E,

fq (- X) =d(- x,0) (definition of fg)

=d(o,x) (dist.i.)
=d(x,0) (hypothesis)
= fq(x), (definition of fg)

that isfy satisfies Property (iii).

(ad4) Let us assume that d satisfies Property (iv) of

Definition 1. Forany xandy 1 E,

fa(x +y) =d(x +y, 0)

£d(x+y,y) +d(y, 0)
=d(x, 0) +d(y, 0)
=fa(x) +1fu(y),

that isfq satisfies Property (iv).

In other words, from (al) - (a3), if d isat.i. distance then fq

satisfies Properties (i) - (iii), and, from (al) - (a4), if dis a

t.i. metric then fy satisfies Properties (i) - (iv).

(b) Let f be amapping from E to R.

(bl) Let us assume that f satisfies Property (i). For any x and

yl E

di(x,y) =f(x —y) (definition of d)
30, (hypothesis)

that isd; satisfies Property (i) of Definition 1.

(b2) Let us assume that f satisfies Property (ii). For any x 1

E,

di(x, X) =f(x = X) (definition of dy)
=f(o) (group porperty)
=0, (hypothesis)

that isd; satisfies Property (ii) of Definition 1.

(definition of fg)
(hypothesis)
(dist.i.)
(definition of fg)



(b3) Let us assume that f satisfies Property (iii). For any x
andyl E,

di(x, y) =f(x —y) (definition of d)

=f(=(x-y)) (hypothesis)
=f(y —x) (group property)
=dy(y, X) (definition of ds)

that isd; satisfies Property (iii) of Definition 1.
(b4) Let us assume that f satisfies Property (iv). For any X, y
andzl E,
di(x, y) =f(x-y)
=f((x-2) +(z-y))
£Ef(x—2) +f(z-y) (hypothesis)
=di(x, 2) +di(z, y), (definition of d)
that isd; satisfies Property (iv) of Definition 1.
In other words, from (bl) - (b3), if f satisfies Properties (i) -
(iii) then dr is a t.i. distance and, from (bl) - (b4), if f
satisfies Properties (i) - (iv) then diisat.i. metric.
(c) Letd be at.i. distance on an Abelian group (E, +, 0). For
ayxandyl E,
de, (X, y) = fa(x-y)
=d(x-y,0)
=d(x,y),
thatis, f > dristheleft inverse of d i fq.

(d) Letf beamapping fromEtoR. For any x1 E,
fa, (X) =d;(x,0) (definition of fy)

=f(x-0) (definition of d)
=f(x), (group properties)
that is, f — dristheright inverse of d  fgq.
In other words, from (@) - (d), both mappings d + fg from
the set of distances and the set of metrics are bijections.

(definition of dy)
(group property)

(definition of dy)

(definition of fg)
(dist.i.)

In the case of t.i. metrics, we can make an explicit
relationship between the above concept of regular metric and
the concepts of upper and lower regularity proposed by
Kiselman [5] in order to compare balls with different
centers. Let usrecall the Kiselman's definitions.

Definition 10 (first definition of Kilselman's regularity for
a metric) — Let (E, +, 0) be an Abelian Group and let f a
mapping from E to R satisfying Properties (i) - (iv) of
Proposition 9 (characterization of t.i. metric), then the
tranglation-invariant metric d: on (E, +, 0) is

(i) lower regular (of type 1) for the triangle inequality
if, forany xand y T E such that f(y) £ f(x), there exists a
point . X1 E such tha f(X)=f(x) ad
f(X)=f(X-y)+1(y);

(ii) lower regular (of type 2) for the triangle inequality
if, forany xand y T E such that f(x) £ f(y), there exists a
pointt X1 E such tha f(X)=f(X ad
f(y)=f()+f(y-X);

(iii) upper regular for the triangle inequality if, for any x
andyl E, thereexistsapoint y1 Esuchthat f(y)= f(y)
and f(x+Yy)=f(x)+f(y).

In[5], Kiselman has defined Axioms (i) and (iii). For the
sake of compleness, we have added here Axiom (ii) and the
expressions "type 1" and "type 2.

Actually, we can rewrite Definition 10 as shown below.

Definition 11 (second definition of Kilseman's regularity
for ametric) — A tranglation-invariant metricd on an Abelian
group (E, +,0) is

(i) lower regular (of type 1) for the triangle inequality
if, forany xandy T E such that f4(y) £ f4(x), there exists X 1
Esuchthat 4(X) = fq(x) and f4(X) = f4(X- y) +f4(y):

(ii) lower regular (of type 2) for the triangle inequality
if, forany x andy T E such that f4(x) £ f4(y), there exists X 1

Esuchthat fq(X) = fq(x) and fq(y)=fy(X)+ fy(y- X);

(iii) upper regular for the triangle inequality if, for any x
andyl E, thereexists y1 Esuchthat fy(y)=f4(y) ad

fa(x+y) = fa(X) + f4(y).

Because of Proposition 9 (characterization of t.i.
metric), both definitions correspond to exactly the same
class of metrics.

Proposition 12 (definition equivalence) — Let A be the
subset of mappings f from E to R satisfying Properties (i) -
(iv) of Proposition 9 (characterization of t.i. metric) and let
B be the subset of mappingsf in A satisfying Conditions (i) -
(iii) of Definition 10, then the set (f — df)(B) (the image of
B through the inverse of d —fy) is equal to the set

(de fq) 1(B) (the inverse image of B through d - fg).

Pr oof

By Proposition 9 (characterization of t.i. metric), f - d; isa
left and right inverse for the mapping d +— fq from the set of
translation-invariant metrics to the set A, therefore, for any

subset X of A, (f > di)(X) =(d > fy4)” L(x). so, theequallty
isalso truefor B.

By using the second definition of Kiselman's regularity for a
metric, we show now that the t.i. regular metrics satisfy the
Kiselman's regularity axioms and conversely.

Proposition 13 (equivalent definition of trandation-
invariant regular metric) — Let d be a trandation-invariant
metric on an Abelian group (E, +, 0), then,

(i) dislower regular of type 1 in the sense of Definition 3
(regular metric space) iff d islower regular of type 1 for the
triangle inequality;

(i) dislower regular of type 2 in the sense of Definition 3
iff dislower regular of type 2 for the triangle inequality;

(iii) dis upper regular in the sense of Definition 3 iff d is
upper regular for the triangle inequality;

(iv) disregular iff dis lower regular of type 2 and upper
regular for the triangle inequality.

Pr oof
L et us divide the proof into three parts.
(a) Let us prove (i).



(al) Letxandy1 E, thenfy(x) andfq(y) T d({o} ~ E). Letus
assume that fq(y) £ fa(X),
(dislower regular of type 1 in the sense of Definition 3)
o, fa(x)) € Li(0,y) * Aandd(o,y) £ fu(x)
(Definition 3 - regular metric space)
$ X1 E:d(o, X)=d(0,y) +d(y, X)andd(o, X) =f4(x)
(definitions of Sand L;)
$ X1 E:d(X,0)=d(y,0) +d(X,y)andd(X,0) =f4(x)
(Definition 1 - symmetry of d)
$ XT E:d(X,0)=d(y,0) +d(X —y,0)and
d( X, 0) =f4(x) (dist.i. and group properties)
$ X1 Efo(X)="fa(y) +fa( X—y) and fa( X) =f4(X)
(definition of fy)
(dislower regular of type 1 for the triangle inequality).
(Definition 11)
(a2) Conversely, letxandy1 E,andi1 d({x} ~ E) such that
d(x,y) £1i, then fy(y = x) £1i (since d is t.i. and symmetric);
furthermore,
(dislower regular of type 1 for the triangle inequality)
P $ X1 Efa(X)=faly—x) +fa(X—(y—x)) and fo(X) =i
(Definition 11)
$ X1 Ed(X,0)=d(y—x,0)+d(X —(y—x),0)and
d(X,0) =i

o (= () (= i)

(e}

([an)

(definition of fy)
$ X1 Ed(X,0)=d(y—x,0)+d(X+x—-y,0)ad
d(X,0) =i (group properties)
$XT Ed(X+xx)=d(y,x) +d(X +x,y)ad
d(X+X,X) =i (dist.i. and group properties)
$ul E d(u,x) =d(y, x) +d(u,y) andd(u, x) =i

(namely u =X + x)
$ul E d(x,u) =d(x,y) +d(y, u) and d(x, u) =i

(d issymmetric)
S(x, 1) C Li(x,y) * A& (definitions of Sand L;)
(dislower regular of type 1 in the sense of Definition 3).

(Definition 3)

(e [ [ ([an)

([N e

(b) Let us prove (ii).
(bl) Letxandy T E,thenfq(x) andfy(y)T d({o} ~ E). Letus
assume that such that f4(X) £ fa(y),
(dislower regular of type 2 in the sense of Definition 3)
o, fa(x)) C Lz(0,y) * AEandfu(x) £ d(0,Y)
(Definition 3)
$ X1 E:d(o,y)=d(o, X) +d(X,y)andd(o, X) =f4(x)
(definitions of Sand Ly)
$ X1 E:d(o,y) =d(0, X) +d(0,y—X) and
d(o, X) =f4(x) (dist.i. and group properties)
$ XT E:d(y,0)=d(X,0) +d(y—X,0)and
d( X, 0) =f4(x) (Definition 1 - symmetry of d)
$ X1 Efa(y) =fa(X) +fa(y—X) and fa( X) =fa(X)
(definition of fy)
(dislower regular of type 2 for the triangle inequality).
(Definition 11)
(b2) Conversely, letxandy1 E,andil d({x} ~ E) such that
i £d(x,y), theni £ fa(y — X) (since d is t.i. and symmetric);
furthermore,
(dislower regular of type 2 for the triangle inequality)
P $XT Efaly—x)=fa(X)+fa((y—x)—X)and fo(X) =i
(Definition 11)

o () () () T

(e}
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$ XT Exd(y—x,0)=d(X,0) +d((y—x)—X,0) and
d(x,0) =i
(definition of fg)
$ XT Exd(y—x,0)=d(X,0) +d(y—(X+x),0)and
d(X,0) =i (group properties)
$ XT Ed(y,x) =d(X + x,X) +d(y, X + x) and
d(X+X,X) =i (dist.i. and group properties)
$ul E d(y,x) =d(u, x) +d(y, u) andd(u, x) =i
(namely u=X + x)
$ul E d(x,y) =d(x, u) +d(u, y) andd(x, u) =i
(dissymmetric)
S(x, i) C La(x, y) * A (definitions of Sand L)
(dislower regular of type 2 in the sense of Definition 3).
(Definition 3)

() ([an) () ()

oo

(c) Let usprove (iii).

(cl) Let xand y T E, then fg(x) and fq(y) T d({o} =~ E);
furthermore,

(d isupper regular in the sense of Definition 3)

S(o, fu(y)) G La(0, ) * A
(Definition 3)

$y1 Ed(-V¥,x)=d(-Y,o0) +d(o, x) and
d(o, y) =fa(y) (definitions of Sand L)
$ y1 Ed(o,x+y)=d(o, ¥) +d(o,x) and
d(o, y) =fa(y) (dist.i. and group properties)
$y1 Ed(x+y,0)=d(y,o0) +d(x 0)and
d(y, o) =fa(y) (Definition 1 - symmetry of d)
$ YT Efax+y)=fu(x) +fa( ¥)and fo( V) =fa(y)
(definition of fg)

(disupper regular for the triangle inequality).

A A (Definition 11)
(c2) Conversely, letxandy | E,andi | d({x} = E), then,
(d isupper regular for the triangle inequality)
P $ Yl Efi(y-x)+¥)=fa(y) +faly—x)and
fa(y) =i

U

([an)

([an)

()

()

()

(Definition 11)
$y1l Ed((y-x)+ y,0)=d(y,0)+d(y—x,0)and

d(y,o)=i

()

(definition of fg)
$yI Edy—(x=y),0)=d(y,0)+d(y—x, 0) and
d(y,o0)=i (group properties)
$yT Ed(y,x—y)=d(x,x=y) +d(y, x) and
dix,x=y) =i (dist.i. and group properties)
$vi Ed(y,v) =d(x, V) +d(y, x) and d(x, v) =i

(namely v=x-Y)
$vi Ed(v,y) =d(v, x) +d(x,y) and d(x, v) =i

(dissymmetric)
S(x, i) C Ls(x, y) * A (definitions of Sand Ls)
(d is upper regular in the sense of Definition 3).

(Definition 3)
(d) Property (iv) is a consequence of Corollary 5 (first
equivalent defintion of regular metric) and Properties (ii) -

(iii).

() () () ()

oo



Actualy, we have reused in this work the word "regular”
of the Kiselman's definitions for the metric satisfying
Definition 3 because of the previous proposition.

As a consequence of Property (iv), we observe that the
important Kiselman's axioms are the lower regularity of type
2 and the upper regularity for the triangle inequality and not
the lower regularity of type 1 for the triangle inequality.

Proposition 13 may be a short cut for the proof that some
t.i. metrics are regular as we show now for the chessboard
distance which is of particular interest in image processing.

The set Z% equipped with the addition ((X1, X2), (Y1, Y2))
> (X1 + Y1, X2 + Y2), denoted +, forms an Abelian group (27,
+, 0) with 0 = (0, 0) as unitary element.

Definition 14 (chessboard distance) — The chessboard
distance ds(, y) between x = (X1, X2) and y = (y1, y2) in Z? is
the natural number defined by

ds(X, y) = max{|x1 —yi|, [ X2 = y2[}-

The mapping dg: (x, y) > dg(x, y) from Z2~ Z*to R, is
called the chessboard distance. "

Actually, the chessboard distance ds is a metric.
Furthermore, with respect to the Abelian group (Z, +, 0), ds
is by construction tand ation-invariant.

Letfs=f, ,andletz=(z,2) beapointinz® then,

fs(2) =ds(z, 0) (definition of fy)
=max{|z—-0],|z-0[} (Definition 14- def. of dg)
=max{|z | |z} (properties of + on Z)
In other words, fg isgiven by, for any z=(z1, z) 1 72,
fe(2) = max{|z. |, | 2 [}
Let us show that dg isregular.

Proposition 15 (example of regular metric space) — The
metric space (Z?, dg) isregular. N

Pr oof

(a) Let us show that ds is lower regular (of type 2) for the

triangle inequality. Let X = (X1, X2) and y = (y1, y2) T Z? such

that fg(X) £ fa(y), let i =fg(x) and let X = (sign(yz).min{| yil,

i}, sign(yz).min{|yz|, i}), then

fa( X ) = max{|sign(ys).min{| yal, i} |, [sign(y2)-min{|y21, i} [
(expressions of fg and X )

=max{min{|y.|, i}, min{|y2|,i}} (i30)
=i (by hypothesis, i £ max{|yil, |y2[})
=f5(X). (hypothesis)

Furthermore, fork =1, 2,
[ Y= Xic | =] Yie—sign(yw).min{| yi, i} |
= [sign(yi)-yk —min{| i [, i} |
(properties of signand |- |)

(expression of X, )

=yl =min{|yil, i} |
(definition of | |)
Iyl £1]y2], then
lyr= X | =1yl =min{|yal, i} | (seeabove k=1)
0 if|yy£i

i
= %|y1|‘ i otherwise (definition of min)

ad

(see above, k=2)
(by hypothesis, i £z )

ly2=— X |=ly2| —min{|ya, i} |
=lyz|-i _
therefore, |y1— X |E|Yy2— X5 |-
In other words, if | y1| £ Y2 ], then
max{|yi— X |, [y2= % [} =y2= X% | (see above)
=|y2| i (see above)
=max{|y. 1, |y2[} —i.(hypothesis)
If | y2| £ | yal, then, under the same arguments,

max{|y1 — X |, Y2 = X2 [} =max{|y1 |, | y2[} —i. Hence, in

any case, max{|y1— X, [y2— X [} =max{|y1 ], |y2[} —i.

Finaly,

fa(X) +faly — X) =i + fay — X) (see above)
=i+max{|yi— X |,|y2— %[} (expression of fs)
=i+ ma|ys] Y2 |} i (see above)
=max{|y.l,1y2 [} (cancelation)
=fg(y) (expression of fg)

That is, for any x and y 1 Z? such that fs(X) £ fs(y), there
exists a point X1 Z° such that fg(X)=fg(x) and
fg(y) = fg(X)+ fg(y- X). In other words, dg is lower
regular (of type 2) for the triangle inequality.

(b) Let us show that ds is upper regular for the triangle
inequality. Let x = (Xq, x2) and y = (y1, y2) 1 Z2, leti = fg(y)
and let y = (sign(xa).i, Sign(x2).i), then

fa(y) =max{|sign(x1).i |, |Sign(x2).i [}  (expression of y)

=max{i, i} (i20

=i (max isidempotent)

=fa(y). (hypothesis)
Furthermore,

fa(x+ ¥) =max{[x1+ yi|,|x2+ Yo [}  (expression of fg)
=max{| X1 +sign(xy).i |, | X2 + sign(xz).i [}
(expression of y)
=max{|sgn(xy) Xy +1i |, |sign(xz) X2 +1 [}
(propertiesof signand |- |)
=max{| [ x| +i 1] [[x2|+1 [}
(definition of |- |)
=max{| x| +i, Xz |+ i}

(i%0)
=max{| Xy |, | Xz} +i (distribuitvity of + over max)
=fg(X) +i (expression of fg)
=fa(x) + fs( ¥). (see above)

Thatis, for any xandy 1 Z? thereexistsapoint y1 Z? such
that fg(y) = fg(y) ad fg(x+Yy) = fg(x)+ fg(y). In other
words, dg is upper regular for the triangle inequality.
Therefore, by applying Property (iv) of Proposition 13
(equivaent definition of trandation-invariant regular metric),
we may conclude that dg isregular. "

The upper part of Figure 2 shows the "straight-line" L(X, y)
relative to the chessboard distance ds passing through the
point x and y and the"sphere" S(x, 2) of center x and radius 2.
Asit was expected from Proposition 7, we observe that they
have a nonempty intersection (see the lower part of the
figure). Furthermore, this intersection have at least two



diametrically opposite points, for instance, the points u and
v. Inthisfigure, uT Ly(x,y)andv1 La(x,y).

Rosenfeld and Pfaltz [8] have shown in their Proposition
6 that dg satisfies the following property: for any y 1 Z% such
that 1 £ fa(y), there existsapoint X 1 2% such that fg(X) =1
and fg(y) = fg(X)+ fg(y- X). Thisresult is a consequence
of the lower regularity (of type 2) of ds. More interesting for
us is their counter example showing that the octogona
distance do: = sup{ds, g} where g is the distance given by,
for any x = (x1, x2) andy = (y1, ¥2) in Z%, g(x, ¥) = 2(| x2 - y4|
+| X2 — yo| + 1)/3, doesn't satisfy this property. In other
words, such octagonal distance is an example of non-regular
metric.

S(x, 2)
™

L(va)'.'lll ......
X\-:;_/o :-..-y

.|.| e e s

s TR
B .. /\
Xv. oo u
------ Wy

..........

Figure 2 - Intersection of adiameter and a sphere.

Before ending this section, we show that the good
geometrical properties of the Euclidean vector space
mencioned at the beginning of the introduction are satisfied
in aregular metric space.

First, we show that the lower regularity property for a
distance is a necessary and sufficient condition to have the
usual ball intersection property of the Euclidean vector
space.

Proposition 16 (ball intersection in a lower regular metric
space) — Let (E, d) be ametric space then,
(i) forarlyxandyT E,ayil d{x}  E) and
anyj T d(E" {y}),
$zI EdXx,2£iandd(zy)EjP d(X,y) Ei +],
(ii) (E, d)islower regular iff, for any xandy 1 E,
ayil d({x} " B adanyjl d(E" {y}),
dx,y)Ei+jb $zI Ed(x,2 £iandd(z,y) £].

Pr oof

(& Let usprove Property (i).

Forany xandyl E,anyil d({x} ~ E)andany jT d(E~

{yh,

$zI1 Ed(x,2£iandd(z,y) £]

U $z1 Edx 2 +dzy) £i+dzy)adi+d(zy)£i +]
(addition isincreasing)

P $z1 Ed(x,2) +d(z,y) £i +] (transitivity of £)

P d(x,y)Ei+]j.

(Definition 1 - triangle inequality and transitivity of £)
(b) Let us prove theif part of Property (ii).
Forany xandyl E,any il d({x} ~ E)andany j1 d(E~
{yH.
(dx,y)Ei+jb $z1 Exd(x,2 £i add(zy) £))
P (d(x,y)=i+jp $z1 Ed(x,2) £iandd(zy) £j)
(particular case)
P (d(x,y)=i+jP $z1 Exd(x,2 £iandd(zy) £ and
d(x,2) +d(z,y) £i +]j) (+ isincreasing)
P d(x,y)=i+jP $z1 E d(x,2 £iandd(zy) £ and
d(x,y) £d(x,2) +d(z,y) £i +]j) (triangle inequality)
P d(x,y)=i+jP $z1 Ed(x,2 £iandd(zy) £] ad
dix,y) £d(x,2) +d(z y) £i +] =d(x,))
(logical derivation)
P d(x,y)=i+jP $z1 Ed(x,2 £iandd(zy) £ ad
d(x,2) +d(z,y) =i +]j) (anti-symmetry of £)
P (dx,y)=i+jP $z1 Ed(x,2 £iandd(zy) £ and
d(x,2 +d(z,y)=i+jandd(x,2 +d(z,y) £i + d(z, y ad
d(x,2) +d(z,y) £d(x, 2) +j) (+ isincreasing)
P (dx,y)=i+jp $z1 Ed(x,2 £iandd(zy) £ ad
dx,2) +d(z,y)=i+jandi +j£i +d(z,y)andi +] £ d(X, 2)
+j) (substitution)
P (dx,y)=i+jp $z1 Ed(x,2 =iandd(z,y) =] ad
d(x,2) +d(z,y) =i +j) (anti-symmetry of £)
P (dx,y)=i+jp $z1 Ed(x,2 =iandd(z,y) =] ad
d(x,2) +d(z,y) =d(x,y)) (logical derivation)
P (d(x,y)=i+jb $z1 E:d(x,2) =iandd(x,2) +d(z,Y)
=d(x,Y)). (logical derivation)
That is, under the hypothesis, for any xand y 1 E,any i 1
d({x} “ E)andanyj1 d(E” {y}) suchthatd(x,y) =i + j, we
have$ zT E: d(x,2) =iandd(x, 2) +d(z y) =d(x, y), but this
impliesthat, forany xandy 1T E,andany i1 d({x} ~ E),i £
d(x,y), wehave$ z1 E: d(x,2) =i andd(x, 2) + d(z y) = d(x,
y), or equivalently by definitions of Sand L, for any x and y
T Eadayil d{x} ~ E),i £d(x y), we have (x, i) C
Lo(x,y) * A which proves, by Corollary 5 (first equivaent
definition of regular metric), that d islower regular.
(c) Let us prove the ony-if part Property (ii).
Forany xandyl E,anyil d{{x} ~ E)andany j1 d(E~
{y}), suchthatd(x,y) £i +]j,
(b1) ifi =j=0,theny =x, therefore $ z1 E: d(x, 2) £i and
d(z,y) £], namely z=y =Xx;
(b2)ifi=0andj! 0, thend(x,y) £, therefore$ z1 E: d(x,
2 £iandd(z,y) £], namely z=x;
(b3)ifit 0andj =0, thend(x,y) £i, therefore$ z1 E: d(x,
2 £iandd(z,y) £], namely z=y;
(b4)ifit Oandj? O,andifd(x,y) <iord(x,y)<jthen$z
T Edx,2£iadd(z,y) <j,ord(x,2 <iadd(zy) £ ],
namely z=y or z=x;
(b5) ifi £d(x,y) andj £d(x,y),
d islower regular
S(x, 1) G La(x,y) * A (Corallary 5)
$z1 Ed(x,2) +d(z, y) =d(x,y) and d(x, 2) =i
(definitions of Sand L)
$z1 Ei+d(zy)=d(x,y)andd(x, 2) =i;
(substitution)

oo
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furthermore,



dx,y)£i+jb $z1 Ed(x,2) =i add(z,y) £]
(lower regularity of d (see above) and + is double-side
increasing)

P $z1 Ed(x,2) £iandd(z,y) £j
(reflexivity of £)

In order to illustrate better the previous proposition, we
recall the definition of ball derived from a metric and we
give a corollary. We call ball of center x T E and radiusi 1
d({x} ~ E), derived from a metric d, the subset Bq(X, i) = {z
T E: d(x, 2) £i}; in the next section we will give another
definition of ball.

Corollary 17 (ball intersection in a lower regular metric
space) — Let (E, d) be ametric space then,
(i) foranyx,yl Eayil d{x} " E)and
ayjl dE" {y}),
Bu(x,1) C Bu(y,j) * £ P d(x,y) £i +],
(i) (E, d)islower regular iff, forany x,y | E,
ayil d{x} " B)andanyjl d(E" {y}),
dix,y)£i+j P Bu(x,i) CBuly,]) * A

Pr oof

Properties (i) and (ii) are, respectively, equivalent to
Properties (i) and (ii) of Proposition 16 (ball intersection in
alower regular metric space) since ($z1 E:d(x,2) £i ad
d(z y) £]) is equivalent to Bu(x, i) C Buly, j) * A by
definition of By(x, i). "

Figure 3 illustrates a counter example showing that the
elliptic metric restricted to the discrete plane depicted in
Figure 1 doesn't satisfy Property (ii) of Corollary 17. Thisis
another way to conclude that this elliptic metric is not
regular.

In Figure 3 the ellipses are the locus of points at distance
1 to their centers of symmetry x and y and the éliptic
distance between these centersis d(x, y) = 9/5 which is less
than 2. In other words, the condition d(x,y) £i + j (withi =]
=1) is satisfied. Nevertheless, as we can see on this figure,
the ball intersection By(X, 1) C Bq(y, 1) isempty.

Figure 3 - Lack of intersection (discrete elliptic distance).

Figure 4 shows two examples of lack of intersection in
the octagonal metric space (Z?, dogt). On the left hand-side
thetwo ballsare of radiusi =j = 1 and their centers x and y,
2 units apart. On the right-hand-side the two balls are of
radiusi =1andj =3, and their centers x and y, 4 units apart.

On both cases the two balls have no intersections despite the
fact that doct (X, ¥) =i + j. The right-hand side example is due
to Rosenfeld and Pfaltz [8].

Proposition 16 will be a key result to prove Proposition
53 in Section 6 and consequently Proposition 62 of Section
8 showing that the lower regular metrics can be
reconstructed from their unit balls using the Minkowski
product of Section 4.

Figure 4 - Lack of intersection (octagonal distance).

Finally, we show that the upper regularity property for a
distance is a sufficient condition to have the usua ball
inclusion property of the Euclidean vector space, see aso [5,
Theorem 5.19].

Proposition 18 (ball inclusion in an upper regular metric
space) — Let (E, d) be ametric space then, for any x,y 1 E,
ayil d({x} " B)andanyjl d(E" {y}),
(i) i+d(x,y)EjP Ba(x i)l Ba(y.))
(ii) if (E, d) isupper regular then

Ba(x, i) T Ba(y,j) P i+d(x,y) £].

Pr oof
(a) Let us prove Property (i).
Foranyx,yandzl Eayil d{x} “ E)andanyji d(E~
o
zl By(x,i)U d(x,2) Ei
O d(x,y) +d(x,2) £d(x,y) +i
(positivness of d and + isincreasing)
d(y,x) +d(x,2) £d(x,y) +i (symmetry of d)
d(y,2) £d(y, X) +d(x,2) £d(x,y) +i
(triangle inequality)

(def. of By)

([N e

P d(y,2) £d(x,y) +i (transitivity of £)
P diy,2 £i +d(x,y) (commutativity of +)
P dy,2 £d(x,y) +i £] (hypothesis)
P diy,2 £] (transitivity of £)
O zT By, j), (def. of By)
that is, by inclusion definition, under the hypothesis, Bq(X, i)

I Ba(y, ).

(b) Let us prove Property (ii).

Let d be an upper regular metric, let xand y T E, let i 1

d{x} “ E)andletjT d(E” {y}). We divide the proof in five

parts.

(b1) Let us provethat Bq(x,i) I Bq(y,j) P d(y,X) £j:

Ba(x, )1 Ba(y.}) P X1 Buly.) )
(d(x,x) =0P xI Bqy(x,1))

O d(y,x) £]j. (def. of By)



(b2) By Proposition 4 (axiom dependence), if d is upper
regular, then d islower regular of type 1. Furthermore,
trueo S(yvj) C Ll(Y- X) ! Eand S(X, I) C L3(Xv y) YA
(dislower regular of type 1 and by (b1) d(y,x) £], andd is
upper regular)
O $ul E d(y,u)=jandd(y, u) =d(y, x) +d(x, u) and
$vi E d(x,v)=iandd(v,y) =d(v,x) +d(x,Y)
(definitions of S, Ly and Ls)
(b3) Forany vi E,

d(x,v) =ib vI By(x,i) (def. of By)
P vl Buy,]) (Ba(x, i) T Buly, }))
U diy,v) £]j. (def. of By)
(b4) For someuandvi E,
d(x, v) +d(x, y) =d(v, x) +d(x, y) (symmetry of d)
=d(v,y) ((b2))
=d(y, V) (symmetry of d)
£] ((b3))
=d(y, u) ((b2))
=d(y, x) +d(x, u) ((b2))
=d(x,y) +Ad(x, u), (symmetry of d)

that is, for some uand v | E, by regularity of +, d(x, v) £
d(x, u).
(b5) For someuandvi E,

i +d(x,y) =d(x, v) +d(x,y) ((2))
£d(x,u) +d(x,y) ((b4))
=d(x,y) +d(x, u) (commutativity of +)
=d(y, x) +d(x, u) (symmetry of d)
=d(y, u) ((b2))
=], ((b2))

that is, if d is upper regular, then By(x, i) I Bqa(y, ) P i +
dx,y) £]. i

3. Balls

The ball definition in this section is independent of the
concept of distance seen in the previous section. Instead, it is
based on the concepts of set trandation and transposition.
Because of our interest in digital image processing, the balls
will be considered as subsets of the discrete plane Z? (the
Cartesian product of the set of integers by itself).

We denote by P(Z?) the collection of all the subsets of
z.

Let N be the set of natural numbers: 0, 1, 2, ... A subset X
of Z? is finite if there exists a natural number n and a
bijection between X and the subset of natural numbers{1, 2,
..., N}. We denote by #X the natural number n, and by #X < ¥
the finiteness of X.

The Abelian group @2, +, 0) equipped with the scalar
multiplication (j, (X1, X2)) = j(X1, X2) = (jX1, jX2) with
operand j in Z forms amodule over thering Z [6, p. 166].

We begin recalling the definition of translated version of
asubset.

Definition 19 (trandated version) — The translated version
of a subset X of Z% by a point u in Z* is the subset X, ={y
ZZy—ul X. N

The next proposition shows a regularity property of the
trandated version: if X, =X, then u=v. This property will be
important to prove the uniqueness of the concept of radius of
a ball in Section 5. The proof of this property relies on a
basic poset theorem.

Let X and Y be two subsets of Z%. Thecomplement of X in
Z?isdenoted X, that is, for any xT Z% xT X0 xi X and
the difference between X and Y is denoted X — Y, that is, X —
Y=XC Y-

Proposition 20 (translated version property) — If the subset
X of Z? isfinite, then the mapping u > X, from Z2 to P(Z?)
isinjective. Furthermore, for any u and v in Z? such that u
v, Xy- X, Eand X, - X, ! Aor, equivdently, X, C X,

PXvand Xy € Xt X

Pr oof
Let u be a point in Z? and let X be a subset of Z?, by the
regularity of the addition on Z?, the mapping x — x + u from
Xto X, isabijection, therefore, if Xisfinitethen X, is finite
aswell.
Letul Z?and let R, be the binary relation on Z? given by,
forany xandy1 Z% xR, yU $j1 N:y=x+ju Letus
first prove that R, isapartial order. For any x 1 7% x R, X is
true since forj =0, X =x + ju by group property, that isR, is
reflexive. If u=o, forany x,y1 Z% xR,y ady Ry x imply x
=y (andy=x).Ifu? o, forany xandyl 77
xRyyandyRyxU $j, kT N:y=x+juandx=y+ku
(definition of Ry)
$j,kl N:y=x+juandx=y+kuandy=y+(j +Kk)u
(by substitution and module property)
$j,kl N:y=x+juandx=y+kuand(j +ku=0
(o isunitary element of +)
$j,kl N:y=x+juandx=y+kuandj+k=0
(ut oand Z hasno zero divisor)
y=x+juandx=y+kuandj=k=0
(natural number property)
0 y=x, (natural number property)
that is, Ry is antisymmetric. For any x, y andz1 72,
xRyyandyR,zU $j, kT N:y=x+juandz=y+ku
(definition of Ry)
U $j,kT N:z=x+(j+Ku
(by substitution)
(namely,i=j +K)
(definition of Ry)

() ([an) ()

()

O $il Niz=x+iu

U xRyz
thatis, R, istransitive.
Let uand v be two pointsin Z% u ! v and let X be a finite
subset of Z?, then X, is finite as well. Therefore, by Theorem
3 of Birkhoff [4] or Theorem 3 of Szasz [7], $ x T X, such
that x is maximal with respect to R, _ .
Lety bethepointin Z* suchthaty =x +v —u, then X R, _, y
(doingj = 1 in the definition of R,_ ), y T X, (by trandated
version definition) andy * x (by regularity of the addition on
Z%). Sinceu® vand x ismaximal, x R,_, z for no zin X, —
{x}, consequently y doesn't belong to X,. In other words,
there exists apoint in X, (namely y) which doesn't belong to
X, thatis, X, - X, * and X, * X.. Furthermore, for any u,
vi 72
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X,- X, £EU XE X, (B—-A)=&£U Bl A
U XCX?tX. (B1 AU (ACB)=B)
Finally, by changlng theroleof uandv, for any u and v 1 Z2

utv, X, - X, EandX, C Xt X

We go on recaling the definition of transpose of a
subset.

Definition 21 (transpose) The transpose of asubset X of
Z?isthesubset X' ={x1 Z%: —x1 X}.

A subset X of Z? is symmetric (with respect to the origin
0) iff it is equal to its transpose, that is X = X' or
equivaently, iff x1T X0 — x1 X Z? is an example of
symmetric subset. We denote by S the sub collection of all
the finite symmetric subsets of 72, i.e., S={X1 P(Z?): #X <
¥ and X=X} and by S" the sub collection S+ {Z?}.

From the operations of trandation and transposition, we
can build the sub collection of symmetric finite subsets and
their translated versions, that we call bals. The symmetry
assumption was made in order to establish, in Sections 6 and
7, the relationship with distance (which is a symmetric

mapping).

Definition 22 (ball) — A subset X of ZZisaball iff $ul Z2
suchthat X, T S'.

By definition of S', the set Z? is a ball. Symmetric
subsets are balls (doing u = 0).

The 3 by 3 discrete square, denoted by Bg, consisting of
the points (0, 0), (O, 1), (1, 1) (1, 0), (1, -1), (0, -1),
(-1,-1), (-1, 0) (-1, 1) is bal since it is a symmetric
subset.

Another important examples of balls (important from the
theoretical point of view) are the singletons (the subsets
containing just one point).

Proposition 23 (ball example) — Any singleton of Z? is a
ball. N
Pr oof

Forany x1 Z2,

{0 ={x-x}"' (Definition 19 - trangl ated version)

={o}' (group property)
={-0} (Definition 21 - transpose)
={o} (group property)
={x-x} (group property)
={x}x, (Definition 19)

in other words, for any x T Z% $ul Z*(namely u = —x)
such ({x}.)' ={x}., that is, by Definition 22, {x} isaball of
ZZ. .

We denote by B the sub collection of all the balls and by
B the sub collection of finite balls, i.e., B=B" - {Z%}. Asa
consequence of these definitions, SI Bi B*1 P(Z?).

The opposite — u of the point u appearing in the ball
definition is a center of symmetry for the ball, it is called its
center.

Definition 24 (ball center) —Let X beabal (X1 BY), if Xis
finite, uT Z%isthecenter of Xiff X,y 1T S, and if Xls;Z2 [
center isthe origin o.

Hence, by Definition 22 (ball), a ball of Z? has always a
center, furthermore, if the bal is finite, this center is unique
as shown in the next proposition. If the ball is Z2 by
convention, we assume that its center isthe origin o.

Proposition 25 (ball center construction) — Let X be afinite
ball (i.e, X1 B), uisthe center of Xiff u= é XI#X .

Xl X
Proof
Let Rbearelationon Z? givenby xRy U y=xory=—x.
By group properties, R isan equivalent relation.
Let u; be acenter of Xand letu, = é XIH#X .

X X
Let us prove that u; = U,.
0
Up-Ug = geé XI#X T—uy (def. of uy)
W X 2
5
= Qa X- U T/#X (group property)
8X| X ﬁ
= évl#x (V=Xx—-uy)
v )(_ul
= a (V+(-V)#X  (urcenterof Xp X_, T S
Vi X, /R
=0, (group properties)
that is, u; = uy. "

We denote by center(X) the center of X T B". If the
center of Xisu, then we say that X iswith center at u.

The center of aball is not sufficient to characterize aball,
we need one more parameter that we cal here the ball
matrix.

Definition 26 (ball matrix) —Let X be aball (X1 B"), the
matrix of X denoted by matrix(X), is the ball X. Ceme,(x),

that is, matrix(X) = X_ center(x) -

The ball matrix isasymmetric ball.

Proposmon 27 (ball matrix property) —Let X be aball (i. e
X1 BY), thenmatrix(X) T S.

Pr oof A

For any X1 B,

(matrix(X))' = (X. Oemer(x))t (ball matrix definition)
= X. center(X) (center definition)
= matrix(X), (ball matrix definition)

that is, matrix(X) T S
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The balls with center at origin 0 are symmetric and every
finite symmetric subset is a ball with center at origin. This,
and other properties of the balls with center at origin are
shown in the next proposition.

Proposition 28 (properties of a ball with center at origin) —
Let Bbeabal (i.e, BT B"), then the following statements
are equivalent:

(iYforany x,y1 z%x1 B,0 yi B,

(i BT S,

(iii) center(B) =0,

(iv) matrix(B) = B.

Pr oof

(a) Let usprove (i) b (ii). For any finite ball B (i.e, BT B)

andanyxandyi Z?,

xT B,U yl B, (hypothesis (i))
U xT (B)y, (Property (2) of Prop. 4.10 of [2])

that is, fory =0, B' =B, inother words, BT S. Furthermore,

forB=7% BT S'asaconsequence of the definition of S'.

(b) Let usprove (i) U (ii). For any symmetric ball B and any

xandyl Z?

xT B,U x-yl B (Definition 19 - translated version)
Uy-xiB (hypothesis (ii))
Oyl B. (Definition 19)

(c) Let usprove (i) U (iii). For any finite ball B,

BT sU B=H' (definition of S)
U B,=(By) (Property (1) of Prop. 4.6 of [2])
U center(B) =o. (Definition 24 - ball center)

For B=27% B1 S and center(B) = 0 are both true as a

consequence of the definitions of S” and center of aball.

(d) Let us prove (iii) b (iv). For any ball B,

matriX(B) = B. center(p) (Definition 26 - ball matrix)

=B., (hypothesis (iii))
=B, (group property)
=B (Property (1) of Prop. 4.6 of [2])

(e) Let us prove (iii) U (iv). For any ball B,

B. center(B) — matrix(B) (Definition 26)

=B (hypothesis (iv))
= Bo, (Property (1) of Prop. 4.6 of [2])
=B, (group property)

that is, if Bisfinite, by Proposition 20 (translated version
property), center(B) = o, if B = Z? by convention, center(B)
=oaswdll. "

The sub collection of balls is closed under trandation as
we show in the next proposition.

Proposition 29 (ball trandation) — Let X be a finite ball
(i.e, X1 B)andletvi Z? then X, isafinitebal (i.e, X 1
B). Furthermore, center(X,) = center(X) + v and matrix(X,) =
matrix(X). "

Pr oof
Let X be afinite ball and let u = center(X). For any vi 72,
((%)-u+w) = %) (Prop. 4.6 of [2])

=Xy (Xisabal and uisits center)
=(X) —(U+V)s (Prop. 4.6 of [2])
in other words, for any XT Banday vi Z% $u i Z2:
((Xv)u‘)t = (X))u, namely u" =— (center(X) +V), that is,
X, T B and by Definition 24 (ball center), center(X,) =
center(X) +v.
Let us prove the last statement. For any X1 Bandanyvi Z?,

matrix(X,) =(X,). center(x,) (ball matrix definition)
= Xy. center(x,) (Property (2) of Prop. 4.6 of [2])
(first statement)

(group property)
(ball matrix definition)

= >(v- center(X)- v
= X. center( X)
= matrix(X).

Their center and matrix characterize the finite balls.

Proposition 30 (ball characterization) — The mapping from
Bto Z°" S X > (center(X), matrix(X)) is a bijection, its
inverseis(u, B) — B,. "

Proof

Let us divide the proof in four parts.

(a) By definition of center, for any X1 B, center(X) T Z2
Furthermore, by Proposition 27 (ball matrix property), for
ay X1 B, matrix(X) T S,

(b) Let us prove that forany uT Z’andany BT S, B, 1 B.
Foranyul Z?andanyB1 S, letv=—u, then,

(Buv)' = (Bu+ )" (Property (2) of Prop. 4.6 of [2])

= (Bo)' (v =—u and inverse definition)
=B (Property (1) of Prop. 4.6 of [2])
=B (BT 9
=(Bu)v, (using the same arguments as above)

that is, there exists apoint v in Z2 such that ((Bu)y)" = (Bu)..
(c) Let us prove that (u, B) — B, is a left inverse for X
i (center(X), matrix(X)). For any X1 B,
matrix(x)center(x) = (X, center(X))center(X)
(Definition 26 - ball matrix)
= X(— center (X)) +center(X)
(Property (2) of Prop. 4.6 of [2])
=X (inverse definition)
=X (Property (1) of Prop. 4.6 of [2])
(d) Let us prove that (U, B) — By is aright inverse for X
i (center(X), matrix(X)). Forany ul zZ?andany BT S,
(center(By), matrix(By)) = (center(B) + u, matrix(B))
(Proposition 29 - ball trandation)
=(o+u,B)
(BT Simplies(iii) and (iv) of Proposition 28 -
properties of aball with center at origin)
=(u, B). (group property)
Therefore, from (@) - (d), X — (center(X), matrix(X)) has an
inverse (whichis(u, B) — B,), consequently it is abijection.

In order to combine geometrically the balls, we recall the
Minkowski addition and subtraction definitions[2], [3], [6].
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Definition 31 (Minkowski addition and subtraction) — Let A
and B be two subsets of Z?, their Minkowski sum is the
subset AAB={a+b:al A bl B} and their Minkowski
differenceisthesubset A©@B={x1 z%" bl B, $al A x
=a-Db}. (A B~ AA Bisthe Minkowski addition and (A,
B) —» A © B is the Minkowski subtraction from P(ZZ) !
P(Z?) to P(Z?).

The sub collection of balls with center at originis closed
under Minkowski's addition as we show in the next
proposition.

Proposition 32 (symmetric ball addition) Let Xand Y be
two symmetric bals (i.e, X, I S, then X A Y is a
symmetricball (i.e, XA YT S.

Pr oof
Forany XandYl S,
XAV =XAY (Minkowski's addition property)

=XAY, (XandYl S
thatis, XA YT S "

As a consequence of the above symmetric ball addition
result, in the next proposition we show that the sub
collection of ballsis closed under Minkowski's addition as
well.

Proposition 33 (ball addition) — Let X and Y be two finite
balls(i.e, Xand YT B),then XA Yisaball (i.e, XA YT B),
furthermore, center(X A Y) = center(X) + center(Y) and
matrix(X A Y) = matrix(X) A matrix(Y).

Pr oof
Let divide the proof into four parts.
(@) Forany Xand YT B,
XA'Y= matriX(X) centerx) A Matrix(Y) centerv)
(Proposition 30 - ball characterization)
= (MatrixX(X) center(x) A Marix(Y)) center(v)
(Property (5) of Prop. 4.12 of [2])
= ((matrix(X) A matriX(Y))centa'(X) )center(Y)
(Property (5) of Prop. 4.12 of [2])
= (matrix(X) A matriX(Y))cmter(X)+center(Y) .
(Property (2) of Prop. 4.6 of [2])
(b) For any X, Y T B, by Proposition 27 (ball matrix
property) and by Proposition 32 (symmetric ball addition)
matrix(X) A matrix(Y) T S, therefore, by Part (a) of the
proof, it existsul Z? (namely, u =— (center(X) + center(Y))
such that X A Y), T S That is, by Definition 22 (ball
definition), XA YT B.
(c) Forany X, Y1 B,
center(XA Y)
= center((matrix(X) A matriX(Y))centa'(X)wenter(Y))
(Part (@) of the proof)
= center(mat rix (X) A matrix (Y)) + center (X) + center (Y)
(Proposition 29 - ball trandation)

= o +center (X) + center (Y)
(matrix(X) A matrix(Y) T S, therefore, by Proposition 28
(properties of aball with center at origin),
center(mat rix (X) A matrix (Y)) =0)
= center (X) + center (Y) . (group property)
(d) For any Xand YT B,
matrix(X A Y)
matrix((matrix(X) A matrix(Y)) ener(x) +center(v) )
(Part (@) of the proof)

matrix(mat rix (X) A matrix (Y))
(Proposition 29 - ball trandlation)
matrix (X)A matrix (Y).
(asin(c) above, by Proposition 28)

Before continuing our study about the ball collection, we
need to introduce the Minkowski product.

4. Minkowski product

Within the collection of balls we can identify sub
collections in which the balls are mutually related through an
external binary operation between a natural number and a
subset, that we call the Minkowski product.

We denote by N the set of extended natural numbers
(i.e., the natural numbers plus an element denoted ¥ ) with the
usual addition extended in such away that, forany j T N*,j +
¥ =¥ +] =¥ and with the usua order extended in such away
that, forany jT N*,j £¥.

Definition 34 (Minkowski product) — Let B 1 P(Z?) such
that B /E andletj 1 N, the Minkowski product of B by j
is the subset jB of Z2 given by

1 {0} if j:o
Ti(-DB)AB if 1<,<¥
f z? if  j=¥

The Minkowski product jB should be distinguished from
the result of the usual scaling operation of B by j used in the
continuous case.

The scaling transform of a subset B by areal number j is
the subset denoted scaling(j, B) and given by scaling(j, B) =
{jx:xT B}.

In the discrete case, both results, jB and scding(j, B), may
be different asit can be verified when B is the 3 by 3 discrete
square Bg. The difference goes on even if we try to preserve
the "interior" of the square using a slightly modified version
of the scaling transform given by scaling2(j, B) = {ix: x1 B
andil [0,]j]}.

Figure 5 shows (from left to right and top to bottom) the
Bs sguare, its transformation when applying the above two
scaling transformations and at last the Minkowski product,
with j = 2. We observe that these expansion definitions lead
to different results.
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In the discrete domain Z?, the Minkowski product is more
appropriate for our purpose than the scaling operation (see
Section 7).

We now verify the mix distributivity of this product and
then some other elementary properties. Based on the mix
distributivity, we could establish in Section 5 Proposition 44
and Proposition 48 about the intersection and inclusion of
generated balls.

Proposition 35 (mix distributivity of the Minkowski
product) — Let BT P(Z%) suchthat B A foranyiandj 1
N, (i +j)B=(iB) A (jB). )

..........

oooooooooo

B, scaling(2, B,)
L 4 L]
scaling2(2, B,) 2B,

Figure 5 - Minkowski product versus scaling

Pr oof

Let us divide the proof in three parts.

(@) Letusprovethat foranyil N, (i + 1)B=(iB)A B.If i =
01

(i+1)B=1B (hypothesis)
=B (Definition 34 - Minkowski's)
={o}A B (Property (4) of Prop. 4.12 of [2])
=(0B)A B (Definition 34)
=(iB)AB (hypothesis)

Ifi>0,

(i+1)B=(((i+1)-1)BAB (product definition)
=(iB) A B. (natural number property)

(b) Let us prove the proposition statement for any i and j 1

N. Ifj =0,

(i+))B=iB (hypothesis)
=(iB) A {0} (Property (4) of Prop. 4.12 of [2])
=(iB)A (jB); (hypothesis)

ifj=1,

(i+))B=(i+1)B (hypothesis)
=(iB)AB (Part (a) of the proof)
=(iB) A (1B) (Definition 34)
=(iB) A (iB); (hypothesis)

ifj>1,

i+)B=((i+j-1) +1)B
=((i+j-1)BA B
=((IBA((-1B)A B
=(B)A (((-1B)A B)
=(iB) A (jB).

(natural number property)
(Part (@) of the proof)
(istrueforj—1)
(associativity of A)

(Part (a) of the proof)

(c) Let us prove the proposition statement for any i I N* and
j=¥:

(i+))B=( +¥)B (hypothesis)
=—¥B (assumption on the extended addition)
=72 (Definition 34)
=iBA 7 (iBt /)
=(iB) A (¥B) (Definition 34)
=(iB) A (jB). (hypothesis)

The same result can be obtained by changing the hypotheses
oniandj.
That is, from (b) and (c), the product is mix distributive.

For convenience, let usassumethat # 2> = ¥.

Proposition 36 (elementary properties of the Minkowski
product) —Let B1 P(Z%) suchthat Bt A forany il N and
ayjl N,

(i) ifol Bthenol jB;

(i) if o1 B then the mapping j — jBfrom N* to P(Z?) is
increasing;

(iii) ifj* Oand #B> 1then#(jB) > 1,

(iv) #(iB) £ (#B)";

(v) if Bl SthenjBl S

Pr oof

(a) Let us prove Property (i).

By Definition 34 (Minkowski product), o1 jBistrueforj =
0,1and ¥. Let usassumethat it wastrueforj — 1 (1<j <¥),

ol (j-1)B (hypothesis)
I ((-1)BAB

(o1 Band Property (6) of Prop. 4.12 of [2])

=jB, (Definition 34)

that is, by inclusion definition, o1 jB.
(b) Let us prove Property (ii).
LetiandjT N, suchthati£],
iBl iBA (j-i)B
(o1 (j —i)B (Property. (i)) and Property (6) of
Prop. 4.12 of [2])
=|B. (j =i+ (j —1i) and Proposition 35)
LetiT N"andletj =¥,theni£ j, furthermore,
iBl 72 (Definition 34)
—¥B (Definition 34)
=|B. (hypothesis)
That isthe mapping j - jB from N* to P(Z?) isincreasing.
(c) Let us prove Property (iii).
By hypothesis, #(jB) > 1 istrueforj = 1 and it is always true
forj=¥. Let usassumethat it wastrueforj — 1 (1 <j < ¥),
andletx1 (j—1)B,
#iB) =#(((1-1)B)A B)
3 #({x} A B)
(Minkowski's addition is increasing (Property (6) of Exerc.
4.9 of [2]) and cardinality property)

(Definition 34)

=#(By) (Property (1) of Prop. 4.12 of [2])
=#B (X— X« isabijection)
> 1. (hypothesis)

(d) Let us prove Property (iv).
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#(iB) £ (#B) istruefori = 1. Let us assume that it was true
fori—1(1<i),

#(iB) =#(((i—1)B) A B) (Definition 34)

=#|J- »B),
ul B
(equivalent definition of A (Property (1) of Prop. 4.12 of
(2D)
£#B)(#(i-1)B) (union property)
= (#B)(#(B)) "’ (hypothesis)

= (#(B))".
(e) Let us prove Property (v).
Let B = B', by Minkowski product definition, jB = (jB)" is
truefor j = 0 (since {o} is symmetric), 1 and ¥ (since Z° is
symmetric aswell). Let assume that it wastrueforj — 1 (1 <

(arithmetic property)

j <¥),
(B =(((-1B)A B) (Definition 34)
=((j-1)B)AB
(hypotheses and Proposition 32 (symmetric ball addition))
=jB. (Definition 34)

Property (v) says that if a subset is symmetric then its
product by any natural number is still symmetric.

Next proposition about the regularity of the Minkowski
product will be useful for the definition of radius of aball in
the next section.

Proposition 37 (regularity of the Minkowski product) — Let
B1 P(Z?), such that B is finite and #B > 1, then the mapping
j—#(jB) from N* to N, is injective and increasing.
Furthermore, under the above assumption on B, the mapping
j— jBfrom N* to P(Z?) isinjective (i.e.iB=jBP i =j).

Pr oof
LetiandjT N, suchthati< j,
jB=iBA (j-i)B

(j =i+ (j —1) and Proposition 35 - mix
distributivity of the Minkowski product)
= |JiB), -
ul (j-i)B
(equivalent definition of A (Property (1) of
Prop. 4.12 of [2]))
By Property (iii) of Proposition 36, if i < j, #((j —i)B) > 1.
Letupanduy 1 (j—i)B,
(IB)UL + ((IB)u2 - (IB)UI) = (|B)u1 E (IB)u2
(subset addition definition)
I jB. (see above equality)
Hence, ifi< |,
#(iB) < #(iB) + #((iB),, - (iB),,)
@iB),, - (B), * Aby Proposition 20 - translated version

property)

= #(B),, + #(iB),, - (B),,)
(X > Xy isabijection)

= #((iB),, +((iB),, - (iB),)
(property of the union of disjoint subsets)

£ #(jB). (see aboveinclusion)
LetiT Nandletj=¥,theni <j, furthermore,

#(iB) £ (#B) (by Property (iv) of Proposition 36)
<¥ (Bisfinite)
=#Z7* (by convention)
=#(¥B) (Definition 34 - Minkowski product)
=#(jB). (hypothesis)

Furthermore, for any i andj T N*
itjOi<jorj<i
P #(iB)< #(jB) Or #(jB) < #(iB)
(the previous conclusion)
U #(@B)* #(jB) (N*isachain)
P iB! |B. (iB and j B have not the same elements)
That is, the mapping j — #(jB) from N* to N*, is injective and
increasing, and the mapping j— jB from N* to P(Z?), is
injective. "

(N"isachain)

Based on the Minkowski product, we define, in the next
section, the notions of generated balls and of ball radius. In
Section 7, the ball radius will be used to derive ametric from
asymmetric ball.

5. Generated balls

Let Aand B be two subsets of Z2. If #B > 1 and Biis finite,
then we say that A is a multiple of Biff there exists an
elementj T N such that A =jB. In this case, we say that the
set B divide A and we cal the naturd number j (which is
unique under the restrictions on B) the quotient of Aby B

and we denote it g The uniqueness of quotient is a

conseguence of Proposition 37 (regularity of the Minkowski
product): leti andj be two quotients of A by B, by definition
of the quotient, iB=Aand jB = A, that is, iB =B, therefore,
sincej jBisinjective (Proposition 37),i =j.

With a finite symmetric ball B we can associate, through
the Minkowski product, a sub collection of balls. We say that
B induces a sub collection or that the sub collection is
generated by B.

Definition 38 (sub collection generated by aball) — Let B be
afinite symmetric ball (i.e., BT S), such that B {o}. The
sub collection generated by B, denoted by Bg, is the set of
all the balls whose matrices are multiple of B, that is, Bg =
{XT B $j1 N, matrix(X) =jB}. )

Forany j T N axd ay BT S by Property (v) of
Proposition 36 (elementary properties of the Minkowski
product) and by Proposition 28 (property of a ball with
center at origin), matrix(jB) = jB, that is jB T Bg, in other
words, Bg is never empty, moreover, it always contains Z2.
We call the elements of Bg generated balls and we say that
they are generated from the prototype ball B.

The assumption that Z? was a ball is convenient in the
sense that, in this way, every point in Z? is contained in at
least one generated ball.
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Proposition 39 (example of generated balls) — Let B be a
finite symmetric ball (i.e, BT S), suchthat Bt {o}. Any
singleton of Z? belongs to B (the sub collection generated
by B).

Pr oof

For any x 1 Z2 by Proposition 23 (ball example) {x} 1 B".
Furthermore, for any x1 Z?,

matrix({x}) = matrix({ 0}x)

(Definition 19 - trand ated version)
=matrix({o}) (Proposition 29 - ball trandation)
={o}

(Proposition 28 (property of aball with center at
origin), since{o} 1 S
=0B, (Definition 34 - Minkowski product)
thatis, $j1 N*, matrix({x}) =jB (namely, j = 0).
Consequently, by Definition 38 (sub collection generated by
aball), forany x1 Z% {x} T Bs.

As adirect consequence of the definition of a generated
ball, we can parameterize its matrix by a natura number that
we call itsradius.

Definition 40 (radius of a generated ball) — Let B be a finite
symmetricball (i.e, BT S), suchthat Bt {0}. The radius of
X1 Bg, denoted radiusg(X) is the quotient of matrix(X) by B,
that i, radiuss(X) = mat%x()().

The unigueness of the quotient guarantees the uniqueness
of theradius.

We observe that the same ball generated from different
ball prototypes may have different radius. A ball prototype
playstherole of aunit ball.

We are now ready to show that the generated balls can be
completely characterized in terms of their centers and their
radius.

Proposition 41 (characterization of the generated balls) —
Let B be afinite symmetric ball (i.e., BT S), such that B ¢

{o}. Themapping from Bg - {Z%} to Z>~ N X - (center(X),
radiusg(X)) is a bijection and its inverse is (X, j) +— (jB)x
Furthermore, for any X1 Bg, X =(radiusg (X)B) center(x) » ad

forany (x,j) T Z%" N, (x, ) = (center((jB),), radiusg((jB)x)).

Pr oof
Let usdivide the proof in four parts.
(@) For any X1 Bg - {Z%, by Definition 24 (ball center),
center(X) 1 Z% and by Definition 40 (radius of generated
ball), radiuss(X) T N.
(b) Forany xi Z?andanyji N,
matrix((jB)x) = matrix(jB) (Proposition 29 - ball trandation)
= J B,
(Property (v) of Proposition 36 (elementary properties of
the Minkowski product) and Proposition 28 (property of a
ball with center at origin))

that is, by Proposition 37 (regularity of the Minkowski
product) $i T N, matrix((jB),) = iB, namely i = |, and by
Definition 38 (sub collection generated by aball) (jB)x T Bg
-{Z%.

(c) Let us prove that (x, j) — (jB)x is a left inverse for X
i (center(X), radiusg(X)). For any X1 Bgandany x1 77,

x1 ((rajius B ( X))B)center(x)

0 xi ZEnarix(X) 659 (Definition 40)
B 2 ﬂcenter(X)
O xi m(_center(x)é 0

D Brenter(X)

(Definition 26 - ball matrix)

0 XT (X— centa’(x))centa'(x) (qUOtient property)
U xI ><(- center (X))+center (X)

(trandlated version property)
0 x1 X, (group property)

thatis, (X,]) — (jB)xisaleft inverse.
(d) Let usprovethat the (X, j) — (jB)xisaright inverse for X
i~ (center(X), radiusg(X)). For any xT Z?andanyj1 N,
center((jB)x) = center(jB) + x
(Proposition 29 - ball trandlation)
=0 +X
(Property (v) of Proposition 36 and
Proposition 28 (properties of aball with center at origin))
=X. (group property)
Foranyxi Z?andanyji N,
((IB)x)- center ((B),)

radiusg((jB)x) = 5 ((Definition 40)
= % (above result)
e BE);" X (translated version property)
= J_LE , (group property)

in other words, by quotient definition, radiusg((jB)x)B = jB,
therefore, by uniqueness of the quotient (consequence of
Proposition 37), radiusg((jB)x) =j. Thatis, (X, j) = (jB)xisa
right inverse.

Therefore, from (@) - (d), the mapping X — (center(X),
radiusg(X)) has an inverse (which is (x, j) = (jB)x) and
consequently is a bijection. Furthermore, from (c), for any X
T Bg, X =(radi USg (X) B) center(x) » @nd from (d), for any (x, j)

I Z%" N, (x,]j) = (center((jB)x), radiuss((jB)y)).

The radius inherits some properties of the Minkowski's
addition.

Proposition 42 (radius properties) — Let B be a finite
symmetricball (i.e, BT S), suchthatB! {0}, then

(i) radiusg({o})=0

(ii) radiusg (B) =1

(i) forany X, YT Bg- {Z%, radiusg(XA Y) = rad|usB(X) +
radiusg(Y).
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Pr oof
(a) Let us prove (i).
radiusg({ 0} ) = radiusg(0B)
(Definition 34 - Minkowski product)
=0.
(Proposition 41 - characterization of the generated balls)
(b) Let us prove (ii).
radiusg(B) = radiusg(1B) (Definition 34)
=1. (Proposition 41)
(c) Let us prove (iii). For any X, Y1 Bg- {Z%,
(XAY)_ conter(xAv)
B

radiuss (XA Y) = (Definition 40)

((radiusg (X) B)center(x) A (radiusg (Y)B) center(Y) )- center(XAY)
B

(Proposition 41)
_radiusg(X)B A radiusg (Y)B
B
(Property (5) of Prop. 4.12 of [2] and center(XA Y) =
center(X) + center(Y) by Proposition 33 - ball addition)
_ (radiusg (X) A radiusg (Y))B
B ,
(Proposition 35 - mix distributivity of the Minkowski
product)
in other words, by quotient definition, radiuss(X A Y)B =
(radiusg(X) + radiusg(Y))B, therefore, by uniqueness of the
quotient (consequence of Proposition 37), radiusg(X A Y) =
radiusg(X) + radiusg(Y). "

Within the poset (Bg, | ) generated by a ball B, we can
identify some useful chains. the chains of generated balls
with center at given points.

Let B be afinite symmetric ball (i.e., BT S), such that B
1 {0}, and let Bg(x) be the sub collection of Bg consisting of
al the balls with center at agiven point x of Z?, that is, Bg(x)
={X1 Bg: center(X) =x}.

In particular, Bg(0) = {jB: j T N} (by Property (iv) of
Proposition 28 - properties of the generated balls with
center at origin).

Proposition 43 (chain of generated balls with center at a
given point) — Let B be a finite symmetric ball (i.e, BT 9),
suchthat oT Band Bt {0}. Then the mapping j — (jB)x
from (N, £) to (Bg(0), | ) when x = o, and from (N, £) to
(Ba(x), 1 ) when x o, is a poset isomorphism and the sub
collection (Bg(x), 1) is a chain. Its inverse is X

radiusg(X). The sub collection Bg(X) has a smaller element
whichis{x} and agreater one whichisZ? whenx = o.

Pr oof
Let Bbeafinite symmetricball (i.e., BT S),suchthatol B
andB? {0}, and let xT Z° We observethat ol Band B ?
{o} b #B>1.Foranyj;andj,1 N,
jit j2P jiB! 2B
(Proposition 37 — regularity of the Minkowski product)
U (1B)x* (j2B)x, (trandlation isinjective)

that is, the mapping j > (jB)x from N* to Bg(0) when x = o,
and from N to Bg(X) whenx 1 0, isinjective. By definition of
Bs(X), it is surjective, that isit a bijection. From Proposition
41 (characterization of the generated balls), its inverse is X
— radiusg(X).
Furthermore, for any j1,j21 N7,
j1£j.P jiBI j.B
(j = jBisincreasing (Property (ii) of Proposition 36))
P (j1B)x1 (j2B)x, (translation isincreasing)
that is, the mapping j > (jB)x from N* to Bg(0) when x = o,
and from N to Bg(X) when x 1 0, isincreasing.
Conversely, let B; and B, be two ballsin Bg with center at x,
and letj;, and j, their respective radius,
j2£j1mdj11 jzp BQ] BlandBll B,
(i — (jB)xisinjective and increasing)
B:1 Byand(B.E B, or B; E By)
(anti-symmetry of inclusion)
U B;1 ByandB; E B, (logical derivation)
b BEB;, (logical derivation)
in other words,
Bil Bob ji<jr0rji=j2 (above result)
U jifj2, ((N*, £) isachain)
this proves that the mapping | — (jB)x is two-sided
increasing.
Consequently, the mapping | —(jB)x is a poset
isomorphism, and the sub collection (Bg(x), 1) is
isomorphic to the chain (N*, £). That is, this sub collection is
achain as well. The smaller element (0) of N* maps to {x}
which is therefore the smaller element of Bg(x), and the
greater element (¥) of N* maps to Z? which is therefore the
greater element of Bg(X). "

()

Based on the mixt distributivity of the Minkowski
product, we can establish the following geometrical
property. This proposition shows that the intersection
between generated balls occurs under the same condition as
for the balls derived from an Euclidean distance on the
continuous plane for example.

Proposition 44 (generated balls versusintersection) — Let B
be afinite symmetric ball (i.e., BT S), for any points x and y
in Z% and any numbersi andj inN*,yT ((i +j)B)x U (iB)xC
(iBy* A& i

Pr oof
Letxandyl Z?andleti andj1 N,
yT ((i +1)B)U yT ((iB) A (iB))x
(Proposition 35 - mix distributivity of the product)
U yT (iB)xA (jB)
(translation invariance of A
(Property (5) of Prop. 4.12 of [2]))

oyl (Ja.,
7 (iB),
(equivalent definition of A
(Property (1) of Prop. 4.12 of [2]))
O $z1 (iBx:yl (jB),
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(union definition)
U $z1 (iBx:zl (jB)
(Proposition 28 - properties of aball with center at origin)
0 (iB:G (B)y* £
(definition of empty set)

We now recall the definitions of erosion by a structuring
element and of B-border. We will use the latter definition in
the study of the generated ball border.

Definition 45 (erosion by a structuring element) — Let B be
asubset of Z2. The erosion by B is the mappings from P(Z?)
to P(Z%) ez : X > X © B. The subset B is the structuring
element of eg. "

Definition 46 (B-border) — Let B be a subset of Z?. The B-
border of asubset X of Z? is the subset fs(X) = X —eg (X). ~

We observe that the B-border is an inner border: (X |
X.

Proposition 47 (B-border properties) — Let B and X be two
subsets of Z2 and let x be apoint in Z2, then

(i) if#B>1then(Ys({0})={0} ({0} isaninvariant)
(i) (Ts(X))x =Ts(%) (trandlation-invariance)
(iii) XandBT SP 1s(X)T S.  (symmetry preservation)

Pr oof

(a) Let us prove (i).

Ts({o}) ={o} —es ({0}) (Definition 46 - B-border)
={o} —{ul Z%" bl B, $x1 {0}:u=x-h}
(Definition 31- Minkowski's addition and subtraction)
={o} ={ul z%" bl B,u=o-h}

(logical derivation)
={o} ={ul Z%" bl B,u=-b} (oisunity of +)
={o} - & (#B>1)
={o} (definition of —and /)

(b) Let usprove (ii). For any x1 72,

(Te(X))x = (X —es (X))« (Definition 46)

=Xx—(es (X))x (trandation-invariance of -)
= X« — (X© B)« (Definition 45 - erosion by a subset)

=X —X©B
(trandation invariance of © (Property (4) of Prop. 4.13 of
[2]))
=Xx—€s (X (Definition 45)
= Ts(Xy). (Definition 46)

(c) Let us prove (iii). Foranyul Z?,
ul s 0 ul X-es (X
U ul X-=(X©B) (Definition 45)
O ul Xadw ul (X©B) (def. of )
U ul Xadw" bl B,$xT Xu=x-b
(Definition 31 - Minkowski's addition and subtraction)
O —ul Xandw" bll B, $x¢ X:—u= x¢—bt
(writing x¢=—x and b¢=—b, and hypothesisXand BT S)
—ul Xandw—ul (X©B) (Definition 31)
—ul Xandw— ul ez (X)  (Definition 45)
—ul Ts(X). (Definition 46)

(Definition 46)

oo

In order to be able to characterize the integer-valued t.i.
regular metrics later on, we now introduce the concept of
"closed" sub collection of balls. A sub collection of balls Bg
is B-closed if any members of Bg is morphologically B-
closed, that is, for any X1 Bg, X satisfies the equation X = (X
A B) ©B. If Bg isB-closed then we say for convenience that
B has the closure property.

The balls multiple of the 3 by 3 discrete square Bg of
Section 3, are examples of morphologically closed balls with
respect to Bg (see Section 6).

But, for example, the ball B = (2Bs — 1Bg) + 0Bg is not
morphologically closed with respect to itself since, in this
case, (BA B) © B =2Bg and consequently (BA B)© B! B.

Under the closure property the sufficient condition to
have nested balls becomes necessary.

Proposition 48 (generated balls versus inclusion) — Let B
be afinite symmetric ball (i.e., BT S). For any pointsx and y
in Z% and any numbersi in N andj in N*,
(i) xT (iByP (Bl ((i+])B),;
(ii) if B hasthe closure property, then

(Bl (( +))B)y P xI (jB),.

Proof

Let Bbeafinite symmetricball (i.e., BT S).

(a) Let us prove Property (i). Forany xandy T Z% anyil N
adjT N,

@B [JiB), (x1 (B)y)
uf (jB),
=(jB)yA B
(equivalent definition of A (Property
(1) of Prop. 4.12 of [2]))
=(jBA iB),
(tranglation invariance of A
(Property (5) of Prop. 4.12 of [2]))
=((i +))B)y,
(Proposition 35- mix distributivity of the Minkowski

product)
thatis, x1 (iB)yP (iB)xi ((i +j)B)y.
(b) Let us prove Property (ii). Let xandy1 Z? leti1 N and

letjT N".Ifi=0,
x1 {x} (singleton definition)
={ 0}« (Definition 19 - trand ated version)
= (0B)x (Definition 34 - Minkowski product)
1 ((i+0)B)y (hypothesis)
1 (iB)y, (natural number property)
that is, (0B)x1 ((0+j)B), b x1 (jB)y.
Ifito,
xI {x} (singleton definition)
=(iB)x©iB (© property)

1 ((i+]))By©iB (hypothesisand © isincreasing)
=(((i-1+))+1)B)yOIB (properties of + on N
=((((i-1+))B)AB)yOIB

(Proposition 35)
=((((i-1+))ByAB)©IB
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(Property (5) of Prop. 4.12 of [2])
=((((i—1) +})B)yAB)© (BA (i—1)B) (Proposition 35)
=((((((-D+j)ByAB)©B) O(I-1)B
(Property (2) of Prop. 4.13 of [2])
=(((iI-1)+))Bye(i-1)B
(B hasthe closure property and Proposition 41 -
characterization of the generated balls)
=(jB)y, (repeating thefour previoussteps (i — 1) times
that is, (iB)x1 ((i +)B)yP x1 (iB)y . )

We observe that the last implication in Property (ii) of
Proposition 48 may be false when B has not the closure
property. We can construct the following counter example:
let B =(2Bg — 1Bg) + OBg, let x T 1Bg — OBg and let y = o,
then (1B)«1 (2B), butx1 (1B),.

Figure 6 illustrates this counter example. On the left-
hand side we see that the dark gray ball (1B)x is included in
the light gray ball (2B)y (the 9 by 9 square), nevertheless we
see on the right-hand side that x doesn't belong to (1B)y.

---------

Figure 6 - Counter example for Proposition 48.

The closure property for a propotype ball allows usto "go
backward" along achain of generated balls.

Proposition 49 (erosion of a generated ball) — Let B be a

subset of Z%. Forany x1 Z®andji N—{0},

(1) es((iB)Y E ((—1)B)x

(i) if B has the closure property, then es((jB)x) = ((j —
1)B)y. N

Pr oof
For any subset B of Z* having the closure property, any x 1
Z?andanyji N—{0O},
e (1B =(B)x©B
=(jBOB)x
(trandation invariance of © (Property (4) of Prop. 4.13 of

[2D)

=(((-1B)ABKOB
(Definition 34 - Minkowski product)

=(((-1BxAB OB
(trandation invariance of © (Property (5) of Prop. 4.12 of
(2D)

(Definition 45 - erosion by a subset)

e ((—1B)x
(= since B hasthe closure property and Proposition 41
(characterization of the generated balls); E since closing is
extensive)

Next proposition will be useful in Section 7 to show that
a metric induced by a bal having the closure property is
regular (Proposition 61).

Proposition 50 (generated balls versus B-border) — Let B be
a finite symmetric ball (i.e, BT S) 1 having the closure
property and such that #B > 1. For any points x and y in Z?
and any numbersi inN andj in N”,

(i) x1 Ts((B)y) P Ts(((i +])B)y) C Ta((iB)) * A&

(i) x1 fis(((i +])B)y) P Te((iB)x) C Te((iB)y) * A

Proof
(a) Let us prove Property (i). Let xandy 1 Z% letil N and
letjT N".1fj=0,
xT 18((0B),) U xT fs({0}y)
o (Definition 34 - Minkowski product)
0 x1 (fe{o}))y
(Property (ii) of Proposition 47 - B-border properties)
U x1 {0}y
(#B > 1 and Property (i) of Proposition 47)
x1 {y} (Definition 19 - trand ated version)
X=Y. (singleton definition)
Furthermore, if xT Yz((0B),)
is(((i + 0)B)y) C Te((iB)x) =T&((iB)y) C Ta((iB)x)
(natural number property)
=Ts((iB)x) C T=((iB)y)

(by hypothesis, as shown abovex =y)
=9s((iB)x) (C isidempotent)
= (iB)x—es((iB)y)

(Definition 46 - B-border)
=(iB)x—((i —1)B)x
(B has the closure porperty and Property (ii) of Proposition
49 - erosion of agenerated ball)
LA
(Prpposition 37 - regularity of the Minkowski product)
that is, x 1 fis((0B)y) P Ts(((i + 0)B)y) C Te((iB)y) * A
Ifjt o,
x1 1s((B)y) O x1 (iB)y —es((iB)y)
P x1 es((iB)y)
P xI ((—1)B)y
(Property (i) of Proposition 49)
P (iB)E ((i +j-1)B)y
(B has the closure property and Property (ii) of Proposition
A 48 - generated balls versusinclusion)
U (iB)xE es(((i +))B)y)
(B hasthe closure property and Property (ii) of Proposition
49)

cC

[ax Y an)

(Definition 46)
(def. of -)

U (iB)xC (es(((i +1)B)y))°* A&

(inclusion property)
thatis, x T Ta((iB)y) P X G (es(Y))°* A& where X = (iB)x
and Y = ((i +)B),. Furthermore, forany j 1 N,
xT 1s((B)y) U xj (1B)y —es((iB)y) (Definition 46)
x1 (jB)y (def. of -)
(iB)x I ((i +])B)y
(Property (i) of Proposition 48)

(definitions of X and'Y)

T T

O xiy
es(X) 1 es(Y)

(erosion isincreasing (Proposition. 3.3 of [2]))

U (ee(WM)°T (ex(X))"

(complementation is decreasing)

U

Hence,
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}. XCeg(Y)t £
x1 Ts((B)y) P i X1Y (see above)
i

[ea()°1 (ea(X))°
b

} X C(es(Y)° =(XCY)C((es(Y) C (es(X)))
i X C(eg(Y))*® £
(intersection property)
P (XCY)C ((es(Y)° C (es(X)) * £
A (substitution)
U (XC (es(X)) C (Y C (ea(V))) * £
(associativity and commutativity of intersection)
U s(X)C TNt £ (Definition 46)
Thatis, forany jT N, xT Ts((iB)y) P Ts(((i + j)B)y) C
Te((iB)x) * A
(b) Let us prove Property (ii). For any xandy1 Z% anyil N
andjT N".Ifj=0,
xT Te(((i +0)B)) U xT f((iB),)
(natural number property)
U xT (Ts((iB))y
(Property (ii) of Proposition 47)
U yT (Te((iB)x
(Proposition 28 (properties of a ball with center at origin)
and Property (iii) of Proposition 47)
U yT (Te((iB)xandyT {y}
(singleton definition)
U yT (Te((iB)xandyT {o},
o A (Definition 19)
Uyl (Te((iB)xandy ! (Ts({o}))y
(#B > 1 and Property (i) of Proposition 47)
U yT (Te((iB)xandyT Ts({0},)
(Property (ii) of Proposition 47 - B-border properties)
U yT (Te((iB)xandyT Ts((0B)y)
A (Definition 34)
U (Te((iB))x C Te((0B)y) * A
(intersection and empty set definitions)
Ifjt o0,
xT Ts((( +1)B)y) U xT ((i +])B)y—es(((i +])B)y)
(Definition 46)
x 1 es(((i +])B)y)

(def. of —)
xi ((i +j-1)B)y
(Proprety (i) of Proposition 49)
(iBxC ((-1)By=A&
(Proposition 44 - generated balls versus intersection)
0 (iBxI (((-1)B),)° (property of C)
U (iB)xI (es((iB)y)",
(B has the closure porperty and Property (ii) of Proposition
49)
thatis, x T Ta(((i + j)B)y) P X1 (es(Y)), where X = (iB)x
ald Y =(jB)y. Expl qri ngﬂthe symmetry role between X and Y,
x1 fs((( +))B)y) U x1T (Ta((i +))B))y
~_ (Property (i) of Proposition 47)
Uyl (Te((i +)B))x
(Proposition 28 (properties of aball with center at origin)
and Property (iii) of Proposition 47)
P (iB)yl (es((iB)y)", (asabove)
thatis, x1 Te(((i +})B),) P YI (es(X))". Furthermore,

T

([an)

xT 9s(((i +])B)y) U xT ((i +])B)y —es(((i +])B)y)
(Definition 46)
P x1 ((i +j)B)y (def. of -)
U (iBxC (iB)y* £
(Proposition 44 - generated balls versus intersection)
U XCYt £  (definitionsof Xand)
Hence,
i XCY! A
X1 Ta((( +D)B)y) P I X1 (ea(Y)*°
1YT (es(X))°
o)

XCY=(XC(eg(Y)) C(YC (eg(X))°)
XCY! &£

(see above)

i
i
(intersection property)
P (XC (es(Y)) C (YC (es(X)) * £
(substitution)
U (XC (es(X))) G (Y C (es(V)) * &£
(associativity and commutativity of intersection)
U Ts(X)C Ts(M* £
(Definition 46)
That is, forany j T N, xT Ts(((i + j)B)y) P Ts((iB)y) C
Te((B}y) * A i

We observe that the implication in Property (i) of
Proposition 50 may be false when Bg is nhot B-closed, for
example, let B=(2Bg —1Bg) + 0Bg, let x I 1Bg — 0Bg and let
y=o0,thenx1 Ta((2B)y) but T&((3B)) C s((1B)y) =&

Figure 7 illustrates this counter example. On this figure
we see that the point x belongs to the dark gray ball border
1s((2B)y), nevertheless we see that the light gray ball border
s((3B),) has no intersection with the ball border Ta((1B)x)
(depicted as a set of squares).

.............

IKES NN O EAT RN

.....

ooooooooooooo
-------------

.............

Figure 7 - Counter example for Proposition 50.

In the last proposition of this section we present some
properties of the radii of generated balls. Part of these
properties will be used in the proof of Proposition 59.
Properties (ii) and (iii) will be used in future work.

Proposition 51 (radius properties of nested generated balls)
Let Bbeafinitesymmetricball (i.e., BT S), suchthatol B
andB! {o}. For any balsXand Yin Bg,

(i) XI YP radiuss(X) £ radiuss(Y);

(i) X! Yand X1 Yb radiuss(X) < radiuss(Y);
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giii) (center(Y) T Beenterxy and radiusg(X) < radiusg(Y)) b X
Y.

giv) (center(Y) = center(X) and radiusg(X) £ radiusg(Y)) P
Y. '

- X

Pr oof

For any balls X and Y in Bg, let x = center(X), let y

center(Y), leti =radiusg(X) and letj = radiusg(Y).

(a) Let usprove(i):

X1 YU (radiuss(X)B)centerxy | (radiuss(Y)B)center(v)
(Proposition 41 - characterization of the generated balls)

U (iBxl (jB)y (definitions of x, y, i andj)
b #(iB)x £ #(jB)y

(property of the cardinality of nested subsets)
U #(iB) £#(jB) (X > X, isabijection)
P iB=jBorjBEiB

(property of the cardinality of nested subsets)
U iBI jB

(Proposition 43 - chain of generated ballswith center at a
given point (here the point isthe origin o))
UiEj
(j = jBisaposet isomorphism (Proposition 43))
U radiuss(X) £ radiuss(Y) (definitions of i andj)
(b) Let us prove (ii):
Xt YandX1 YU (iB)x! (jB)yand(iB)xI (jB)y
(Proposition 41 and definitions of x, y, i andj)
b #(iB). < #(B)y
(property of the cardinality of nested subsets)
U #(iB)<#(B) (X X,isabijection)
P jBEIB
(property of the cardinality of nested subsets)
U iBt jBandiBl jB  (Proposition 43)
Oi<j
(j — jBisaposet isomorphism (Proposition 43))
U radiuss(X) < radiuss(Y)
(definitions of i and )
(c) Let usprove (iii):
center(Y) T Bcenter()() p yj Bx
U xI By
(Proposition 28 - properties of aball with center at origin)
P (iB)xI ((i +1)B)
(Property (i) of Proposition 48 (generated balls versus
inclusion) withj = 1)
(radiusa(X)B)centery | ((i + 1)B)y
(definitions of x and i)
X1 ((i +1)B), (Proposition 41)
X1 ((radiusg(X) + 1)B)y
(definitions of i)

(definitions of x and y)

oo (=)

(e}

X1 ((radiuss(Y))B)y
(radiuss(X) + 1 £ radiuss(Y) and themappingj — (jB)yisa
poset isomorphism (Proposition 43))
0 Xi ((I’ajl USB(Y))B)center(Y)
(definitions of y)
0 XI V. (Proposition 41)
(d) Let usprove (iv):
true U center(Y) = center(X) and radiusg(X) £ radiuss(Y)
(hypothesis)

O x=yadi£] (def. of x,y, i andj)

U x=yad(iB)xI (jB)y
(themapping j — (jB)x isaposet isomorphism (Proposition
43))

P (iB)xI (jB)y (logical derivation)
U (radiuss(X)B)centerx) | (radiuss(Y)B)center(v)

(def. of x, y, i andj)
O XI Y. (Proposition 41)

We are now ready to begin the study of the relationship
between metrics and symmetric balls.

6. From metric to symmetric ball

With a t.i. metric, we can associate a ball with center at
origin. Let (Z% d) be at.i. metric space, the unit ball of (Z?,
d), denoted by By, isthe set of all the points at a distance less
than or equal to one from the origin, that is,

Ba={ul Z%fy(u) £1}.

An exhaustive inspection of the nine points of Bg shows
that By = Bg, in other words, the 3 by 3 discrete square is

the unit ball of the chessboard metric space (Z2, dg).
In the next proposition, we show three properties of the
unit ball.

Proposition 52 (properties of the unit ball) — For any
metric d on Z%,

(i) Bl S
(i) ol Byand
(iii) Bq* {0}.

Proof
(a) Let usprove (i). Foranyul Z?

ul B4U d(u,0)£1 (def. of By)
O d(-u,0)£1 (symmetry of d)
U —ul By, (def. of By)
that is, B¢T S.

(b) Let us prove (ii):
trueU d(o,0)=0

(U of Properties (i) of Definition 1 - metric space)

P d(o,0) £1, (natural number property)

that is, by definition of Bg, 0T B.
(c) Let us prove (iii). Foranyul Z?,
d(u,0)=1pP u? o,

(P of Properties (i) of Definition 1 - metric space)
thatis, Bq* {0}. "

Property (i) of the previous proposition shows that the
unit ball isreally aball in the sense of Definition 22 and that
its center isthe origin.

In the next proposition, we show a relationship between a
t.i. lower regular metric and the Minkowski product of its
unit ball.
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Proposition 53 (property of the generated balls in a lower
regular metric space) — Let (Z2, d) be at.i. metric space, for
ayxandyl Z2andanyji N,
(i) x-yl jBab d(x,y)£]
(ii) if dislower regular, then

dx,y)£j P x~yT jBu.

Pr oof
Let us make arecursive proof. For any xandy 1 72,
x—-yl 1B4U x-yT By
(Definition 34 - Minkowski product)

U fax-y)£1 (unit ball def.)
U d(x-y,0)£1 (fq def.)
O d(x,y) £1, (trand ation-invariance of d)

Thatis,x—y1 jBsU d(x,y) £] istrueforj =
Lzet us assumeit wastrueforj — 1 (j > 1), forany x and y 1
VAR
x=yT jBsU x-yT ((i—1)Ba) A By
(Definition 34)
U $ul By:x—yT ((j—1)Ba)u
(equivalent definition of A (Property (1) of
Prop. 4.12 of [2]))
$ul By:x—(y+u)l (j—1)Bq

(Definition 19 - trandated version)
$ul Z%:ul By andx—(y+u)l (j—1)By

(logical derivation)

$vi Z%:x—vi By andv—yT (j—1)Bq
(v=x-u)

$vi Z%:x—vi 1By andv—-y1 (j—1)Bq
(Definition 34)

$vi Z%:d(x,v) E1andd(v,y) £] —
(hypothesis and first part of the proof)
O dx,y) £ j.

(by substitution of i and j of Proposition 16 (ball
intersection in alower regular metric space), by j —1and 1,
respectively; hence, U istrue under the hypothesisthatd is

lower regular)

(e} (e} ([an) (e}

([an)

The next corollary illustrates better the previous
proposition. We recall that By(y, j) is the ball of center y and
radius j, derived from the distance d (see Section 3).
Comparing the notations, we have B4(0, 1) = Bg.

Corollary 54 (property of the generated balls in a lower
regular metric space) — Let (Z2, d) be at.i. metric space, for
awyyl ZZadayjl N,
(1)  (Ba(o, 1)y I Buly,j)
(i) ifdislqwerregular,then

Ba(y,j) I (iBa(0, 1))y.

Pr oof
Foranyxandyl Z% andanyji N,
xT (jBua(0,1)),U x1 ({z1 Z* d(0,2) £1}),
(def. of By(y, j))
x—y1 j{z1 Z% d(o,2) £1}
Definition 19 - trandated version)
x—y1 j{z1 Z% d(z o) £1}

([an)

(e}

(symmetry of d)

O x—yT jBy (def. of By)
U d(x,y) £]

(P by Property (i) of Proposition 53 (property of the

generated ballsin alower regular metric space); U by

Property (ii) of Proposition 53 and hypothesis)

O d(y,x) £]j (symmetry of d)

U xT Ba(y, )). (def. of Bu(y, i)

We can apply Proposition 53 to the chessboard distance.
In this way, we see how to obtain the chessboard balls by
using the Minkowski product.

Corollary 55 (property of the Minkowski product of the
unit ball of the chessboard metric space) — If dg is the
chessboard distance, then for any x andy1 z? andanyj 1 N

x—yT jBsU da(x,y) £j.

Pr oof

The result is a consequence of Proposition 53 (property of
the generated balls in alower regular metric space) since Bg
is the unit ball of the chessboard metric space and ds is
regular by Proposition 15 (example of regular metric space).

Next proposition, which is consequence Proposition 53,
will be used in Section 8 to characterize the regular metric.

Proposition 56 (closure property of the unit bal of a
regular metric space) — Let (Z2, d) be at.i. metric space. Ifd
isregular, then By has the closure property.

Pr oof
Let assume that d is regular. We divide the proof in four
parts.
(@) Let usprovethatforany j T Nandany x1 Z% (By)xi (]
+1)3db d(x,o)gj, .
(Ba)x| (G +1)By U (1By)x| (j +1)Bq
(Definition 34 - Minkowski product)
(1Bg(0, )x I ( +1)By(0, 1)
(dgfinitions of By(y, j) and By)
(1Ba(0, 1))x I ((j + 1)Bu(0, 1))o
(o isunit element of +)
Bu(x, 1) | Bq(0,j +1)
(Corollary 54 (property of the generated ballsin alower
regular metric space) , U istrue under the hypothesis that d
islower regular)

() ([an)

([an)

P 1+d(x,0)£]+ 1.
(d isupper regular and Property (ii) of Proposition 18 - ball
inclusion in an upper regular metric space)
U d(x,0) £]. (+ isdouble-side increasing)
(b) Let us prove that, for any j T N, (((jBs) A Bg) © By |
jBg.Foranyj1 Nandanyxi Z2
x1 ((jBs) A By) © By U x1 ((j +1)Bg) © By (product def.)
U (Baxl (+1)By
(Minkowski's subtraction property)
P d(x,0)£]j (Part (a))
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P x1 jBy,
(hypothesis (d islower regular) and Property (ii) of
Proposition 53)
that is, forany jT N, (((jBs) A By) ©Bg) | jBy.
(¢ Forany jT N, ((jBy) A By) © By isthe closing of jBy by
By, therefore by closing extensivity (Property (3) of Prop.
6.21 of [2]) jBal (((jBd) A Bq) © By).
Hence, from Parts (b) and (c), if d isregular, then, for any j
T N, (((iBs) A By) © By) = jBqy, in other words, jBy is Bg-
closed.
(d) For any X1 Bg, let x = center(X) and leti = radiuss(X),
(XA By) © By) = ((radiusg(X) Bd)center(x) A By) © By
(Proposition 41 - characterization of the generated balls)
= ((iBg)x A Bg) © By (def. of xand i)
= ((iBd) A Bq)x© By
(Property (5) of Prop. 4.12 of [2])
= (((iBg) A Bd) © Bu)x
(Property (5) of Prop. 4.12 of [2])

= (iBa)x (Part (c))
= (rediusg(X) Ba) center(x)
=X (Proposition 41)

that is, if d isregular, thenBg_ is By-closed.

Based on the regularity of the Chesshoard distance, we
have the following resuilt.

Corollary 57 (closure property of the Minkowski product
of the 3 by 3 discrete square) — Let Bg be the 3 by 3 discrete
square with center at origin, forany j T N, jBg is Bs-closed.”

Pr oof

By Proposition 15 (example of geometrical metric space)
(Z, dg) isregular. Furthermore, B isthe unit ball of (Z, dg):
By, = Bg - Therefore, by Proposition 56 (closure property of

the unit ball of aregular metric space), forany j T N, ng |s
Bs-closed.

Let B. be the collection of finite symmetric balls (i.e., B
T S) having the closure property and suchthat o T Band B*
{o},thatis, B.={BT S:BgisB-closed,01 BandB! {0}}.

Let M, be the set of integer-valued t.i. regular metrics,
thatis, M, ={dT NZ Z :disti.and regular}.

Before closing this section, we verify that the image of
M; through d ~ By is contained in Be. In other words, the
unit ball of a metric space which metric is integer-valued t.i.
regular and defined on the discrete plane has the closure
property.

Proposition 58 (properties of the Minkowski product of the
unit ball of aregular metric space) — (d — Bg)(M,) | Be.

Pr oof

By Proposition 52 (properties of theunit ball)B4T S, 01 B
and Bt {0}, and by Proposition 56 (closure property of the
unit ball of aregular metric space) d being regular, Bg is Bd—
closed. Therefore, forany d1 M,, B4l Be.

7. From symmetric ball to metric

By using the Minkowski product, with a symmetric ball
containing the origin, we can associate at.i. metric.

Let B be afinite symmetric ball (i.e., BT S), such that o
T BandB* {o}.

Forany x1 Z2 let

= [} XT Bg(0): xi X}.

By Proposition 43 (chain of generated balls with center
at agiven point), M*1 Bg(0) and it is the smallest ball with
center at origin that contains the point x.

Let fg be the mapping from Z% to N* given by, for any x 1
z,

fa(x) = radiusg(M”).

In the next proposition, we give the relationship between
the ball border and its radius. Property (i) will be useful to
prove the subadditivity of fg, and Property (iii) to prove its

regularity.

Proposition 59 (ball border versus ball radius) — Let B be a
finite symmetric ball (i.e, BT S), suchthat o1 Band B

{o}.Forany x1 Z?and any finiteX1 Bg(0),

(i) xT XU fg(x) £ radiusg(X),

(i) xT feXP fg(x) = radiuss(X),

(|||) if B hasthe closure property, then fg(x) = radiusg(X) ID

xT X

Pr oof

Let x T 2 let M* =({UT Bg(0): x U} and let X |
BB(O).

(a) Let usproveb of (i). First,

x1 XU XT {UT Bg(0):x1 U} (set definition)

P M‘T X (definition of M* and property of 1)
Second,
fa(x) = radiusg(M”) (definitions of M* and fg(x))
£ radiusg(X).

(M*1 X and Property (i) of Proposition 51 -
radius properties of nested generated balls)
(b) Let usproveU of (i). First,
radiusg(M*) = fg(x) (definitions of M* and fg(x))
£ radiusg(X), (hypothesis)
that is, under the hypothesis, radiusg(M*) £ radiusg(X).
Second,
xT M (property of N)
1 X
(radiusg(M*) £ radiusg(X) and Property (iv) of Proposition
51)
that is, under the hypothesisxT X.
(c) Let us prove Properties (ii) and (iii). Let us assume that B
has the closure property and let j = radiusg(X),
xT 1)U x1 X —eg(X)  (Definition 46 - B-border)
U x1 jB —eg(jB)
(X=jB by Proposition 41 - characterization of the generated
balls)
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O x1 jB —((j-1)B)
(P by Property (i) of Proposition 49 (erosion of agenerated
ball) and U by Property (ii) of Proposition 49 since B has
the closure property)

(e}

x1 jB andxi (j—1)B
(def. of the set difference)
fa(x) £ radiusg(jB) and radiuss((j — 1)B) < fg(X)
(Property (i))

([an)

(e}

fa(x) £j and (j — 1) <fg(X)
(Proposition 41)

O jEf(X)E] (property of < on N)
U fa(x) =j (anti-symmetry of £)
U fa(x) = radiuss(X).

(definition of j)

The mapping fz has amost al the properties of a norm as
shown in the next proposition. Nevertheless, it doesn't verify
the property: fa(jx) = |j| fa(x) forany j T Z (for example, if B
is afive by five square and x = (1, 1), then fg(2x) = 1 and
2fg(X) = 2), instead it has aweaker property: the symmetry.

Proposition 60 (properties of fg) — Let B be a finite
symmetricball (i.e, BT S), suchthatol BandB! {o}. For

awyxandyl 72

(i) fs(x)3 0, (positiveness)
(i) x=00 fg(x) =0,

(iii) fa(- X) ="fa(x), (symmetry)
(iv) fa(x+y) £fa(x) +Tfa(y). (subadditivity)

Pr oof

Let usprove (i). Since the radius of aball is a natural number
(see Definition 40 - radius of a generated ball), for any x 1
Z%, fa(x) 3 0.

Let us prove (ii).For any xT Z?,

x=00 fy(x) =radiuss([ (X1 Bg(0):0l X})

(def. of fg(x))
O fg(x) =radiusg({0})
(Proposition 43 - chain of generated balls with center at a
given point)
U fs(x) =0.
(Property (i) of Proposition 42 - radius property)
Let us prove (iii). For any x1 Z?,

fo(- X) = radiuss([ }{XT Bg(0):- xI X})

= radiuss( [ [{XT Bg(0): xI X}) (Bs(0)1 S

=fg(x). (def. of fg(x))
Let usprove (iv). Let usdivide the proof in three parts.
(@) Forany x1 Z° letusprovethatx1 fgz(X)B,
true U fa(x) £ fa(X) (reflexivity of £)
O fa(x) £ radiuss(fs(X)B)
(fa(x)BT Bg(0) (definition of Bg(0)) and Proposition 41 -
characterization of the generated balls)

(def. of fa(x))

O x1 fz(x)B.
(Property (i) of Proposition 59 - ball border versus ball
radius)

(b) Forany x,y1 Z? letprovethatx +y1 (fz(X) + fg(X))B:
trueU x1 fg(x)Bandyl fg(y)B (Part ()
P x+yT (fa(x)B) A (fa(y)B)
A A (Definition 31 - Minkowski's addition)
U x+yl (fa(x) +1a(y))B
(Proposition 35 - mix distributivity of the product)
(c) Forany x,y1 7%,
fa(x +y) £ radiuss((fa(x) +fa(y))B)
(Part (b) and Property (i) of Proposition 59)
=fe(X) +fa(y). (Proposition 41)

With a mapping fg we can associate the mapping ds =
d¢, . By Proposition 9 (characterization of translation-

invariant metric) and Proposition 60 (properties of fg) dg isa
t.i. metric; we cal it the metric induced by B or simply
induced metric. Letxandy 1 Z? from the definition of d; in
Section 2, we have

da(x, y) =fa(x-Y).

It is interesting to note that by substituing the Minkowski
product by the scaling operations: scaling or scaling2, of
Section 4, the above construction doesn't lead to a metric.

As we can see in Figure 8, the triangle inequality is not
satisfied when the induced distance is obtained by using the
scaling transformations.

Before closing this section, we verify that the image of
B through B — dg iscontained in M;.

1 1
& [ 4
) e 3 e
0 0
2£1+1 ¥f£1+1
true false

Figure 8 - Induced distances using Minkowski product and
scaling.

Proposition 61 (properties of the metric induced by a ball
having the closure property) — (B - dg)(Bo) | M..

Pr oof
We must verify four properties.
(@ By Proposition 9 (characterization of trandation-
invariant metric) and Proposition 60 (properties of fg) dg isa
t.i. metric.
(b) For any Biin B, by construction, fg is a mapping from Z?
to N*, therefore, by definition of induced metric, dg(Z® *~ Z?)
=N".
(c) Let us prove the lower regularity. Letx andy 1 Z2 leti 1
N, and letj = dg(x,y) suchthati £],
trueU ds(X,y) =j

L:J fa(x—y) =]

U fg(X—Yy) =radiuss(jB)

(definition of j)
(definition of induced metric)
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(Proposition 41 - characterization of the generated balls)

P x-yl Ts(iB)
(B has the closure property and Property (iii) of Proposition
59 - ball border versus ball radius)

U x1 (Te((iB))y  (Definition 19 - trand ated version)

U x1 1s((B)y)
(Property (ii) of Proposition 47 - B-border properties)
P Te((iB)y) C Te(((G -1)B)y) * A&

(Property (ii) of Proposition 50 - generated balls versus B-

border)

([an)

$ul Z%ul T((iB)) andul Ts(((G -1)B),)
(intersection and empty set definitions)
$ul Z=ul (Te(iB)xandul (Ta((j —i)B))y
(Property (ii) of Proposition 47)
$ul ZZu—x1 Te@iB) andu—yi fs((j—i)B)
(Definition 19)

()

([an)

P $ul Z2% fa(u—x) = radiusg(iB) and
fe(u—Yy) =radiuss((j —i)B)
(Property (ii) of Proposition 59)

O $ul Z%fe(u—x) =i andfa(u—y) =] —i
(Proposition 41)
O $ul Z% dg(u,x) =i and dg(u, y) =j —i
(definition of induced metric)
O $ul Z% dg(x,u) =i anddg(u,y) =j —i
(symmetry of dg)
O $ul Z% dg(x, y) =dg(x, u) + ds(u, y) and dg(x, U) =
i
(definition of j and substitution)
U S(x,i) CLo(x,y)* A&

(definitions of Sand L, with respect to dg)
P dgislower regular.

(Corallary 5 - first equivalent definition of regular metric)
(d) Let us prove the upper regularity. Letx andy 1 Z? leti 1
N, and letj =ds(X, Y),
trueU dB(x y) =j
x1 Ts((B)y)
ie(((i +])B)y) C Ta((iB)x) * A

(Property (i) of Proposition 50)
$ul Z% dg(u,y) =i +j and dg(u, X) =i

(definition of j)
(asin (b))

T O

()

A (asin (b))
$ul Z% ds(u,y) = ds(u, x) + ds(x, y) and dg(u, X) =

([an)

(definition of j and substitution)
Sx,1) C Ls(x,y) * A
(definitions of Sand Lz with respect to dg)
P dgisupper regular. (Definition 3)
Hence, from (@) - (d) and by Corollary 5, for any BT B, dB
T M.

()

8. Relationship between regular metrics and
symmetric balls having the closur e property

We now establish two propositions showing that the
mapping B — dg of the Section 7 is a left and right inverse
of the mapping d — By of Section 6.

Let M, be the set of integer-valued t.i. lower regular
metrics, that is, M, = {d 1 NZ %
regular}.

:dis ti. and lower

Proposition 62 (existence of aleft inverse) — The mapping
B  dgisaleft inverse for the mapping d — By from M to
the collection of finite symmetric balls B (i.e., BT 9), such
thatol BandB? {0}.

Pr oof
(a) From Proposition 52 (properties of the unit ball), for any
metricd, B¢l S,01 ByandBy? {0}.
(b) Foranyd1 My, anyxandyl ZZandanyji N,
dx,y)£j U x-yT jBq
(dislower regular and Proposition 53 - property of the
generated ballsin alower regular metric space)
U fg,(x- y)Eradiusg (jBy)
(Property (i) of Proposition 59 - ball border versus ball
radius)
O fg(x- YE]
(Proposition 41 - characterization of the generated balls)
U dg, (x,y)£]j. (definition of induced metric)
That is, by anti-symmetry of £, for any xandy1 72, d(x, y) =
dg, (X, y) . In other words, by mapping equality definition, d
= dp, . :
Proposition 62 shows that every integer-valued t.i. lower
regular metric can be reconstructed from its unit ball using
the Minkowski product. Since M, I My, thisis also true for

the regular metric. In other words, its unit ball uniquely
defines any (lower) regular metric space.

Corollary 63 (chessboard distance as a derlved dlstance)
If ds isthe chessboard distance, then dg =

Pr oof

Since Bg is the unit ball of the chessboard metric space,
By, = Bg- By Proposition 15 (example of regular metric
space) (ds, Z°) is a regular metric space, therefore by
Proposition 62 (existence of aleft inverse) ds =dp, . "

Proposition 64 (existence of aright inverse) — The mapping
B  dgisaright inverse for the mapping d — By from M, to
Bc. h

Proof

(a) By Proposition 61 (properties of the metric induced by a

ball having the closure property) for any BT B, dg1 M..

(b) Forany BT B,

By, ={ul Z* dg(u,0) £1} (definition of By)
={ul Z%fg(u) £1} (definition of induced metric)
={ul Z* radiuss([ (X1 Bg(0):ul X})£1}

(definition of fg)
={ul Z%ul {o} orul B}
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(by Proposition 43 (chain of generated ballswith center at a
given point) Bg(0) isachain and { o} and B are the only two
generated balls with radius less than or equal to 1)

={ul Z%ul B} (o1 B)
=B. (set definition)
Thatis, B, =B. :

We are now ready to state our characterization theorem.

Theorem 65 (characterization of integer-valued trand ation-
invariant regular metrics) — The mapping d — By from M, to
Bcisabijection. Itsinverseisthe mapping B — ds. "

Pr oof

L et us divide the proof into two parts.

(a) By Proposition 58 (properties of the Minkowski product
of the unit ball of aregular metric space) for any d 1 M, By
T Be By Proposition 62 (existence of a left inverse), d
> Bygfrom M, M; to B. is one-to-one.

(b) By Proposition 64 (existence of aright inverse), d — By
from M, to B; is onto.

Hence, from (a) and (b), d — Bq from M, to B, is a bijection
and itsinverseisB - dg. "

9. Conclusion

In the first part of this work we have introduced a
definition of regular metric space and showed its relation to
the Kiselman's regularity axioms for trandation-invariant
metrics. We have shown, in particular, that the lower
regularity of type 1 is a redundant axiom in the definition of
regular metrics.

In the second part, we have established a one-to-one
relationship between the set of integer-valued and
trandation-invariant regular metrics defined on the discrete
plane, and the set of symmetric balls satisfying a special
closure property.

From this result we now know how to construct a regular
metric on the discrete plane.

To this end, we choose in the discrete plane a symmetric
ball B that has the closure property, i.e., that induces, through
the Minkowski product, a chain of generated balls that are
morphologically closed with respect to B.

Then the distance of a point x to the origin is given by the
radius (in the sense of the Minkowski product) of the
smallest ball of the chain, that containsx.

This construction shows that to preserve in the discrete
plane the regularity property of the Euclidean metric on the
continuous plane, we have to reach a compromise between a
good approximation of a continuous ball and thin contours.
"Closer" B from an Euclidean continuous ball, bigger B and
thicker the borders in the discrete plane.

Actually it will be interesting in a future work to give a
proof that if B is the intersection of an Euclidean continuous
ball with the discrete plane then the generated balls are
morphologically closed with respect to B.

The proof should be based on a closure property of the
convex subsets of the continuous plane[3, Proposition 9.8].

The regular metric characterization we have proved will
also be very useful to derive in future work some important
geometrical properties of the skeletons of "expanded"
subsets of the discrete plane[1].
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