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Abstract. Spatial Dynamic Modeling simulates spatio-temporal processes in which a location on the Earth’s 
surface changes due to some external driving force. This paper introduces TerraML, a dynamic modeling 
language to be used in environmental applications. TerraML supports both discrete and continuous change 
processes and generalized neighborhood to accommodate non-local actions. 

 

1 Introduction 
Cellular models have been used in the last two decades for 
simulation of urban and environmental models, mostly in 
connection with cellular automata (CA) (White and 
Engelen 1997). CA have become popular largely because 
they are tractable, can replicate traditional processes of 
change through diffusion, and also contain enough 
complexity to simulate surprising and novel changes as 
reflected in emergent phenomena (Couclelis 1997). Early 
proposals for the use of CA in spatial modeling tended to 
stress their pedagogic use in demonstrating how global 
patterns emerge from local actions. In the case of most 
actual applications to geographic systems, the strict 
adherence to the basic CA model is inevitably relaxed, and 
the resulting models are inhomogeneous, where the 
inhomogeneities may represent such factors as suitability, 
accessibility, or legal restrictions on land use (White and 
Engelen 1997). Therefore, in most current applications, the 
models that have emerged are best called cell-space models 
rather than CA (Batty 2000). 

Currently, most CA-based spatial models are linked to 
a GIS via loose coupling mechanisms. In this case the GIS 
is used for data conversion and graphic display and the 
spatial models are run in an environment external to the 
GIS. Examples include the models used by Clarke (Clarke 
and Gaydos 1998) for simulation of US metropolitan 
growth, the CLUE land-use model (Veldkamp and Fresco 
1996) and the DINAMICA landscape model (Soares-Filho, 
Cerqueira, and Pennachin 2002). This structure allows the 
use of existing programs but requires substantial work in 
data conversion and causes problems of redundancy and 
consistency due to the creation of multiple versions of the 
same data. Modeling tools also lack sufficiently flexible 

GIS-like spatial analytical capabilities; as a result, their 
ability to convey spatial relations is limited. Therefore, the 
need for a full integration between GIS and dynamic 
models remains strong. In a tight level of integration, there 
would be no strict separation between the model and the 
GIS, and a dynamic model becomes just one of the 
applications that could be developed using the generic 
functionality of a GIS toolbox (Wesseling et al. 1996). A 
strongly-integrated GIS and dynamical model architecture 
would allow non-specialists, already familiar with GIS 
interfaces, to experiment with models, reducing the 
overhead for data conversion and abstracting part of the 
complexities in model formulation. Furthermore, modeling 
and GIS could both be made more robust through their 
connection and co-evolution (Parks 1993). 

However, given the limitations of the current 
generation of commercial GIS systems, substantial 
investment in the development of tools and functionality is 
required for full integration of cell-spaces and dynamical 
modeling into a GIS architecture. This situation is part of a 
more general problem, in that the GIScience community 
currently lacks a comprehensive set of open-source tools 
for development of new ideas and rapid prototyping. To 
face this challenge, we created an architecture for spatial 
dynamical modeling using cell-spaces, which has been 
implemented as software components as part of  an open 
source GIS library. 

This paper introduces TerraML, a dynamic modeling 
language to be used in environmental applications. 
TerraML supports both discrete and continuous change 
processes, supports different data formats and is fully 
integrated with general-use databases.  The remainder of 
this paper is organized as follows. In section 2 the main 



  

components of TerraML are explained. In section 3  
TerraML structure is introduced. In section 4 an example in 
TerraML is provided.  In section 5 implementation aspects 
of TerraML are discussed.  Section 6 presents conclusions 
and future work. 

2 Theoretical Foundations for TerraML 
2.1 Hybrid Automata 
One of the more important challenges in the development 
of languages to support dynamical spatial modeling in cell-
spaces is the need to represent dynamical processes with 
both discrete and continuous components. For that purpose, 
the traditional paradigm of discrete cellular automata is no 
longer sufficient. Therefore, TerraML is based on the 
theory of hybrid automata (Henzinger 1996). A hybrid 
automaton is a dynamical system whose state has both a 
discrete component, which is updated in a sequence of 
steps, and a continuous component, which evolves over 
time. Hybrid automata, which combine discrete transition 
graphs with continuous dynamical systems, can be viewed 
as infinite-state transition system. A hybrid automaton 
consists of the following components: 

• Variables. A finite set X = { x1,..xn} of real-numbered 
variables.  

• Control graph. A finite directed multigraph (V,E). The 
vertices in V are called control modes. The edges in E 
are called control switches. 

• Initial and flow conditions. Initial conditions express 
the starting condition of the automaton. Flow conditions 

express predicates that are executed in each control 
mode. 

• Jump conditions. Jump conditions are used to assign 
discrete changes between vertices of the control graph. 
Each jump condition is assigned to a directed edge. 

To explain the hybrid automata concept, we can use as 
an example a water balancing simulation in the hydrology 
domain. In such a system, rainfall time series are used to 
fill cells with rain water until their infiltration capabilities 
be reached, then a runoff flux occur. In Figure 1, a control 
graph illustrates the mechanism by which the water balance 
automaton evolves. The nodes of the graph contain flow 
conditions, which change the variable values. 

The conditions labeling the edges are known as jump 
conditions. Flow conditions are executed until a jump 
condition is met. The automaton has an initial condition 
(soilwater=0). When a time series is informed, the 
soilwater value is calculated. Then, the value is checked to 
see if it has reached the cell infiltration capability. If the 
soilwater value is greater than its infiltration capability, the 
excess is calculated and transported to another cell. This 
trajectory is processed recursively for all simulation steps. 
It is important to note that in a hybrid automata, control 
modes, which are the node names in the graph (dry, wet), 
are introduced in order to accomplish the cellular automata 
discrete nature. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A water balance hybrid automaton 

 

 

 

 



  

2.2 Non-Proximal Space Definitions 
The definition of geographical space in a traditional 
cellular automaton is based on the assumption that the 
cellular space is isotropic, and that the neighborhood of 
interest is entirely local. However, the traditional 
neighborhoods used in CA such as the Moore 8-neighbor 
definition have limited usefulness when applied to real-
world problems, since the real-world is effectively 
inhomogeneous. In many situations, action at a distance 
plays a significant rôle in shaping the processes that define 
transitions in the cell-space.  

In fact, one of the more relevant criticisms to the use 
of GIS and CA techniques for modeling geographical 
reality is its over-reliance on proximity conditions. Post-
modern geographers such as David Harvey (Harvey 1989) 
consider that the most important impact on human 
experience is the compression of space and time. Harvey 
considers that, due to space-time compression, flows of 
resources, information, organizational interaction and 
people are essential components of a new definition of 
space. Other researchers follow the same perspective. 
Milton Santos (Santos 1996) and Manuel Castells (Castells 
2000) talk about “spaces of fixed locations and spaces of 
fluxes”. The concept of “spaces of fixed locations” 
represents spatial arrangements  based on contiguous 

locations, and the concept of “spaces of fluxes” indicates 
spatial arrangements based on networks. 

To take one example of a inhomogenous space, 
consider the process of land use change in the Brazilian 
Amazonia. This process is conditioned by the urban 
occupation on the region, which has increased significantly 
in the last two decades. Any model which would aim to 
project patterns of land use change in Amazonia (as 
TerraML aims) has to consider that transportation networks 
(rivers and roads) play a decisive rôle in governing human 
settlement patterns. As an illustration, Figure 2 shows the 
urban settlements in Amazonia, shown as white areas, and 
the road network, as red lines. A realistic model for land 
use changes in the region has to take into account that the 
roads establish preferential directions for human occupation 
and land use changes, which would be impossible to be 
captured in an isotropic neighborhood definition for a CA-
based model. As shown in Figure 2, the neighborhood 
definitions in any CA that aims at modeling an area such as 
Amazonia need to be based on a flexible definitions of 
proximity, that would capture action-at-a-distance. Aiming 
at supporting action-at-distance in its models, TerraML is 
based on a flexible neighborhood definition, allowing the 
user to define her own proximity matrix, according to the 
needs of the problem at hand. 

 
 

 
Figure 2 – Spaces of fixed location and spaces of fluxes in Amazonia  

 

 





  

2.3 Representing Time 
Although it has been recognized the importance and need 
of the temporal aspect in many processes in GIScience, the 
representation of time has not gone beyond a limited 
prototype stage (Parent, Spaccapietra, and Zimányi 1999; 
Zipf and Krüger 2001). The reasons for that come (1) from 
the static cartographic paradigm over which GIS had been 
constructed, (2) an emphasis on the short-term and 
implementation-oriented solutions, and (3) the lack of a 
theory of space-time representation (Peuquet 2001). Most 
implementations of temporal aspects in GIS have been 
limited to extending spatial systems to incorporate fragile 
concepts of time, ignoring (1) the semantic of the space-
temporal processes and (2) the underlying aspects of 
change (Hornsby and Egenhofer 1997). 

From the database perspective, there is a broad theory, 
which has started with the snapshot approach and continued 
with concepts such as time-stamping, transaction, and 
valid-time dimensions (Elmasri and Navathe 2000). After 
that time scales were introduced with the notion of 
chronons. A chronon is the minimal temporal granularity 
for a particular application. Most temporal database 
systems consider only the linear flux of time, although, in 
theory, there is the notion of cyclic and branching time 
flows (Worboys 1995). 

The issue of representing time in dynamic models 
goes beyond a matter of extending GIS to incorporate 
temporal database concepts. At the temporal dimension, as 
well as in the model and space dimension, the dichotomy 
between continuous and discrete is a challenging issue. 
Events such as storms and volcanic eruptions are discrete in 
both spatial and temporal domains, while temperature and 
precipitation are spatio-temporal continuous processes 
(Peuquet 2001). Another strong concept in temporal 
systems refers to the updating dynamics, which can be 
synchronous or asynchronous.  In a synchronous temporal 
system all elements is updated simultaneously (Sipper 
1999).  

Control structures are the most critical support 
required in a computational environment for dynamic 
modeling. Iterative control structures work over the entire 
set of cells in a direct fashion applying a set of operations 

to one or more attributes of the cell-space. Our purpose is 
not just to replicate the existing time structures for general-
use applications, but to go a step forward in building an 
integrated spatio-temporal framework, which incorporates 
processes and focuses on the underlying components of 
change at the conceptual and implementation levels. 

3.  TerraML Architecture 
In the architecture of TerraML, a cell-space is defined as a 
generalized raster data structure, where each cell holds 
more than one attribute value. Cell-spaces are a convenient 
way of managing geographic data in the new generation of 
spatially-enabled database management systems (DBMS); 
if required, cells can be handled as individual geographic 
objects, and operations designed for objects (such as 9-
intersection predicates) can be applied to them. The 
attributes can be presented to the user in the same way as 
vector geographic objects, and familiar visualization 
operations can be applied to these data sets. 
In terms of implementation, the cell space structure can be 
divided into two parts called (1) basic structure and (2) 
extended structure (Figure 1). The basic structure is static 
and defined a priori (compile time) representing the set of 
attributes, which every cell has independently of the model. 
The extended structure is dynamic, i.e., defined during the 
simulation process (run time) to accommodate the data 
provided by a TerraML document. 
The basic structure is essentially spatial. Each cell has its 
spatial reference (cartographic reference), its address in the 
cellular space (indices), and other attributes such as the cell 
state and latency. 

The extended structure contains attributes which 
varies from simulation to simulation.  For that reason, they 
are created and attached to the cell structure via a dynamic 
allocation memory mechanism.  These attributes refer to 
the environmental and socio-economic characteristics of 
the cell and can be temporal or not. Temporal attributes are 
the ones that have multiple occurrences in the cell such as 
the different land uses along the time.  They are 
implemented with a temporal database support for handling 
their multiple versions. 

 





  

 

Figure 3  The Cell-Space Data Structure in TerraML 

 

4. The TerraML Structure   
A program written in TerraML has a main section called 
Cellular Processor, which is divided in 5 subsections: input, 
output, transition, constraint, and simulation. Figure 4 
shows the TerraML Simplified Structure, which describes 
(1) the elements present in a TerraML document, (2) the 
order in which they appear, and (3) the content and 
attributes of each element. 

The input section is where the data to be retrieved are 
declared. In TerraML, raster-based maps and images, time 
series, and non-spatial scalar data at global and cellular 
scales are suported. It is necessary to inform the values of 
file names, attributes, and variables in order to make the 
retrieval and binding processes work. 

In the output section the data to be saved are declared. 
These data are generated by the simulation program and 
added to the cell space as attributes. 

Transition is the section where the rules upon which 
the cell states evolve are specifies. In TerraML, discrete 
and continuous transitions are supported. 

In the constraint section, restrictions to limit or force a 
transition are specified.  

The simulation section is the place to specify the 
actions to be processed during the execution of the model. 

First, some cellular space parameters, such as 
neighborhood, initialization attribute and result name, are 
configured. After, the actions to be applied over cell 
attributes, for a determined number of times, are specified.  
These actions include commands such as updating, 
calculating, and setting cell attribute values.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 the TerraML Simplified Structure 



  

5. A TerraML example 
Now we present an overview of the TerraML syntax by 
using a simplified example of a deforestation process.   In 
this example, Figure 5, we represent the section names in 
bold.  The cellprocessor section is the main section, and  it 
has some attributes for documentation purposes, such as the 
author of the simulation and the name of the model. 

 In the input section,  two images, use99 and road99, 
are retrieved and assigned to the landuse and accessibility 
variables, respectively. In the output section, the variable 
use is declared as temporal.  This variable is directly 
related to the results to be produced by  the simulation 
section. In the transition section, three different transitions 
are specified: a transition from “forest” to “deforested” 
state occur if a cell is close to roads (accessibility) or if all 
its neighbors are in the “deforested” state. A transition from 

“in regeneration” to “regenerated” happens after 10 years.  
In the constraint section,  there are two constraints. The 
first one is a spatio-temporal constraint restricting the 
deforestation process to 10% of its current area (spatial) 
over 20 years (temporal). The second constraint imposes a 
permanent property to “forest reserve”, meaning that a cell 
in that state cannot be changed to another state in any 
circumstance.  In the simulation section, the cellular space 
is initialized with the landuse variable and a “moore’   
neighborhood (4 neighbors) is specified. The model is 
processed for 20 time steps that are equivalent to a 20 year 
period. The results are stored in files called use2000, use 
2001, and so on, to use2020 according to the value of the 
attribute name in the output section an the values of the 
attributes init and end of the  time control structure.  

 

<cellProcessor author="Bianca" date="3/26/2002" case="Amazon Forest" model="LUCC" > 
 <input> 
  <layer name="use99"  attribute="class"     > landuse  /> 
  <layer name="road99"  attribute="distance"> accessibility /> 
 </input> 
 <output  
   <temporal name=”use”    attribute=”class”    >  
 </output> 
 <transition> 
  <rule  from="forest"    to="deforested"    > <event> condition="acessibility=51" /> /> 
  <rule  from="forest"    to="deforested"    > <event> neighbor="all"   />  /> 
  <rule  from="regeneration" to="regenerated"  > <event> time="after 10"   /> /> 
 </transition> 
      <constraint> 
  <restriction state="deforested"     spatial="+10%" temporal="20 years"/> 
  <restriction state="forest reserve" type="static"   /> 
 </constraint> 
      <simulation> 
  <cellspace   neighborhood="moore" result="use" init="landuse" />  
               <timer init=”2000”  end=”2020”  timeunit=”year” /> 
  <TRANSIT> 
              </timer> 
    </simulation> 
</cellProcessor> 

Figure 5 An example in TerraML showing changes in land use cover  

 

6. Implementation Aspects 
A TerraML program is mapped to the cellular space 
architecture presented in section 3.  The cellular space 
architecture is implemented as software components to be 
provided by a GIS library called TerraLib.   TerraLib is an 
open-source general-purpose GIS library under 
development at the Brazilian National Institute for Space 
Research (INPE). TerraLib provides, in its kernel (Figure 

6), functionality for handling the different types of 
geographic data and facilities for data conversion, graphical 
output, and spatial database management (Câmara et al. 
2000). Algorithms that use the kernel structures, including 
spatial analysis, query and simulation languages, and data 
conversion procedures are also provided.  

TerraLib has been implemented in C++, based on the 
object-oriented paradigm.  This way the cellular space 



  

architecture is implemented in a hierarchy of classes, where 
each class represents the cellular space main components. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 The TerraLib Structure 

In Figure 7, the main class is the cellular space, which is 
composed by a cellular grid, a set of transitions   and 
constraints.  Each cell has a set of attributes and a 

neighborhood.  A cell attribute is an abstract class, which 
means that it can hold any data type.  A cell neighborhood 
refers to the set of cells which influence the cell state. The 
set of cells in a neighborhood can has any configuration, be 
contiguous or not, and has any number of cells.   

7. Conclusions 
In this paper we introduced TerraML, a language to support 
spatial dynamic modeling in environmental processes.  
TerraML represents an improvement over other dynamic 
modeling languages such as PCRaster (Wesseling et al. 
1996), MapScript (Pullar 2001),  CALANG (Stocks and 
Wise 2000) and CELLAR (Folino and Spezzano 2000). 
First, TerraML supports both discrete and continuous 
change processes. Second, TerraML supports non local 
actions due to its non-proximal neighborhoods.  Third, 
TerraML supports different data formats and is fully 
integrated with general-use databases. Fourth,  

The development of TerraML and the open source GIS 
software library is part of an ongoing work. Future efforts 
will focus on a more complete integration of space and time 
into the language, and on introducing restrictions to 
transitions by means of socio-economic variables. 

 

 

 

 

 

Figura 7 The cellular space class hierarchy 
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