

TerraML: a Language to Support Spatial Dynamic Modeling
 BIANCA PEDROSA1
GILBERTO CÂMARA1

FREDERICO FONSECA2
TIAGO CARNEIRO1

RICARDO CARTAXO MODESTO DE SOUZA1

1INPE—National Institute for Space Research, Caixa Postal 515, 12201 São José dos Campos, SP, Brazil
{bianca,tiago,gilberto,cartaxo}@dpi.inpe.br

2School of Information Sciences and Technology, Pennsylvania State University, 1602, State College, PA, USA
ffonseca@ist.psu.edu

Abstract. Spatial Dynamic Modeling simulates spatio-temporal processes in which a location on the Earth’s
surface changes due to some external driving force. This paper introduces TerraML, a dynamic modeling
language to be used in environmental applications. TerraML supports both discrete and continuous change
processes and generalized neighborhood to accommodate non-local actions.

1 Introduction
Cellular models have been used in the last two decades for
simulation of urban and environmental models, mostly in
connection with cellular automata (CA) (White and
Engelen 1997). CA have become popular largely because
they are tractable, can replicate traditional processes of
change through diffusion, and also contain enough
complexity to simulate surprising and novel changes as
reflected in emergent phenomena (Couclelis 1997). Early
proposals for the use of CA in spatial modeling tended to
stress their pedagogic use in demonstrating how global
patterns emerge from local actions. In the case of most
actual applications to geographic systems, the strict
adherence to the basic CA model is inevitably relaxed, and
the resulting models are inhomogeneous, where the
inhomogeneities may represent such factors as suitability,
accessibility, or legal restrictions on land use (White and
Engelen 1997). Therefore, in most current applications, the
models that have emerged are best called cell-space models
rather than CA (Batty 2000).

Currently, most CA-based spatial models are linked to
a GIS via loose coupling mechanisms. In this case the GIS
is used for data conversion and graphic display and the
spatial models are run in an environment external to the
GIS. Examples include the models used by Clarke (Clarke
and Gaydos 1998) for simulation of US metropolitan
growth, the CLUE land-use model (Veldkamp and Fresco
1996) and the DINAMICA landscape model (Soares-Filho,
Cerqueira, and Pennachin 2002). This structure allows the
use of existing programs but requires substantial work in
data conversion and causes problems of redundancy and
consistency due to the creation of multiple versions of the
same data. Modeling tools also lack sufficiently flexible

GIS-like spatial analytical capabilities; as a result, their
ability to convey spatial relations is limited. Therefore, the
need for a full integration between GIS and dynamic
models remains strong. In a tight level of integration, there
would be no strict separation between the model and the
GIS, and a dynamic model becomes just one of the
applications that could be developed using the generic
functionality of a GIS toolbox (Wesseling et al. 1996). A
strongly-integrated GIS and dynamical model architecture
would allow non-specialists, already familiar with GIS
interfaces, to experiment with models, reducing the
overhead for data conversion and abstracting part of the
complexities in model formulation. Furthermore, modeling
and GIS could both be made more robust through their
connection and co-evolution (Parks 1993).

However, given the limitations of the current
generation of commercial GIS systems, substantial
investment in the development of tools and functionality is
required for full integration of cell-spaces and dynamical
modeling into a GIS architecture. This situation is part of a
more general problem, in that the GIScience community
currently lacks a comprehensive set of open-source tools
for development of new ideas and rapid prototyping. To
face this challenge, we created an architecture for spatial
dynamical modeling using cell-spaces, which has been
implemented as software components as part of an open
source GIS library.

This paper introduces TerraML, a dynamic modeling
language to be used in environmental applications.
TerraML supports both discrete and continuous change
processes, supports different data formats and is fully
integrated with general-use databases. The remainder of
this paper is organized as follows. In section 2 the main

components of TerraML are explained. In section 3
TerraML structure is introduced. In section 4 an example in
TerraML is provided. In section 5 implementation aspects
of TerraML are discussed. Section 6 presents conclusions
and future work.

2 Theoretical Foundations for TerraML
2.1 Hybrid Automata
One of the more important challenges in the development
of languages to support dynamical spatial modeling in cell-
spaces is the need to represent dynamical processes with
both discrete and continuous components. For that purpose,
the traditional paradigm of discrete cellular automata is no
longer sufficient. Therefore, TerraML is based on the
theory of hybrid automata (Henzinger 1996). A hybrid
automaton is a dynamical system whose state has both a
discrete component, which is updated in a sequence of
steps, and a continuous component, which evolves over
time. Hybrid automata, which combine discrete transition
graphs with continuous dynamical systems, can be viewed
as infinite-state transition system. A hybrid automaton
consists of the following components:

• Variables. A finite set X = { x1,..xn} of real-numbered
variables.

• Control graph. A finite directed multigraph (V,E). The
vertices in V are called control modes. The edges in E
are called control switches.

• Initial and flow conditions. Initial conditions express
the starting condition of the automaton. Flow conditions

express predicates that are executed in each control
mode.

• Jump conditions. Jump conditions are used to assign
discrete changes between vertices of the control graph.
Each jump condition is assigned to a directed edge.

To explain the hybrid automata concept, we can use as
an example a water balancing simulation in the hydrology
domain. In such a system, rainfall time series are used to
fill cells with rain water until their infiltration capabilities
be reached, then a runoff flux occur. In Figure 1, a control
graph illustrates the mechanism by which the water balance
automaton evolves. The nodes of the graph contain flow
conditions, which change the variable values.

The conditions labeling the edges are known as jump
conditions. Flow conditions are executed until a jump
condition is met. The automaton has an initial condition
(soilwater=0). When a time series is informed, the
soilwater value is calculated. Then, the value is checked to
see if it has reached the cell infiltration capability. If the
soilwater value is greater than its infiltration capability, the
excess is calculated and transported to another cell. This
trajectory is processed recursively for all simulation steps.
It is important to note that in a hybrid automata, control
modes, which are the node names in the graph (dry, wet),
are introduced in order to accomplish the cellular automata
discrete nature.

Figure 1 A water balance hybrid automaton

2.2 Non-Proximal Space Definitions
The definition of geographical space in a traditional
cellular automaton is based on the assumption that the
cellular space is isotropic, and that the neighborhood of
interest is entirely local. However, the traditional
neighborhoods used in CA such as the Moore 8-neighbor
definition have limited usefulness when applied to real-
world problems, since the real-world is effectively
inhomogeneous. In many situations, action at a distance
plays a significant rôle in shaping the processes that define
transitions in the cell-space.

In fact, one of the more relevant criticisms to the use
of GIS and CA techniques for modeling geographical
reality is its over-reliance on proximity conditions. Post-
modern geographers such as David Harvey (Harvey 1989)
consider that the most important impact on human
experience is the compression of space and time. Harvey
considers that, due to space-time compression, flows of
resources, information, organizational interaction and
people are essential components of a new definition of
space. Other researchers follow the same perspective.
Milton Santos (Santos 1996) and Manuel Castells (Castells
2000) talk about “spaces of fixed locations and spaces of
fluxes”. The concept of “spaces of fixed locations”
represents spatial arrangements based on contiguous

locations, and the concept of “spaces of fluxes” indicates
spatial arrangements based on networks.

To take one example of a inhomogenous space,
consider the process of land use change in the Brazilian
Amazonia. This process is conditioned by the urban
occupation on the region, which has increased significantly
in the last two decades. Any model which would aim to
project patterns of land use change in Amazonia (as
TerraML aims) has to consider that transportation networks
(rivers and roads) play a decisive rôle in governing human
settlement patterns. As an illustration, Figure 2 shows the
urban settlements in Amazonia, shown as white areas, and
the road network, as red lines. A realistic model for land
use changes in the region has to take into account that the
roads establish preferential directions for human occupation
and land use changes, which would be impossible to be
captured in an isotropic neighborhood definition for a CA-
based model. As shown in Figure 2, the neighborhood
definitions in any CA that aims at modeling an area such as
Amazonia need to be based on a flexible definitions of
proximity, that would capture action-at-a-distance. Aiming
at supporting action-at-distance in its models, TerraML is
based on a flexible neighborhood definition, allowing the
user to define her own proximity matrix, according to the
needs of the problem at hand.

Figure 2 – Spaces of fixed location and spaces of fluxes in Amazonia

2.3 Representing Time
Although it has been recognized the importance and need
of the temporal aspect in many processes in GIScience, the
representation of time has not gone beyond a limited
prototype stage (Parent, Spaccapietra, and Zimányi 1999;
Zipf and Krüger 2001). The reasons for that come (1) from
the static cartographic paradigm over which GIS had been
constructed, (2) an emphasis on the short-term and
implementation-oriented solutions, and (3) the lack of a
theory of space-time representation (Peuquet 2001). Most
implementations of temporal aspects in GIS have been
limited to extending spatial systems to incorporate fragile
concepts of time, ignoring (1) the semantic of the space-
temporal processes and (2) the underlying aspects of
change (Hornsby and Egenhofer 1997).

From the database perspective, there is a broad theory,
which has started with the snapshot approach and continued
with concepts such as time-stamping, transaction, and
valid-time dimensions (Elmasri and Navathe 2000). After
that time scales were introduced with the notion of
chronons. A chronon is the minimal temporal granularity
for a particular application. Most temporal database
systems consider only the linear flux of time, although, in
theory, there is the notion of cyclic and branching time
flows (Worboys 1995).

The issue of representing time in dynamic models
goes beyond a matter of extending GIS to incorporate
temporal database concepts. At the temporal dimension, as
well as in the model and space dimension, the dichotomy
between continuous and discrete is a challenging issue.
Events such as storms and volcanic eruptions are discrete in
both spatial and temporal domains, while temperature and
precipitation are spatio-temporal continuous processes
(Peuquet 2001). Another strong concept in temporal
systems refers to the updating dynamics, which can be
synchronous or asynchronous. In a synchronous temporal
system all elements is updated simultaneously (Sipper
1999).

Control structures are the most critical support
required in a computational environment for dynamic
modeling. Iterative control structures work over the entire
set of cells in a direct fashion applying a set of operations

to one or more attributes of the cell-space. Our purpose is
not just to replicate the existing time structures for general-
use applications, but to go a step forward in building an
integrated spatio-temporal framework, which incorporates
processes and focuses on the underlying components of
change at the conceptual and implementation levels.

3. TerraML Architecture
In the architecture of TerraML, a cell-space is defined as a
generalized raster data structure, where each cell holds
more than one attribute value. Cell-spaces are a convenient
way of managing geographic data in the new generation of
spatially-enabled database management systems (DBMS);
if required, cells can be handled as individual geographic
objects, and operations designed for objects (such as 9-
intersection predicates) can be applied to them. The
attributes can be presented to the user in the same way as
vector geographic objects, and familiar visualization
operations can be applied to these data sets.
In terms of implementation, the cell space structure can be
divided into two parts called (1) basic structure and (2)
extended structure (Figure 1). The basic structure is static
and defined a priori (compile time) representing the set of
attributes, which every cell has independently of the model.
The extended structure is dynamic, i.e., defined during the
simulation process (run time) to accommodate the data
provided by a TerraML document.
The basic structure is essentially spatial. Each cell has its
spatial reference (cartographic reference), its address in the
cellular space (indices), and other attributes such as the cell
state and latency.

The extended structure contains attributes which
varies from simulation to simulation. For that reason, they
are created and attached to the cell structure via a dynamic
allocation memory mechanism. These attributes refer to
the environmental and socio-economic characteristics of
the cell and can be temporal or not. Temporal attributes are
the ones that have multiple occurrences in the cell such as
the different land uses along the time. They are
implemented with a temporal database support for handling
their multiple versions.

Figure 3 The Cell-Space Data Structure in TerraML

4. The TerraML Structure
A program written in TerraML has a main section called
Cellular Processor, which is divided in 5 subsections: input,
output, transition, constraint, and simulation. Figure 4
shows the TerraML Simplified Structure, which describes
(1) the elements present in a TerraML document, (2) the
order in which they appear, and (3) the content and
attributes of each element.

The input section is where the data to be retrieved are
declared. In TerraML, raster-based maps and images, time
series, and non-spatial scalar data at global and cellular
scales are suported. It is necessary to inform the values of
file names, attributes, and variables in order to make the
retrieval and binding processes work.

In the output section the data to be saved are declared.
These data are generated by the simulation program and
added to the cell space as attributes.

Transition is the section where the rules upon which
the cell states evolve are specifies. In TerraML, discrete
and continuous transitions are supported.

In the constraint section, restrictions to limit or force a
transition are specified.

The simulation section is the place to specify the
actions to be processed during the execution of the model.

First, some cellular space parameters, such as
neighborhood, initialization attribute and result name, are
configured. After, the actions to be applied over cell
attributes, for a determined number of times, are specified.
These actions include commands such as updating,
calculating, and setting cell attribute values.

Figure 4 the TerraML Simplified Structure

5. A TerraML example
Now we present an overview of the TerraML syntax by
using a simplified example of a deforestation process. In
this example, Figure 5, we represent the section names in
bold. The cellprocessor section is the main section, and it
has some attributes for documentation purposes, such as the
author of the simulation and the name of the model.

 In the input section, two images, use99 and road99,
are retrieved and assigned to the landuse and accessibility
variables, respectively. In the output section, the variable
use is declared as temporal. This variable is directly
related to the results to be produced by the simulation
section. In the transition section, three different transitions
are specified: a transition from “forest” to “deforested”
state occur if a cell is close to roads (accessibility) or if all
its neighbors are in the “deforested” state. A transition from

“in regeneration” to “regenerated” happens after 10 years.
In the constraint section, there are two constraints. The
first one is a spatio-temporal constraint restricting the
deforestation process to 10% of its current area (spatial)
over 20 years (temporal). The second constraint imposes a
permanent property to “forest reserve”, meaning that a cell
in that state cannot be changed to another state in any
circumstance. In the simulation section, the cellular space
is initialized with the landuse variable and a “moore’
neighborhood (4 neighbors) is specified. The model is
processed for 20 time steps that are equivalent to a 20 year
period. The results are stored in files called use2000, use
2001, and so on, to use2020 according to the value of the
attribute name in the output section an the values of the
attributes init and end of the time control structure.

<cellProcessor author="Bianca" date="3/26/2002" case="Amazon Forest" model="LUCC" >
 <input>
 <layer name="use99" attribute="class" > landuse />
 <layer name="road99" attribute="distance"> accessibility />
 </input>
 <output
 <temporal name=”use” attribute=”class” >
 </output>
 <transition>
 <rule from="forest" to="deforested" > <event> condition="acessibility=51" /> />
 <rule from="forest" to="deforested" > <event> neighbor="all" /> />
 <rule from="regeneration" to="regenerated" > <event> time="after 10" /> />
 </transition>
 <constraint>
 <restriction state="deforested" spatial="+10%" temporal="20 years"/>
 <restriction state="forest reserve" type="static" />
 </constraint>
 <simulation>
 <cellspace neighborhood="moore" result="use" init="landuse" />
 <timer init=”2000” end=”2020” timeunit=”year” />
 <TRANSIT>
 </timer>
 </simulation>
</cellProcessor>

Figure 5 An example in TerraML showing changes in land use cover

6. Implementation Aspects
A TerraML program is mapped to the cellular space
architecture presented in section 3. The cellular space
architecture is implemented as software components to be
provided by a GIS library called TerraLib. TerraLib is an
open-source general-purpose GIS library under
development at the Brazilian National Institute for Space
Research (INPE). TerraLib provides, in its kernel (Figure

6), functionality for handling the different types of
geographic data and facilities for data conversion, graphical
output, and spatial database management (Câmara et al.
2000). Algorithms that use the kernel structures, including
spatial analysis, query and simulation languages, and data
conversion procedures are also provided.

TerraLib has been implemented in C++, based on the
object-oriented paradigm. This way the cellular space

architecture is implemented in a hierarchy of classes, where
each class represents the cellular space main components.

Figure 6 The TerraLib Structure

In Figure 7, the main class is the cellular space, which is
composed by a cellular grid, a set of transitions and
constraints. Each cell has a set of attributes and a

neighborhood. A cell attribute is an abstract class, which
means that it can hold any data type. A cell neighborhood
refers to the set of cells which influence the cell state. The
set of cells in a neighborhood can has any configuration, be
contiguous or not, and has any number of cells.

7. Conclusions
In this paper we introduced TerraML, a language to support
spatial dynamic modeling in environmental processes.
TerraML represents an improvement over other dynamic
modeling languages such as PCRaster (Wesseling et al.
1996), MapScript (Pullar 2001), CALANG (Stocks and
Wise 2000) and CELLAR (Folino and Spezzano 2000).
First, TerraML supports both discrete and continuous
change processes. Second, TerraML supports non local
actions due to its non-proximal neighborhoods. Third,
TerraML supports different data formats and is fully
integrated with general-use databases. Fourth,

The development of TerraML and the open source GIS
software library is part of an ongoing work. Future efforts
will focus on a more complete integration of space and time
into the language, and on introducing restrictions to
transitions by means of socio-economic variables.

Figura 7 The cellular space class hierarchy

References
Batty, M. 2000. GeoComputation Using Cellular

Automata. In GeoComputation, edited by S.
Openshaw and R. J. Abrahart: Taylor&Francis.

Câmara, G., R.C.M. Souza, B. M. Pedrosa, L. Vinhas,
A.M.V. Monteiro, J.A. Paiva, M.T. Carvalho, and M.
Gatass. 2000. TerraLib: Technology in Support of
GIS Inovation. Paper read at GeoInfo 2000 - II

Dynamic Modelling
Q

ue
ry

 a
nd

 S
im

ul
at

io
n

la
ng

ua
ge

s

Spatial access

methods

Algo
ritm

hs

Data C
onve

rsi
on

Geographic

Data Types

S
patial A

nalysis

Datab
ase

Sup
or

t

Visualization

TerraLib

CellularGrid ConstraintsSet

C el lul arSpace

1
1
1
1

1

1

1

1

CellAtr ibute

Constraint

1
0. .*

1
0. .*

TransitionsSet

1

1

1

1

CellNeighbourhood

Atr ibutesSet

1 0..*1 0..*

C ell sSet

Transitions

0..*0.. * 0..*0.. *

force or avoid

1
0..*

1
0..*

Cell1

1

1

1

1

1

1

1

1
1. .*

1
1. .*

CellState

1

0..*

change

1 21 2

Workshop Brasileiro de Geoinformação, June, 2000,
at São Paulo(ed), 2000.

Castells, Manuel. 2000. The Information Age: Economy,
Society, and Culture. Oxford: Blackwell.

Clarke, K. C. , and L. Gaydos. 1998. Loose-Coupling a
Cellular Automaton and GIS: Long Term urban
growth prediction for San Francisco and
Washington/Baltimore. International Journal of
Geographical Information Science 12 (7):699-714.

Couclelis, Helen. 1997. From Cellular Automata to
Urban Models: New Principles for Model
Development and Implementation. Environment and
Planning B: Planning and Design 24:165-174.

Elmasri, R, and S. B. Navathe. 2000. Fundamentals of
Database Systems. Edited by A. Wesley. 3rd ed.
USA.

Folino, G., and G. Spezzano. 2000. CELLAR: A High
Level Cellular Programming Language with Regions.
Paper read at Proceedings of 8th Euromicro
Workshop on Parallel and Distributed Processing, at
Rhodes, Greece.IEEE (ed), 2000.

Harvey, D. 1989. The Condition of Postmodernity.
London: Basil Blackwell.

Henzinger, T. A. 1996. The Theory of Hybrid Automata.
Paper read at Proceedings of the 11th Symposium on
Logic in Computer Science (LICS'96).IEEE (ed),
1996.

Hornsby, Kathleen, and Max J. Egenhofer. 1997.
Qualitative Representation of Change. Paper read at
Spatial Information Theory: A Theoretical Basis for
GIS, Proceedings of the International Conference
COSIT ‘97, at Berlim.A. F. S. Hirtle (ed), Lecture
Notes in Computer Science (Springer-Verlag), 1997.

Parent, C., S. Spaccapietra, and E. Zimányi. 1999.
Spatio-Temporal Conceptual Models: Data
Strucutres + Space + Time. Paper read at ACM
GIS'99, at Kansas City, MO USA.ACM (ed), 1999.

Parks, B. O. 1993. The Need for Integration. In
Environmental Modelling with GIS, edited by M. J.
Goodchild, B. O. Parks and L. T. Steyaert. Oxford:
Oxford University Press.

Peuquet, D. 2001. Making Space for Time: Issues in
Space-Time Data Representation. GeoInformatica 5
(1):11-32.

Pullar, D. 2001. MapScript: A Map Algebra
Programming Language Incorporating Neighborhood
Analysis. GeoInformatica 5 (2):145-163.

Santos, Milton. 1996. A Natureza do Espaço (The
Nature of Space). São Paulo: Hucitec.

Sipper, M. 1999. The emergence of Cellular Computing.
IEEE Computer 32 (7):18-26.

Soares-Filho, B. S., G. C. Cerqueira, and C. L.
Pennachin. 2002. DINAMICA: A New Model to
Simulate and Study Landscape Dynamics. Ecological
Modelling (in press).

Stocks, C. E., and S. Wise. 2000. The role of GIS in
Environmental Modelling. Geographical and
Environmental Modelling 4:219-235.

Veldkamp, A., and L.O. Fresco. 1996. CLUE-CR: an
integrated multi-scale model to simulatie land use
change scenarios in Costa Rica. Ecological
Modelling 91:231-248.

Wesseling, C.G, D. Karssenberg, W.P.A Van Deursen,
and P.A Burrough. 1996. Integrating dynamic
environmental models in GIS: the development of a
Dynamic Modelling language. Transactions in GIS
1:40-48.

White, R., and G. Engelen. 1997. Cellular Automata as
the Basis of Integrated Dynamic Regional Modelling.
Environment and Planning B: Planning and Design
24:165-174.

Worboys, Michael F. 1995. GIS - A Computing
Perspective. Bristol, PA: Taylor & Francis Inc.

Zipf, Alexander, and Sven Krüger. 2001. TGML -
Extending GML by Temporal Constructs - A
proposal for a SpatioTemporal Framework in XML.
Paper read at Procedings of the ACM GIS 2001. The
Ninth ACM International Symposium on Advances
in Geographic Information Systems, at Atlanta,
USA(ed), 2001.

