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Abstract Mathematical Morphology is a general theory that studies the decompositions of 

mappings between complete lattices in terms of some families of simple mappings: dila-

tions, erosions, anti—dilations and anti—erosions. Nowadays, this theory is largely used in 

Image Processing and Computer Vision to extract information from images. The KHOROS 

system is an open and general environment for Image Processing and Visualization that has 

become very popular. One of the main characteristics of KHOROS is its flexibility, since 

it runs on standard machines, supports several standard data formais, uses a visual program-

ing language, and has tools to help the user to build and install his own programs. A set of 

new programs can be organized as a subsystem, called Toolbox. This paper presents a fast 

and comprehensive Mathematical Morphology Toolbox for the KHOROS system, that 

deals with binary, gray—scale and multiple band images. Each program has specialized al-

gorithms for binary and gray—scale images, that are chosen automatically according to lhe 

input data. These implemented algorithms running on current general purpose workstations 

are as fast as the equivalent ones running on specialized hardware with 1986 technology. 



1 Introduction 

Mathematical Morphology is a solid theoretical body to study mappings between complete lattices 

(Serra, 1988) and an extremely powerful tool to extract image information (Serra, 1982). 

Under a theoretical point of view, Mathematical Morphologystudies the decomposition of map-

pings between complete lattices in terms of some families of simple mappings: dilations, erosions, 

anti-dilations and anti-erosions. These mappings are called the elementary mappings of Mathemat-

ical Morphology. 

The mappings are built by combining the elementary mappings through the supremum, infi-

mum and composition operations. Once a mapping was built, it can also be used as a primitive in 

order to build other mappings and so on. The set of primitive mappings and operations is called the 

Mathentatical Morphology toolbox. 

Under a practical point of view, the mappings and operations of the Mathematical Morphology 

toolbox are the tools to extract image information. 

Usually, a goal is broken heuristically into subgoals, that are achieved by primitive mappings. 

The right composition of these primitives gives the mapping that achieves the desired goal. For ex-

ample, in order to reduce the stripe effect on SPOT images, Banon and Barrera (1989) local ized the 

stripe pixels and, then, interpolated new values just for these pixels. In the same way, in order to 

segment microscopic cell images, Barrera (1991) gota marker for each cell and regions containing 

groups of cells, before arriving to the image segmentation. 

Thus, a good system to perform Mathematical Morphology applications must have two main 

characteristics: fast algorithms for the elementary mappings and a suitable interface to prototype 

new mappings. 

The KHOROS system is a portable environment for image Processing and Visualization that 

has become very popular. It runs on existing standards, has a visual programming language for user 

interface, and provides tools to build and install new programs. 

Once the original set of morphological tools in KHOROS is not satisfactory, we decided to im-

plement a toolbox dedicated to Image Processing by Mathematical Morphology. 



Section 2 gives a formal specification of the toolbox implemented. Section 3 presents the main 

characteristics of lhe KHOROS system. Section 4 teus some aspects of the toolbox architecture, re-

sumes section 2 as a set of practical tables and discusses lhe main algorithms implemented. Section 

5 presents an application example. Section 6 gives some conclusions and directions for future works. 

2 Morphological image processing 

The mappings of the Mathematical Morphology toolbox can be organized hierarchically, based on 

their decomposition in terms of the elementary mappings. Thus, taking an increasing complexity 

order, we defined the following families of operations and mappings: basic image operations and 

transformations; first, second and third levei image transformations. 

2.1 Basic image operations and transformations 

It has been shown (Banon and Barrera, 1990, 1991, 1993) that any transformation between com-

plete lattices can be described in terms of lhe four classes of elementary transformations of Mathe-

matical Morphology: dilations, erosions, anti-dilations and anti-erosions. 

We recall that, in its algebraic sense, the words "dilations, erosions, anti-dilations and anti-ero-

sions" means mappingsip from a complete lattice L, to another one £ 2  that have the following prop-

erties: 

= V lé(*3) (W LI) 

for dllations, 

,KA = A 	Cl E LI) 

for erosions, 

1P6/ = A 1PM Cl E L.) 

for anti-dilations and 

'PO\ 	-= V IP(%) (% L1) 

for anti-erosions. 

In the following, we present some classes of elementary mappings and operations. 



Let Z be the set of integers. Let E be a rectangle of rand let Kbe an interval [O, kJ of Z, with 

k > O. The collection of functions from E to K will represent the gray -scale images of interest. We 

denote such a collection by KE and byf, g, h and 12  generic elements of K. 

We first recaii some useful local operations definitions on images. These definition are based 

on the structural properties of the interval [O, !c] of Z 

The intersection of h and h, denoted f  A h, is the function in KEgiven by, for any x in E, 

	

A fz)(x) = min Vi(x), /2(x)}, 	 (1) 

the union of h and h, denoted f, v h, is the function in KE given by, for any x in E, 

	

(f, v h)(x) = max (ji(x), f2(x)). 	 (2) 

The two binary operations A and v from A' x Kto IC E  are called, respectively, intersection and 

union. Actually, these operations applied to f, and 12  produced, respectively, the infimum and the 

supremum of f, and 12  with respect to the partia! ordering 5 given by 

fl 	***' 0.1(x) 5  f2(x) (x E E)). 

For this reason, the two binary operations A and v are also called, respectively, infimum and 

supremum operations (or, simply, infimum and supremum). 

The complementaty (or inverse) of,  f, denoted f, is the function in KEgiven by, for any x in 

E , 

(— 1)(x) = k — f(x). 	 ( 3 ) 

The unary operation — from KE to ICE is called complementary operation (or inversion). This 

unary operation is both an anti-dilation and an anti-erosion. 

The difference between h and h, denoted f, h, is the function in K given by, for any x in 

E, 

f(x) f2(x) ir j2(x) 5 fi(x) 
(fl 	f2)(x) = 	O 	 otherwise. 	 (4) 



The binary operation — from KE x KE to '<Eis called difference operation (orsubtraction). Actu-

ally, we have f, f 2  s A A ( f2) and we get the equality for binar),  images, that is, for 

ME) = f2(E) = o, k}. 

Given a function f E ICE, the unary operation f — • is both an anti—dilation and an anti—ero-

sion, and the unary operation • — f is both a dilation and an erosion. 

The comparison between A and f„ denoted A f 2, is the function in KEgiven by, for any x in 

E, 

k if f,(x) 5 f 2(x) 
(1; 	1-2Xx) = otherwise. 	 (5) 

The binary operation from KE x KE to KE is called comparÉson operation. The unary opera-

tions • f and f .á • from KE to KE are called adaptive thresholds with respect to f These unary 

operations are, respectively, an anti—dilation and an erosion. 

The equality between A and f 2 , denoted f  f2, is the function in KEgiven by, for any x in E, 

1k if Mx) = .1 -2(x) 
(i; 	1.2)(x) = O otherwise. 

The binary operation =- from KE x KE to KE is called equality operation. Actually, we have 

	

f2) = 	f2) A (1-2 -5- ti). 

Let f, s f 2, the toggle transform of f with respect to A and f„ denoted Mjy2 , is the function in 

KE given by, for any x in E, 

Ifitx) if(f-fiXx) 5  0.2 — /Xx) 
(!IVIT2XX) = f2(x) otherwise. 	 (6) 

The transformation 	• from KE x KE x KE to KE is called toggle transformation. Actually, 

we have 

(f,[flf2) = (g A f,) V (( — g) Ah), 

where 

g =(f — ti) ã (1.2 



The toggle transformation is both an erosion and a dilation. 

We now recail the definitions of two important subclasses of dilations and erosions. These defi-

nitions are based on the Abelian group property of 	+). 

Let B be a subset of Z 2 , called structural sei (or, structural element). We denote by B, the 

translate of B by any vector h in Z 2, that is, 

B, = {x + h: x E 8). 

We denote by B' the transpose of B, that is, 

B' = { - x: x E B}. 

We denote by BC the complement of B, that is, 

= {x: x 	B}. 

The dilation of f by B is the function b l,(1) in KE, given by, for any x in E, 

(3 8(f)(x)= max {f(y): y E Bt,nE}; 	 (7) 

the erosion of f by B is the function E.(n in KE,  given by, for any x in E, 

t fi(fXx) = min {f(y): y E B„n E} . 	 (8) 

In the above expressions, we recaii that max(0) = o and mia(0) = k. 

The two transformations b„ and E n  from KE to Kt are called, respectively, dilation and erosion 

by B. 

The anti-dilation and anti-erosion byB can bebuilt, respectively, from the dilation and erosion 

by B (see section 2.2). 

The transformationi from KE to KE, given by, for any f E ICE, 

is called identity transformation. This transformation is both an erosion and a dilation by the set {o} , 

where o is the origin of Z 2, that is, o = (o, o). 

Now, we present some useful properties of dilations and erosions by structural elements. 



Property 1 - The dilation (erosion) by a structural sei B is equivalent to the supremum (infimum) 

of dilations (erosions) by subsets in a family whose supremum is B, that is, 

às = V {às 	B, = 

( EB = A {£8 ‘ 	B  a = 	) 

The Minkowski addition of two subsets A and B of Z 2  is the subset A e B of Z 2 , given by 

A ee = tj{A b : E B} 

Property 2 - The dilation (erosion) by the Minkowski addition of two subsets A and B is equivalent 

to the composition of the dilation (erosion) by A and B, that is, 

AEDB = C S  

( £A(DB = E  A £ 11)• 

A particular consequence of Properties 1 and 2 is that a dilation and an erosion by any subset 

B can be built by composing, respectively, dilations and erosions by subsets of the set {- 1, O, 1} 2, 

called the elementary square. Some studies point that this decomposition can lead to algorithms for 

dilations and erosions more efficient than the direct ones (Maragos, 1985, p. 48). 

Property 3 - The dilation (erosion) of f by B can be computed by the following composition 

órÁn = V {à6)W y EB} 

( E  8(f) = 	{à60 Y E B'} ). 

2.2 First levei image transformations 

These transformations are built by using only once each basic transformation. 

Let B be a subset of 2 2 , the two transformations d', and E'„ from KE to KL , given by the following 

compositions 

	

= b, and t .  = 	 (9) 

are called, respectively, anti-dilation and anti-erosion by B. 

The transformation 	from KE to KE, given by the following composition 



= ós 	 (10) 

is called rnorphological gradient. 

Let g be an element of KE, the transformations 	and e 	KE to KE, given by 

= (5, A g and t a. , = t v g, 	 (11) 

are called, respectively, conditional (or geodesic) dilation and erosion by B given g. 

The transformations y. and from KE to KE, given by the following compositions 

YB = 	,, and yi)„ = t#3 8, 	 (12) 

are called, respectively, (morphological) opening and closing by B. 

Let A and B be two subsets of Z 1  such that A C B, the two transformations AR  and IÁA . B from 

KE to KE, given by the following compositions 

	

ÀA.D = TA A 	and PA.8 = ()A V 	 (13) 

are cal led, respectively, sup-generating and inf-generating transformations of parameters A and 

B. The sup-generating mapping of parameters A and B' is ais() called Hit -Miss transformation of 

parameters A and B. 

The two transformations 0Aft and T from KE to KE, given by the following compositions 

	

0, = 1 	jj and rA, = v 	 (14) 

are called, respectively, thinning and thickening of parameters A and B. 

Let g be an element of KE ., the transformations aA., and 	from KE to KE, given by the foi low- 

ing compositions 

= 0A.E1 V g and r„.8, = TAR  A g, 	 (15) 

are called, respectively, conditional thinning and thickening by (A, B) given g. 

2.3 Second levei image transformations 

These transformations are built by using more than once each basic transformation. 



Let B be a subset of Z. 2 , the two transformations 6; and E; from KE to KE, given, for n > O, by 

the following n - 1 successive compositions 

	

(3; = 6„ ... 6 8  and El = E, ... 	 (16) 

and, for n = O, 

6; = and 

are cal led, respectively, n -dilation and n -erosion by B. Actual ly, 6; and E; are, respectively, equiva-

lent to the dilation and erosion by nB, where nB is given by the following n - 1 successive composi-

tions 

= (B ED 131 	ED B 

and, for n = O, 

nB = {o} . 

Let g be an element of KE, the transformations 6; . , and E;, from KE to KE, given by the following 

n - 1 successive compositions 

= 	6„ and i , = EA, 	 (17) 

are cal led, respectively, n -conditional dilation and erosion by B given g. 

The two transformations y; and 07, from KE to KE, given by the following compositions 

	

y; = d;E; and 0; = E;6, 	 (18) 

are called, respectively, n -opening and n -closing by B. Actual ly, y; and 95;are, respectively, equiva-

lent to lhe opening and closing by nB. 

The two transformations O and tp from KE to KE, given by the following compositions 

	

O = stvi, and tp = y2,56; 	 (19) 

are called, respectively, n-Oy -filter and n -y0 -fi1ter (by B). 

The two transformations O and tp from AVE to Kr, given by the following compositions 

	

O = y;fp;y; and tp = y;;, 	 (20) 

are called, respectively, n-rfry-filter and n-Oy0-filter (by B). 



Let denote the n -cpy, n -yO, n - /y¢ and n -y0y -filter by B generically by 1g. Let 93 be a finite 

sequences ofN subsets in V, with elements B, such that B, c B,. ,. The transformation 1/4; from 

KE to KE, given by lhe following composition 

V'= I PNB, 	5/4„ 

is called an N alternate sequential filter of parameter 

Let .-4. and 93 be two finite sequences of n subsets, in z 2 , respectively, with elements A, and B, 

such that A, C B,. The two transformations i and t„ from KE to KE, given by the following n 1 

successive compositions 

= 0A 1 .. ••• crA„.D. andr" 	= TA 	TAe„, 	 (21) 

are called, respectively, n - thinning and n - thickening of parameters .Á and 93. 

The two transformations ip ., and w 4  from KE to KE, given by the following n - 1 operations 

	

tPÃ = V {À,,, : i = 1, ..., n} and w,„ = A 	: I = 1, ..., n} , 	 (22) 

are called, respectively, n-canonical transformation and n-canonical dual transformation of 

parametersÁ and 93. 

The transformation (3 8 , from KE to KE , given by 

fin = 	A 46 BYBCP8 ) V Ytifren , 	 (23 ) 

is called lhe primitive of the center.  filter. 

2.4 Third levei image transformations 

These transformations are built by using an a priori undefined number of basic transformations. 

Let B be a subset of Z 1  and letf be an element of KE, lhe transformations y„ f and 4„ from ICE 

to KE, given by, for any g E Kr , 

	

y(g) = V {4,,(1): n = 1, ... } and 0 8.Ág) = A 	n = 1, ... 1 , 	(24) 

are called, respectively, opening and closing hy reconstruction from lhe marker f 

The following infinite successive compositions 



as = filies 	 (25) 

where fl, is the last transforrnation defined in Subsection 2.3, is called the center.  filter. 

Let Á and 93 be two infinite sequences of n subsets in Z 2, respectively, with elements, A, and 

B, such that A, C B,. The two transformations I„ and 714. „ from ICE to KE, given by lhe following 

infinite successive compositions 

= 	 ... and 	= A 1 . D 1 	r„,„, 	 (26) 

are called, respectively, skeleton by thinning and exoskeleton by thickening of parameters Á and B. 

Let g be an element of K.  The transformations 1„, and 	from KE to KE, given by the 

following infinite successive compositions 

= 	 ... and 	 (27) 

are called, respectively, conditional skeleton by thinning and conditional exoskeleton by thickening 

of parameters Á and 93 given g. 

Let B be a subset of Z 2 , the transformation a, from K E  to K E  given by 

as = V {e, — 	 i = 0,1,...} , 	 (28) 

is called morphological skeleton of parameter B. 

The transformation e, from KE to KE, given by 

= V {e, — 	 i = 0,1, ...} , 	 (29) 

is called last erosion of parameter B. 

The transformation /3; from KE to KE, given by, for any g e KE, 

14(g) = V {4,(g) 	(3*„,(4.1(g)): i = 0,1,...) 	 (30) 

is called n-order conditional bisector of parameter B. 

3 The KHOROS System 

KHOROS (Rasure et al., 1990) is a software environment designed for research in image processing. 

ii was created at the Department of Electrical and Computer Engineering ai the University of New 



Mexico, Albuquerque, USA, and has become very popular. According to recent statistics of the 

KHOROS group, it has near ten thousand users around the world, that can have support and ex-

change information by a very active mailing list. 

Once image processing encompasses a wide spectrum of applications, it was designed from a 

very broad perspective. For example, it includes mechanisms for distributed computing, interactive 

visualization of many data types, and suitable user interfaces. 

One of the most powerful features of KHOROS is CANTATA, its high-levei abstract interface. 

CANTATA is a graphically expressed, data-flow oriented language that provides a visual program-

ming environment for the system. Data flow is an approach in which a program is described as a 

directed graph, where each node represents an operation (ar function) and each direct arc represents 

a path over which data tokens flow. A CANTATA program is also called a workspace . Figure 1 (d) 

is an example of a workspace. 

KHOROS was designed to be portable and extensible. ft relies on existing standards (X Win-

dows and UNIX), incormates tools for software development and maintenance (a high levei user 

interface specification and a code generation tool set), a flexible data exchange format, tools to ex-

port and import standard data formats, and an algorithm library. 

There are two main types of programs in the KHOROS system: the vroutines and the xvroutines. 

The main characteristic of xroutines is that they have their own graphical user interfaces, while the 

vroutines do not. 

The user programs (vroutines or xvroutines) can be organized as independent subsystems, 

called toolboxes, that can easily be integrated to the system. Usually, a user toolbox is deposited 

in a puhl ic account at University of New Mexico computer and can be accessed by the community 

of KHOROS users, via anonymous ftp. 

KHOROS has been extensively used (Koechner et al., 1990; Sauer et al., 1990; Kluth et al., 

1992; Rots and Herreld, 1992) to perform image processing research, algorithm development, and 

data visualization. In fact, the known applications cover a very broad spectrum: industrial inspec- 



tion, medicai diagnosis, optical measurement, remote sensing, semiconductor processing, optics, 

medical imaging, ecosystem analysis, cell biology, etc. 

4 A Mathematical Morphology toolbox for KHOROS 

We implemented the Mathematical Morphology toolbox for binary, gray-scale and multiple band 

images as a K_HOROS toolbox, where each family of morphological mappings is presented as a sub-

menu of the toolbox main menu. 

4.1 Architecture 

Following lhe theory of Mathematical Morphology, ali the transformations are bui lt by composition 

of the elementary transformations and operations. 

The dilations and erosions are further decomposed, respectively, in terms of dilations and ero-

sions by subsets of the elementary square. 

As the elementary transformations for binary images have some additional properties than the 

corresponding ones for gray-scale images, different algorithms were chosen for each case. 

In order to simplify its use, the system was designed to be oriented by data type, that is, when 

executing a given operation or transformation that makes sense on different data types, it chooses 

automatically the most efficient algorithm for the current input data. 

When the input data are multiple band images, lhe gray-scale algorithms are applied sequential-

ly for each band. 

A special data structure, much simpler than the standard KHOROS format, was designed to sup-

port the structural elements that are subsets of the elementary square. 

Ali the main programs implemented are KHOROS vroutines. Complex transformations can be 

built either as CANTATA or C programs, that use, respectively, vroutines or subroutines of lhe 

available primitives. 



4.2 Contents 

The tciolbox is composed by five groups of programs: basic image operations and transformations; 

first, second and third levei image transformations; other tools (Table 1). 

Table 1. Toolbox content. 

Name 	 I 	Routine 	I Expression 

Basic image operations and transformations 

infimunt vinf 1 

supremum vsup 2 

inversion vinv 3 

subtraction vsubm 4 

threshold vthreshad 5 

toggle vtoggle 6 

dilation vdil 7 

erosion Ver() 8 

First levei image transforrnations 

anti-dilation vadil 9 

anti-erosion VaCr0 9 

gradient vgradm 10 

cond. dilation vcdil 11 

cond.erosion %/CCM 11 

Opening vopen 12 

closing vclose 12 

Nome Routine Expression 

sup-generating vsupgen 13 

inf-generating vinfgen 13 

thinning vthin 14 

thickning vthick 14 

cond. thinning vcthin 15 

cond. thickning vcthick 15 

Second levei image transformations 

n-dilation vndil 16 

n-erosion vnero 16 

n-cond. dilation vncdil 17 

n-cond. erosion vncero 17 

n-opening vnopen 18 

n-closing vnclose 18 

n-openiclose vnocfilt 19 



Name Routine Expression 

n-close/open vncofilt 19 

n-op./c1./op. vnocofilt 20 

n-cl./op./cl. vncocfilt 20 

n-thinning vnthin 21 

n-thickeiting vnthick 21 

n-canonical vncanon 22 

n-can. dual vnCanond 22 

center primitive _ 	vcenterp 23 

Third levei image transformations 

open. by rec. vopenrec 24 

dos. by rec. vclosrec 24 

center filter vcenter 25 

skel. by thin. vskelthin 26 

exoskel. by thick. vskelthick 26 

cond. skel. by thin. vcskelthin 27 

cond. exoskel. by thick. vcskelthick 27 

morph. skel. vskel 28 

last erosion vlastero 29 

cond. bisector vbisset _ 	 30 

The basic image operations and transformations are: infimum, supremum, inversion, subtrac-

tion, adaptive threshold, toggle mapping, dilation and erosion by subsets of the elementary square. 

The first levei image transformations are: anti-dilation, anti-erosion, morphological gradient, 

conditional dilation and erosion, opening, closing, sup-generating and inf-generating mapping, 

thinning and thickening, conditional thinning and thickening. 

The second levei image transformations are: n-dilation, n-erosion, n-conditional dilation and 

erosion, n-opening, n-closing, alternate sequential filters (n n-y, n-y0y, n-00), n-thin-

ning,n-thickening, canonical transformation, dual canonical transformation, and center filter prim-

itive. 

The third levei image transformations are: opening and closing by reconstruction, center filter, 

skeleton by thinning, exoskeleton by thickening, conditional skeleton by thinning, conditional exos-

keleton by thickening, morphological skeleton, last erosion and c.onditional bisector. 



The other tools are: an interface for the definition of structural elements, clockwise step rotation 

of structuring elements, comparison between two images and draw of the image edges (extreme 

lines and columns). 

The structural elements that appear as parameters of the transformations are subsets of the ele-

mentary square. The sequence of structural elements used in the thinning, thickening and canonical 

transformations are built from clockwise step rotation of a given pair of structural elements. For ex-

ample, an homotopic skeleton can be built by taking the sequence 53), with Á and 55 given by, 

respect ive I y, 

1 11 011 001 1 1 1 
010 011 0 11 0 10 
000 0 00  001 000  

and 

000 0 00 100  ooo 
000  too 100  ooo 
III 110 100 III 

as parameter for the skeleton by thinning transformation. 

The right choice of the parameters for these transformations gives a large number of tools to 

extract image information: image sharpening and smoothing, threshold segmentation, elimination 

of particles that hit the image edges, closing of boles, size distributions, skeletons and their charac-

teristic points (triple, end, etc.), geometrical segmentation and filtering, etc. For example, Table 2, 

that was adapted from (Serra, 1982, p.392) for the squaregrid, gives some useful pairs of structuring 

elements for the thinning, thickening and canonical transformations. 

For each program of the toolbox, there is an on une help associated, that gives the formal defini-

tion of the transformation and a set of well known parameters to extract useful image information. 

4.3 Algorithms of the elementary mappings 

Once the elementary mappings and operations are the kernel of the system, a considerable effort was 

put on making them as fast as possible in current general purpose hardware. In order to achieve a 

better performance, different algorithms were chosen for binary and gray—scale images. 



Table 2. Some useful pairs of structural elements for tbinning, thickening and canonical transformations. 

Stnet &enleei A Sbret. Ekneciel II Tluaaeng. niekeeiet Caaamea1 
Tnadonautme 

000 111 Haselopic Ca.diewal 
010 000 atektoe Segraratati. 

111 000 

000 100 HosoGopic heeeelo Caevez H.I1 - 

011 100 larlciag 
000 100 

100 000 Co.ez Hall 

100 010 
100 000 

000 000 Skele toa Pmaing End PP,. 
010  101 
000 11  1 

000 
I 
II  Preaiag Isolated Poieb 

010 111/ 1  1  
000 111 

100 011 Triple PO11111 
011  100 
100  011 

101  0 10 Triple Ni. 

010 101 
100 011 

100 011 Thpk Poi. 
010 101 
101 010 

111 000 Booedary 
111 000 
111 000 

4.3.1 Dilation and erosion for binary images 

The key factor used to implement fast dilation and erosion (by structural elements) algorithms 

for binary images is the inherent parallelism of the 32-bit bitwise operations, found in general pur-

pose CPU instructions set. 

Following Property 3, the implementation of binary dilation and erosion can be made by trans-

lating the image by ali the points of the structural element and taking, respectively, the logical OR 

and the logical AND of the translated images. By using this formulation, the parai lel ism can be easily 

achieved. 

To use the intrinsic parallelism of the logical 32-bit bitwise AND and OR operations, we pack 

the binary images in sets of 32 pixels in a 32-bit integer. 



As the packed image is stored in a row by row basis, vertical translations are efficiently handled 

by adding the current packed pixel address by the width of the packed image. Horizontal traulations 

are implemented by shifting and masking operations in order to shift across 32-bit integer bound-

aries. 

Using this approach, we can compute 32 pixels in parallel with the additional benefit of reading 

and writing the image data in a more efficient packed binary pixel format. 

In order to achieve added performance, the image is subdivided in nine image regions: one 

middle, four corners and four side regions. Each region is processed separately to avoid unnecessary 

tests for image boundaries. 

The KHOROS has a bit format which already supports a packed image format. The implementa-

tion follows the 32-bit parallel algorithm described using structural elements that are subsets of the 

elementary square. Some optimizations were made for the limit cases, when the structural element 

is an empty set or the complete elementary square. 

4.3.2 Dilation and erosion for gray-scale images 

Following the definition, the implementation of dilations and erosions (by structural elements) 

can be made by translating the structural element over the input image and taking, respectively, the 

local maximum and minimum. 

By this approach, the neighborhood of each pixel need to be accessed, that is, it is necessary to 

access nNM array elements, where n is the cardinality of B, and N and M are, respectively, the num-

ber of lines and columns of the image. 

Taking as structural elements just subsets of the elementary square, this algorithm leads to good 

implementations for gray-scale dilation and erosion. 

The implementation adopted is divided into ten cases, according to the cardinality of the struc-

tural element, from zero (empty set) to nine (the complete elementary square). In each case, the 

structural elements points (i.e., the values for local translations) are stored in a corresponding num-

ber of fast registers. The nested conditional expressions were open to avoid unnecessary steps. 



In order to achieve a better performance, as in the binary case, the image was subdivided in nine 

subregions and some optimizations were made for the limit cases. 

43.3 Performance evaluation 

Table 3 shows the performance evaluation for some dilations and erosions, in the binary and gray-

scale cases. 

The time spent for each transformation, given in milliseconds (ms), was calculated from a mea-

sure of the time spent by a sequence of a thousand transformations. The machine used was a SUN 

SPARCstation-2 and the input data were 256 x 256 x 1 (binary) or 256 x 256 x 8 (gray-scale) 

images. 

The speed-up of performing a dilation or an erosion of a binary image by the dedicate algorithm 

is between 8 to 10 times (Table 3). 

Table 3. Performance of dilations and erosions. 

Semearei Elemeel Emmy Image 
In./ 

Onv-peede Image 
Inu) 

Speed-.p 

I 1 I 
I 1 I 8.5 71.2 8.4 
II] 

010  

0101 I 1  
9.1 90.0 9.9 

000  
'li  5.5 48.0 8.7 
000  

The performance of these algorithms are equivalent to the ones running on specialized hard-

wares built with 1986 technology (Bilodeau, 1986), that is, 8ms and 0.1s, respectively, for binary 

and gray-scale images. 

5 Example of Application 

To illustrate the use of the Mathematical Morphology toolbox we present a solution (Figure 1 (d)) 

to the problem of contour extraction in noisy images. The original image f, (Figure 1 (a)) is a gray- 

scale image of a disk corrupted by additive Gaussian noise. By using a sequential alternated filter, 



with three stages and two structural elements B, and B2 (Figure 1 (e)), we get the filtered image 12  

(Figure 1 (b)): 

f, = r1 201,y1,01,y1,0171,01,r1,95171,95 1,(fi). 

By using a threshold transformation, with threshold value 20, and an internai contour extractor 

(Figure 1 (t)), we get lhe contour image f, (Figure 1 (c)): 

f3 =f -- tp,(f), 

where 

f = (20  f2) 

(here 20 means a constant image). 

Other examples (workspaces) are deposited in the subdirectory workspaces of the toolbox. 

Among these examples are: reduction ofstripping noise in SPOT images (Banon and Barrera, 1989), 

segmentation of digits and symbols of a calculator image, extraction of elongated structures in mi-

croscopic images, recognition of disks and squares. 

6 Conclusion 

This paper presents a KHOROS toolbox for Image Processing by Mathematical Morphology. The 

implemented subsystem increases KHOROS potentiality by adding a set of high performance bois 

of multiple purpose use. 

The implemented elementary transformations of Mathematical Morphology running on stan-

dard machines are as fast as lhe ones running on specialized hardwares built with 1986 technology. 

They perform a dilation or an erosion on a 256 x 256 image in about 8ms, in the binary case, and 

0.1s, in the gray-scale case. 

For each main program of lhe toolbox there is an on une help, that gives the formal definition 

of the transformation and a set of well known parameters useful to extract image information. 
.. 

Since a high levei transformation can he built either as a C program ora CANTATA workspace, 

the toolbox is useful for two main purposes: to solve real image processing problems and to didactic 

applications. 
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Figure 1. Contour extraction. (a) Original image. (b) Filtered image. (c) Contour image. (d) 
Algorithm. (e) Sequential alternated filter procedure. (1) Contour extraction procedure. 



As a didactic application, it is possible, for example, to build a workspace that implement the 

thinning algorithm and gives an interesting animation of its dynamics. 

Some workspaces that solve real image analysis problems (restoration, segmentation, pattern 

recognition, etc.) or implement high levei morphological algorithms (skeleton, last erosion, etc.) are 

deposited in the subdirectory workspaces of the toolbox. 

At the moment, we are implementing a complementary set of morphological algorithms (dis-

tance functions, labeling, watershed, change of the gradient homotopy, regional maxima and mini-

ma, etc.) that will be added to the toolbox. 

Acknowledgment 

The authors thank Professor Arnaldo Mandei and Wânia Gomes Pedrosa for their help with the use 

of the IME-USP local network, and André Hiroshi Hayashi Alves who has generated the noisy 

image used in the application example. 

During the period of elaboration of this work, the authors have obtained support of CNPq (Con-

selho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESP (Fundação de Amparo 

à Pesquisa do Estado de São Paulo), under process 91/3532-2. 

Bibliography 

G. J. F. Banon and J. Barrera, "Morphological filtering for stripping correction of SPOT images," 

Photogrammetria (PRS), vol. 43, pp. 195-205,1989. 

G. J. F. Banon and). Barrera, "Set mapping decompositions by mathematical morphology," chapter 

to be included in a book entitled "Mathematical Morphology: Theory and Hardware," to be edited 

by R. M. Haralick, 1990. 

G. J. F. Banon and J. Barrera, "Minimal representations for translation invariant set mappings by 

mathematical morphology," SIAM Journal of Applied Mathematics, vol. 51, no. 6, 

pp. 1782-1798, Dec. 1991. 

G. J. F. Banon and J. Barrera, "Decomposition of mappings between complete lattices by Mathe-

matical Morphology. Part I: General lattices," Signa! Processing, 30, pp. 299-327,1993. 



J. Barrera, "Study of Cell Proliferation by Morphological Image Analysis" (Portuguese), IV 

Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, pp. 201-212, São Pau-

lo, 14-17 julho de 1991. 

M. Bilodeau, Guide succint de l'usager du MPC, Rapport interne, CMM, N-47/87/MM, Fontaine-

bleau, Dec. 1986. 

Kluth, Henning, Sharp and Winsand, "Detecting man-made objects in low resolution SAR using 

fractal texture discriminators," IEEE -Geoscience and Remote Sensing (GRS) Proceedings of 

IGARS, May 26,1992. 

Koechner, Rasure, Sauer, and Griffey, "Clustering and Classification of Multi-Spectral Magnetic 

Resonance Images," Third IEEE Computer-Based Medical Systems Symposium, Chapel Hill, 

North Carolina, pp. 32-37, June 1990. 

P. A. Maragos, A unified theory of translation-invariant systems with applications to morphological 

analysis and coding of images. Ph.D dissertation, GA, School of Elec. Eng., Georgia Inst. Tech-

nol., July 1985. 

J. Rasure, D. Argiro, T. Sauer and C. Williams, "Visual Language and Software Development Envi-

ronment for Image Processing,"InternationalJournal of Imaging Systems and Technology, vol. 2, 

pp. 183-199,1990. 

Rots and Herreld, "Prototyping Astronomical Software in Khoros," Astronomical Data Analysis 

software and Systems I, Vol. 25, pp. 145, Published by BookCrafters, 1992. 

Sauer, Rasure and Gage, "Near Ground Levei Sensing for Spatial Analysis of Vegetation," IEEE 

Conference on Multisource Data Integration in Remote Sensing (NASA pub 3099), Maryland, pp. 

11-26, lune 1990. 

J. Serra, Image A nalysis and Mathematical Morphology. Volume 1, Academic Press, London, 1982. 

J. Serra, Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances, Aca-

demic Press, London, 1988. 



RTMAC-IME-USP 
	1 

RELATÓRIOS TÉCNICOS 

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO 
Instituto de Matemática e Estatística da USP 

A listagem contendo os relatórios técnicos anteriores a 1991 poderá ser consultada ou solicitada à Secretaria do Departamento, 

pessoalmente, por carta ou e-mail(mac@ime.usp.br ). 

Jorge Almeida 
A CLASSIFICA 770N OF APERIODIC POWER MONOIDS 
RT-MAC-9101, Janeiro 1991, 32 pgs 

Carlos Humes Jr. 
A NAIVE STABILIZATION TECHNIQUE: KUMAr-SEIDMAN REVISITED 
RT-MAC-9102, Janeiro 1991, 9 pgs 

Carlos Humes Jr., Sergio L. Wasserstein, Paulo R. Zanjacomo 
A COMPLEXITY-ORIENTED ANALYSIS OF DYNAMIC PROGRAMMING 
IMPLEMENTATION:BICRITERION CASE 
RT-MAC-9103, Abril 1991, 10 pgs 

Jorge Almeida 
ON DIRECT PRODUCT DECOMPOSITIONS OF FINITE 1-TRIVIAL SEMIGROUPS 
RT-MAC-9104, Abril 1991, 11 pgs 

Routo Terada, Kenji Koyama 
NONLINEAR PARI7Y CIRCUITS AND THEIR CRYPTOGRAPHIC APPLICATIONS 
RT-MAC-9105, Maio 1991, 19 pgs 

Jorge Almeida 
A UNIFIED SYNTACTICAL APPROACH TO THEOREMS OF PUTCHA, MARGOLIS, AND 
STRAUBING ON FINITE POWER SEMIGROUPS 
RT-MAC-9106, Junho 1991,9 pgs 

Imre Simon 
A SHORT PROOF OF THE FACTORIZATION FOREST THEOREM 
RT-MAC-9107, Junho 1991, 8 pgs 

Marco Dimas Gubitoso 
PARALLELIZING A NEW CLASS OF LARGE APPLICATIONS OVER HIGH SPEED 
NETWORKS 
RT-MAC-9108, Junho 1991, 19 pgs 

J.Z. Gonçalves, Arnaldo Mandei 
COMMUTATIVITY THEOREMS FOR DIVISION RINGS AND DOMAINS 
RT-MAC-9201, Janeiro 1992, 12 pgs 



RT-MACALIe-USP 	 2 

J. Sakarovitch 
THE "LAST DECISION PROBLEM FOR RATIONAL TRACE LANGUAGES 
RT-MAC 9202, Abril 1992, 20 pgs 

Valdemar W. Setzer, Fábio Henrique Carvalheiro 
ALGOTR1TMOS E SUA ANÁLISE (UMA INTRODUÇÃO DIDÁTICA) 
RT-MAC 9203, Agosto 1992, 19 pgs 

Claudio Santos Pinhanez 
UM SIMULADOR DE SUBSUMPTION ARCHITECTURES 
RT-MAC-9204, Outubro 1992, 18 pgs 

Julio M. Stern 
REGIONALIZAÇÃO DA MATRIZ PARA O ESTADO DE SÃO PAULO 
RT-MAC-9205, Julho 1992, 14 pgs 

Imre Simon 
THE PRODUCT OF RAT1ONAL LANGUAGES 
RT-MAC-9301, Maio 1993, 18 pgs 

Flávio Soares C. da Silva 
AUTOMATED REASONING WITH UNCERTAINTIES 
RT-MAC-9302, Maio 1993, 25 pgs 

Flávio Soares C. da Silva 
ON PROOF-AND MODEL-BASED TECHNIQUES FOR REASONING WITH UNCERTA1N7Y 
RT-MAC-9303, Maio 1993, 11 pgs 

Carlos Humes Jr.,Leônidas de 0.Brandão,Manuel Pera Garcia 
A MLYED DYNAM1CS APPROACH FOR LINEAR CORR1DOR POLICIES 
(A REVISITATION OF DYNAMIC SETUP SCHEDULING AND FLOW CONTROL IN 
MANUFACTURING SYSTEMS) 
RT-MAC-9304, Junho 1993,25 pgs 

Ana Flora P.C.Humes e Carlos Humes Jr. 
STABILITY OF CLEARING OPEN LOOP POLICIES IN MANUFACTURING SYSTEMS (Revised 
Version) 
RT-MAC-9305, Julho 1993, 31 pgs 

Maria Angela M.C. Gurgel e Yoshiko Wakabayashi 
THE COMPLETE PRE-ORDER POLYTOPE: FACETS AND SEPARATION PROBLEM 
AT-MAC-9306, Julho 1993, 29 pgs 

Tito Homem de Mello e Carlos Humes Jr. 
SOME STABILITY CONDITIONS FOR FLEXIBLE MANUFACTURING SYSTEMS WITH NO 
SET-UP TIMES 
RT-MA-C-9307, Julho de 1993, 26 pgs 

Carlos Humes Jr. e Tito Homem de Mello 
A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF ANALYTIC 
CENTERS IN PATH FOLLOW1NG METHODS FOR LINEAR PROGRAMMING 
RT-MAC-9308, Agosto de 1993 



RNOAC-DIE-1.33P 	 3 

Flavio S. Corrêa da Silva 
AN ALGEBRAIC VIEW OF COMBINATION RULES 
RT-MAC-9401, Janeiro de 1994, 10 pgs 

Flavio S. Corrêa da Silva e Junior Barrera 
AU1'OMA77NG THE GENERA770N OF PROCEDURES TO ANALYSE BINARY IMAGES 
RT-MAC-9402, Janeiro de 1994,13 pgs 

Junior Barrera, Gerald Jean Francis Banon e Roberto de Alencar Lotufo 
A Mathematical Morphology Toolbox for the KHOROS System 
RT-MAC-9403, Janeiro de 1994, 28 pgs 


	CAPA
	Abstract
	1 Introduction
	2 Morphological image processing
	2.1 Basic image operations and transformations
	2.2 First levei image transformations
	2.3 Second levei image transformations
	2.4 Third levei image transformations

	3 The KHOROS System
	4 A Mathematical Morphology toolbox for KHOROS
	4.1 Architecture
	4.2 Contents
	4.3 Algorithms of the elementary mappings
	4.3.1 Dilation and erosion for binary images
	4.3.2 Dilation and erosion for gray-scale images
	4.3.3 Performance evaluation


	5 Example of Application
	6 Conclusion
	Acknowledgment
	Bibliography

