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Integral equation approach to tropical ocean dynamics:
Part II—Rossby wave scattering from the equatorial
Atlantic western boundary

by Paulo R. Holvorcem'? and Marcio L. Vianna'

ABSTRACT

We develop a linear theory for the scattering of equatorial waves of a fixed frequency w by
islands and continental margins of arbitrary geometry by use of the boundary integral equation
(BIE) method of Vianna and Holvorcem (Part I of this work). All the solutions of the
cquatorial B-plane dispersion relations at frequency w are treated explicitly through the
extensive use of exact Green’s functions, so that the approach is more general and more
rigorous than previous attempts to solve equatorial scattering problems, many of which
employ the low-frequency and long-wave approximations. The numerical solution of the BIE
is obtained through application of the boundary element method. A numerical study of the
scattering of Rossby waves with periods between 50 and 90 days from the equatorial Atlantic
western boundary is presented. Some of the resulting interference patterns exhibit a sharp
amplitude maximum, whose center lies between 3-9N, 35-47W. The position, width and
intensity of this maximum all depend on wave period. We find evidences that this maximum
arises from the superposition of zonally damped equatorial modes (evanescent waves) excited
at the western boundary. The largest pressure amplitudes along the boundary are found in the
southern hemisphere between the Equator and 5S. The phase propagation along the boundary
is generally northwestward, except at a few positions where the phase is stationary. We discuss
similarities and differences between the calculated responses and observations of intrasea-
sonal oscillations in the tropical Atlantic Ocean.

1. Introduction

The generation of equatorial waves from non-uniform large scale wind systems
and their subsequent scattering by ocean boundaries is believed to play a central role
in the adjustment of the upper ocean thermal structure, which interacts back with the
atmosphere through the generation of sea surface temperature anomalies (see, e.g.,
Enfield, 1989). Recent results obtained from analysis of Geosat sea level anomaly
fields for the Pacific warm pool area revealed the importance of low frequency
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Rossby wave reflection from the Pacific western boundary in relation to El Nifio
(Delcroix et al., 1989; Picaut et al., 1989).

On the other hand, large amplitude intraseasonal oscillations, interpreted as being
possibly due to westward propagating Rossby waves, have been found in current
meter mooring records just off the western boundary of the equatorial Atlantic at
52W (Johns et al, 1990). These oscillations, however, are not confined to the
immediate vicinity of the boundary, but have a considerably larger zonal extent, as
evidenced by mean sea-level and sea surface temperature data from the Gulf of
Guinea reported by Picaut and Verstraete (1976) and by the current meter data at
28W reported by Richardson and Reverdin (1987) and Weisberg et al. (1987).
Furthermore, inverted echo-sounder (IES) data from SEQUAL (1983-84) taken at
28W indicate the presence of strong intraseasonal oscillations in the 50-100 day
period range (Garzoli, 1987). All these measurements were made either along or
north of the Equator. In a series of papers, Weisberg and Tang (1985, 1987, 1990)
have shown that the seasonal wind-forced equatorial Atlantic thermocline response
far from boundaries can be accounted for by a linear superposition of equatorial long
waves. This was done by calculating time-dependent interference patterns, with
adjusted positions for the meridional model boundaries.

Similar results for 50-day waves were found in the western equatorial Indian
Ocean by Luyten and Roemmich (1982); these seem to be well described by Kindle
and Thompson’s (1989) 1's-layer model forced by realistic winds. Instabilities of the
surface zonal and western boundary currents are invoked as possible generators of
the observed oscillations with periods of 50 and 26 days.

In a recent study, Moore and McCreary (1990) forced a model Indian Ocean with
periodic winds at this frequency range, in order to examine the effects of wave
reflection at the western boundary on the basin-wide response. In their study, short
equatorial waves generated at the western boundary are not filtrated. The chosen
grid resolution (50 km) was adjusted to include the effects of the shortest wave modes
present at the 60-day period in the second baroclinic mode of the tropical Indian
Ocean. Moore and McCreary implemented slip boundary conditions by use of a
staggered grid and a straight boundary making an angle of 45° to the Equator. Since
the considered frequencies are intermediate, this kind of study cannot rely on the
long wave or low frequency approximations, which impose “averaged” boundary
conditions at the western boundary (Cane and Gent, 1984; McCalpin, 1987). The
interference patterns which result from the excitation of 60-day equatorial waves in
the Indian Ocean present an intense maximum south of the Equator in the vicinity of
the western boundary.

The effects of islands on the propagation of equatorial waves is also an important
issue that should be considered. This problem has been studied numerically by Yoon
(1981) using a finite difference method and by Rowlands (1982) using an integral
equation approach which somewhat resembles the spirit of the present series of
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papers. However, Rowlands did consider only the idealized case of a meridionally
oriented island of negligible zonal extension. The effects of one such “thin island” on
the propagation of low-frequency equatorial waves have also been studied by Cane
and du Penhoat (1982). Recently, in connection with the reflection and transmission
of equatorial waves by the irregular western Pacific boundary, this theory has been
generalized to include several thin islands (Clarke, 1991a) and western boundary
gaps (du Penhoat and Cane, 1989). The high sensitivity of experiments with such very
idealized geometries points out to the need for numerical calculations where the
detailed boundary geometry is taken into account (du Penhoat and Cane, 1989).

In the present paper, the boundary integral equation formulation of the linearized
equatorial B-plane shallow water equations introduced in Part I of this work (Vianna
and Holvorcem, 1992; henceforth Part I) is adapted to describe the general scatter-
ing problem for time-harmonic equatorial waves. Through the extensive use of exact
Green’s functions, our method can deal rigorously with the entire range of frequen-
cies of oceanographic interest. No equatorial mode is neglected a priori in construct-
ing the Green’s functions, since the previous studies of Part I have demonstrated that
there are regions in the fields of the Green’s functions where the short wavelength
modes and the zonally damped modes (evanescent waves) make a crucial contribu-
tion. The scattering problem is formulated for an arbitrary boundary geometry, and
there is no difficulty in applying exactly the slip boundary conditions. The boundary
integral equations of the theory are efficiently solved for the boundary pressure
distribution by the boundary element method (Brebbia et al, 1984). Once this
pressure distribution is known, the method enables the calculation of the dynamical
variables at any point within the ocean, even near the boundaries. This can be very
important in connection with the study of time series obtained from current meter
moorings and IES’s, since if well-defined oscillations are found in a narrow band of
the power spectrum, one can determine what spatial distribution of intensities one
should expect on a basin-wide scale.

A previous attempt to calculate the interior ocean response from sea level
anomalies at the ocean boundaries was presented by Gill (1983), who showed that
the whole dynamics of equatorial motions during El Nifio could possibly be retrieved
from time series of coastal sea level anomaly, once the wind stress field was known. In
that work, sea surface temperature and zonal surface current anomalies in the
central Pacific during the 1972 El Nifio were reconstructed from eastern boundary
sea level anomalies. The converse process, i.e., to extract the signature of equatorial
waves from coastal sea-level records, is also possible, and has been accomplished
using data from the eastern Pacific boundary (Clarke, 1991b).

The plan of the paper is as follows. In Section 2, we review the results of Part I
which are needed in the present study. Section 3 presents the derivation of boundary
integral equations describing the scattering of Kelvin and Rossby waves with
westward group velocity, and in Section 4 we discuss numerical methods for their
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solution. In Section 5 we present the results of 2 numerical study on the scattering of
Rossby waves with periods between 50 and 90 days by a model western Atlantic
boundary of realistic horizontal geometry (a vertical wall at the 200 m isobath around
a flat bottom ocean with imposed vertical eigenvalues appropriate to the Atlantic);
we compare our results with some recent observations of intraseasonal oscillations in
the equatorial Atlantic (Richardson and Reverdin, 1987; Garzoli, 1987; Johns et al,
1990). Finally, in Section 6 we discuss the main conclusions of the paper.

2. Review of previous results
In Part I of this work the linearized shallow water equations on the B-plane,

p.(du + ByZ X u) = —Vp — (p,A/c*)u + F, (2.1)
ap+ (AlckHp + p,c?V-u=0, (2.2)

which describe the dynamics of a single baroclinic mode with vertical eigenvalue c,
were reformulated as a boundary integral equation (BIE). In (2.1) and (2.2), p, is a
scale density of water, p, u and F denote the projections of pressure, velocity and
wind-stress onto the given baroclinic mode, and A is a constant which enters in the
parameterization of vertical diffusion of heat and momentum through the relation
(McCreary, 1981)

k= v = A/N¥z), (2.3)

where k and v are the diffusion coefficients of heat and momentum and N is the
Brunt-Viisila frequency.

The analysis in Part 1 was performed in the frequency domain, all dependent
variables being complex functions of the position vector r = (x, y) and the frequency
o (we often omit the argument w for brevity). In this paper, we consider only waves of
a fixed frequency, so that any dependent variable f can be obtained from the relation

f(r,) = Rele™f (r, w)}. (2.4)

After Fourier transformation, (2.1) and (2.2) can be reduced to a single differen-
tial equation for the horizontal structure of the pressure perturbation,

Zp =S, (2.5)

where
ZL=LAy)=V [y’ —y) vz x — y)V] + iy./4, (26)
S=V-[(y'-y)'(yz x - iy)F], (2.7)

y. = (0 — iAw)/w, Aw=A/c’, w,=PBR,

Ro _ (C/2B)”2, F = ROF. (28)

As in Part I, the spatial coordinates x and y are scaled by the equatorial deformation
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radius R,. The velocity field can be written in terms of the pressure perturbation as

u=2(p,c)"(y* =y (%, — y& X) (F' = Vp). (2.9)

The pressure perturbation field within any fluid region B satisfies the integral
identity

ep(r') = P.V. ﬁp(r)K(r'; r) - fi(s)ds — Y p,c ﬁq(s)G(r'; r)ds

- f f,, F'(r) - K(r'; r)dxdy, (2.10)

where I’ = 9B,

1,  forr' inside B
€= {%, forr'onT (2.11)
0, for r' outside B,

s is a coordinate measuring arclength along I', r = r(s) varies along I, ii(s) is the outer
normal vector to I', ¢ = u - i denotes the normal outflow at the boundary and P.V.
denotes the principal value. The kernels G (r’; r) and K(r’; r) which appear in (2.10)
are the basic influence functions associated with the propagation of pressure
perturbations on the equatorial B-plane. When r' is an interior point of B, (2.10) is an
integral representation for the interior pressure field in terms of its boundary values;
when r’ ison I, (2.10) is a BIE for the boundary pressure distribution p(s) = p(r(s)).
The meridional mode expansions of G and K are

G(r'; 1) = 27%(1 - o) fexp [—ie (' — )0y VU,(/V2)
+ exp [—ic,(¢' = X)(y W2 (y/V2)) (212)
_ gy 3 SR LHO T 2] ey,
AN (0N, — A ) (oN, — Ny
K(r'; 1) = 2750 — 1){exp [—ic,(e’ — ), (y' /V2)b,(y/V2)%
+ exp [~ia, (¢ = X)n(y' IV2) [ (VD)% — divii,(y/V2)3]) (213)

o

—i(oN,, — -
2y 3 L D ) 82008 + 92050,

m=0
where
o =sign(x —x'), a,=y/2, o, =y/2-y,
v = (Zyc)"’ N, =i(m+%— Q)]/z,

Q= (%)(Y§ +yc_2)’ A =a,+y,
A,=a,ty,

(2.14)
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y,, denotes the normalized Hermite function of order m, and

du(y) = (m + 1), ., (v/V2) + 2a_(o\, — A, (y/V2),
o(y) = 2710m + 1)\, ,(v/V2) — [m + 1 + a(oh, — A )N (0/V2),  (2.15)
02(y) = (m + 1)"*(o),, — A ), (y/V2).

(These expressions may be easily derived from those given in Part I for ¢7, {7 and
67, by use of the recurrence relations of the Hermite functions.) The parameters a._,
and o_, are the wavenumbers of the Kelvin and Yanai waves, respectively; for small
friction, and low (high) enough frequency, the wavenumbers of the propagating
Rossby (inertia-gravity) modes are givenby =\ —y,m =0,1,...,[Re Q — %] (the
brackets [ ] denote the integer part); the wavenumbers of the equatorial modes
which are zonally damped at frequency » are given by +A, — vy, m > [Re Q — 3%].

The functions in (2.15) satisfy the following identity, which will be needed in the
next section:

(* =y (iy. = y2 x)V{exp [£i(ah, — VIx]d5(y)] = (2.16)
xexp [£i(oh, — Y] [L7(y)R = i67(y)5)-

We refer to Part I for a full discussion on the numerical computation of the
influence functions and on their near-field (i.e., as r — r’) singular behavior.

3. BIE Formulation of scattering problems

In this section, we specialize (2.10) to describe the scattering of equatorial waves
by islands and continental margins of arbitrary geometry. Consider first an archipel-
ago, formed by the islands (closed contours) C,, C,,.... Suppose that a free
equatorial wave of frequency w incides on the archipelago along the zonal direction.
The resulting pressure and velocity fields can be written as

p =p(’) +P(s), u=u?+ u(s), (31)

where p, u® are the fields of the incident wave and p®, u®® are the fields scattered
by the archipelago.

In order to apply the integral identity (2.10) to this situation, we take B as the fluid
region exterior to the islands and bounded by the meridians x = x,, and x = x,, which
lie respectively to the west and to the east of the archipelago. Since there is no wind
forcing in this problem, the identity (2.10) becomes

ep(r') = ,E P.V. ﬁj [p(r)K(r'; r) — Y p,cG(r'; r)u(r)] - ii(s)ds
+[09) + 0V,

(3:2)



1992] Holvorcem & Vianna: Tropical ocean dynamics—Part 11 39

where
QU(x) =%- f PO,y K5 %, ¥) = Y5 p,cG(rx,y O, )] dy,  (3.3)

Q) =%- f PO Y)K( 5, y) = Y pcG(r x,y ), y)] dy.  (3.4)

A more compact form for (3.2) can be obtained by letting x,, —» — and x; — 4.
In the presence of an arbitrarily small amount of friction (4 = 0), it is known that a
free equatorial wave decays exponentially in the direction of its group velocity. In this
case, the influence functions G(r'; r) and K(r'; r) will decay exponentially as |x| — ,
since ecach of these functions represents a superposition of free equatorial waves
emitted from x = x' (see Part I). The scattered fields consist of waves emitted from
the archipelago, and by the same reason they must vanish exponentially as |x| — . In
conclusion, we have that Q*)(x) — 0 as |x| — o, and that QV(x) — 0 for c,x — +oo,
where ¢, is the group velocity of the incident wave. However, we shall see shortly that
Q"(x) is constant for cx negative and |cx| sufficiently large. This happens because
the incident fields grow exponentially as cx — —o, while the influence functions
multiplying them in (3.3) decay exponentially, so that the integral can approach a
constant value.

Here we shall treat two relevant cases: (a) an incident long Rossby wave and (b) an
incident Kelvin wave. In the first case, the incident pressure field is

p¥(r) = p, exp [—i(\, — V)x]b; (¥), (3.5)

wheren =0,1,2, ... andp, is an arbitrary constant. The velocity field associated with
(3.5) is, by (2.9) and (2.16),

u(r) = (2p./p,c) exp [=i(\, — VX][L7(¥)% ~ 16,7 (y)3]. (3.6)

In case (b), the incident pressure field is

pO(r) = p, exp (—io_ ), (y/y2), 3.7

and the velocity is

u(r) = (p,/p,c) exp (—ia_x)b,(y/y2)x. (3.8)

To compute Q“(x), we will need the following identities, which are valid for all
k,m = 0:

[ wondu.ondy = 2"s,, (39)

[y N2y, 5Ny = 225, + m7S,,, ), (3.10)
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I y o120 Dy = 27(2% + 1), 3.11)
+ [k(k — 1)]28,_y,, + [m(m — 1)), .-}

The second and third identities can be deduced from the basic orthogonality relation

(3.9) by use of the recurrence formula

Y(y2) = (m + 1), (y/V2) + m",_(yIV2). (3.12)

CASE (a). Since long Rossby waves have ¢, < 0, the previous discussion implies
that Q“(x,) — 0 whenx,, — —, so that we need only to evaluate Q“(x,) for x large
enough. By (2.12) and (2.13), we have forx, > x":

exp [=i(\, — ¥) & —x)]
D W W TP

X on(¥) L) ba(y) + €I()’)¢;(y)]] dy.

PO(cg) = 27yp, exp [~iA, = Yxe] [
(3.13)

To simplify (3.13), we will use the following identity, which is a direct consequence of
(2.15) and (3.9)(3.11):

[ 10)60) + L0601y
= ~27(n + (o + N, — 3 + 5loh, = L) (A, = A (3.14)
Thus, (3.13) reduces to
Q) = ~R,p, exp [~i(h, — V¥'16: (), (3.15)
where

(DA, man) +a,(h, - ALY
" AN = M) (N = A) ’

(3.16)

an expression which is independent of x;..

CASE (b). Here ¢, > 0, so that Q(x;) — 0 when x; — +o and we have to
compute Q“(x,) for x,, sufficiently large and negative. If x,, < x’, (2.12) and (2.13)
yield

Q(I)(xw) = 27"p, exp (—ia_,xy,) f_: l!}o(y/\/i) [—-exp [—ia_,(x" = xp)]

X (' IW2)b,(y/V2) = exp [—ia (¢’ = x) (¥’ W2 (V2)  (3.17)

® 1 }\m i W,
»EREFE ool

m=0
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Now, since

1
5 0n() + ) = (m + 1Y, (yV2) = (m + D, (¥2),  (3.18)

one easily verifies using (3.9) and (3.10) that the integral of each term under the
summation sign is equal to zero. The integral of the term associated with the Yanai
wave also vanishes, by (3.9); (3.17) then reduces to

QO(xy) = —p, exp (—io_x W,(¥'/\2), (3.19)

which is again independent of the arbitrary longitude x,,.
Having computed the integrals Q(x), we can now state our boundary integral
formulation of the scattering problem as

() = T P.V. ﬁ POK(E; ) - #(s)ds + np(r), (3.20)

where € = 1 for r’ in the ocean region, € = 1/2 for r' on any of the contours C,,
C,...,m=—R, incase (a) and m = 1 in case (b). (For simplicity we have assumed
slip boundary conditions at the island boundaries.} The corresponding expression for
the velocity vector at a point r’ in the ocean region is, by (2.9),

u(r) = ~2(p,0)" = P p@S(r'; 1) - d(s)ds + mu(r’), (3.21)
J !
where the tensor & is defined by
(r;r) =y —y) (. —y't xX)VK('; ). (3:22)

(The properties of this influence function were discussed in detail in Part 1.) In
(3.21), the principal value sign was omitted, since r' is not on the island boundaries.

It is important to observe that (3.20) and (3.21) remain valid if one of the contours
C, is assumed to be a continental margin, since this corresponds to an “island” which
is unbounded in the meridional direction, and semi-infinite in the zonal direction.

4. Numerical methods

Here we discuss the numerical treatment of (3.20) and (3.21) by the Boundary
Element Method (BEM) (Brebbia et al,, 1984), following the general procedures
described in Part I. Let us assume for simplicity that the boundary consists of a singie
contour C (an island or a continental margin), so that we can discretize it as a broken
line with N + 1 consecutive vertices r,, . .., ry,,. The normal unit vector at the kth
boundary element T, = [r,, r,,,} is given by

i, =d;\(r,, —r) X% (4.1)
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where
d, = |1, — 1 (4.2)

is the length of the element and we assume that k always increases in the direction of
§, = 2 x ii,. To treat a boundary which consists of several curves C,, C,, . . ., we would
discretize each curve as we have just described and then number the elements
consecutively from 1 to the total number of elements.

In the first step of the BEM, we assume that r’ in (3.20) is at the boundary and
solve the resulting BIE for the boundary pressure distribution. Making the usual
approximation that the pressure is nearly constant within each boundary element
(Brebbia et al., 1984), we may write the discrete version of (3.20) as

] N
ipk = ,_21 Tkjpj +np, (4.3)
where
po=p(r), pf=pP(r), (44)
, 1
r,= i(rkﬂ + 1), (4.5)
T, = f Kl ryds, (4.6)

and T,; should be regarded as a principal value integral when j = k. Whenj # k, we
can compute 7,; by some numerical quadrature rule, such as the two-point Gauss-
Legendre rule,

T, =

g

diy - [K(ry; rj + hd§;) + K(r; r; — hd§)], 4.7

N =

where 2 = 0.2886751. Whenj = k, we can write

Ty =1,

Pv. [ KOy ryds + [ K®(r} r)ds}, (4.8)
where the “singular part” of K is (see Part I)

KO(ry; 1) = (v/2m)[-2(y. — iyi2 X)(R/R]) + (i% - 2y §) InR]  (4.9)
with R, = r}, — r, R, = |R,/, and the “regular part” of K is
K® = K — K® = O(1). (4.10)

Performing the principal value integration analytically, and the integration of the
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regular part by two-point Gauss-Legendre quadrature, (4.8) becomes
Ty = (v/2m)difln (d/2) = 11G& = 2vy48) -

1
+ 5 difiy + [KO(); 1 + hdi§) + KOs v — hdidy)]. (4.11)

The values of K and K®) appearing in (4.7) and (4.11) can be obtained from a
computer routine for the asymptotic evaluation of the influence functions, as
described in detail in Part 1.

Having computed the matrix elements 7}; and the values of np{", it is simple to
solve the system of equations (4.3) for the boundary pressures p,. Since only the
boundary is discretized, N will not be large, so that the simple Gaussian elimination
method will be adequate for the solution of (4.3).

The final step of the BEM consists of calculating the interior fields at a set of

selected points r' within the fluid region. To this end, we use discrete versions of
(3.20) (with e = 1) and (3.21),

N
p(r') = ;kak +qpO(r'), (4.12)

. |
u(r') = = (2/p,c) gpknk + mu(r’), (4.13)

where
T, =, - j;k K(r'; r)ds,

(4.14)

D, = fn{@(r’; r) - fds.
These integrals may be computed by the same quadrature rule employed in (4.7) for
the computation of T;, provided that the point r' does not lie within a distance of
about one deformation radius from the element I;. In this case, the presence of the
singularity in the kernels at r = r' requires that we split the integrand into singular
and regular parts, as in (4.8),

T, = fy

j;_k KS)(r'; r)ds + frk K®(r'; r)ds],

D, = J;‘k,@(-?)(r'; r) - fi,ds + J‘rk‘@m)(l”; r) - Ads,

(4.15)

where a complete expression for @) is given in Part I. The integrals of the O(1)
regular parts can be computed using the quadrature rule of (4.7), however close to I’
the point r' may be. To compute the integrals of the singular parts on straight-line
boundary elements, the analytic expressions given in the Appendix may be used.
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5. Numerical results

The above formulation of scattering problems can be directly applied to the
various western, eastern and island boundaries of the tropical oceans. A particularly
interesting case would be the scattering of Rossby waves by the leaky western Pacific
boundary, using a realistic horizontal geometry. In this paper, however, we will
illustrate our BIE techniques by a numerical study of the scattering of equatorial
Rossby waves of intermediate frequency (periods between 50 and 90 days) by the
western Atlantic boundary. Our interest in this problem arose from recent observa-
tions of intraseasonal oscillations in the north equatorial Atlantic.

Current meter data from a mooring at 6N, 28W indicate that the seasonal cycle of
the North Equatorial Countercurrent (NECC) displays intense fluctuations in both
eastward and northward velocity, with periods between one and several months
(Richardson and Reverdin, 1987). Furthermore, IES data reported by Garzoli

(1987) along 28W between the Equator and 9N suggest the existence of oscillations
in the 50-100 day period range, with maximum amplitudes between 3-9N. Spectral

peaks centered near the 90-day period have been found in satellite sca surface
temperature data at SN in the western Atlantic (Vianna and Ferreira-Lima, 1992),
and also in coastal sea level data from Fortaleza (Vianna and Domingues, 1992).
These oscillations appear to be correlated to positive rainfall anomalies in the
northern Northeast Brazil. Large-amplitude 50-day oscillations in northward velocity
have been discovered in data from a current meter array moored off French Guiana
during 1987-88 (Johns et al., 1990). The oscillations have been interpreted as due to
westward propagating off-equatorial Rossby waves of negligible group velocity, with
vertical structure given by the first baroclinic mode of the equatorial Atlantic. Even
though historical Coastal Zone Color Scanner (CZCS) imagery suggests a link
between the oscillations and the seasonal North Brazil Current (NBC) retroflection,
the persistence of the oscillations over the whole year suggests the presence of
excitation mechanisms which are unrelated to instabilities of western boundary
currents, In the case of the Indian Ocean, these instabilities generate oscillations
which remain largely confined to the western ocean region (Kindle and Thompson,
1989). In the Atlantic, the standing wave pattern observed in sea level, atmospheric
pressure and zonal wind records from the gulf of Guinea (Picaut and Verstraete,
1976) might be linked to the 40-50 day atmospheric oscillations (Madden and Julian,
1972) generated in the tropical Pacific and Indian oceans. Since it is possible that this
standing wave pattern radiates westward traveling Rossby waves, it would be
interesting to study the interference patterns resulting from the reflection of such
waves at the western boundary.

In the present linear theory, no mention is made to non-linear effects (such as
strong western boundary currents), which could have a strong effect on the reflection
process. In the case of the western Atlantic boundary, the NBC could possibly modify
our calculated interference patterns. If we consider the NBC as a zero potential
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vorticity inertial jet (Csanady, 1985), our boundary condition for the pressure will be
unchanged by the inclusion of the non-linear terms, provided that the pressure is
replaced by the Bernoulli function. If the NBC is a baroclinic current, instead of an
inertial jet, then we cannot state that it will not affect the reflection process, although
certain studies (e.g., Chang and Philander, 1990) suggest that the effect would be
negligible. This issue is important, but is beyond the scope of the present work.

In the simulations that follow, the vertical eigenvalue ¢ will be taken either as
2.17ms™' or 1.26 ms™', corresponding respectively to the first and second baroclinic
modes of the tropical Atlantic (du Penhoat and Treguier, 1985). The corresponding
radii of deformation are R, = (¢/2B)"* = 218 and 167 km, respectively. Recall from
Section 2 that for small friction the number of propagating Rossby modes of period T
in a given baroclinic mode is given by

Ny = [ ((TIT,) + (T,/TY) = ‘2], .1

where T, = 2m(2/Bc)"*. The values of T, for the first and second baroclinic modes are
14.6 and 19.2 days, respectively. In all the computations that follow, we have used a
dissipation coefficient 4 = 1078 m%~ (McCreary ef al,, 1984). For this value of A,
short waves are not heavily damped. Since it is difficult to determine the “best” value
for the dissipation coefficient, we have chosen a relatively low value, which allows
possible short wave effects to appear more clearly. Of course, we expect that such
effects will be less intense if a larger value of 4 is employed.

The model western boundary was taken as the 200 m isobath, shown for example in
Figure 2b. In order to verify the convergence of the calculated boundary pressure
distributions as the boundary element sizes are decreased, we have compared the
results obtained with four different discretizations of the boundary. The first two
discretizations employ boundary elements with a characteristic size of 120 km

(shorter elements are placed on highly curved parts of the boundary); the first one
extends between 20S and 20N, while the second extends from 14.5S to 14.5N. In all

cases we have investigated, the boundary pressure distributions obtained by solving
(4.3) with these two discretizations were essentially identical. The third and fourth
discretizations have boundary elements with characteristic sizes of 80 km and 60 km,
respectively, and both extend from 14.58 to 14.5N. As indicated by Figure 1, the
boundary pressure distributions seem to be converging to some limit as the size of the
boundary elements is decreased. The computations to be described below make use
of the third of the above discretizations.

a. 50-day waves. The number of propagating Rossby modes with period 7 = 50 days
in the first baroclinic mode is N, = 2, as can be easily computed from (5.1). The
boundary pressure distribution which results when the incident wave is in the first
meridional mode is shown in Figure 2a. There is a broad maximum in pressure
amplitude, centered near Sdo Luis, and the amplitude is very small either north of
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Figure 1. Pressure distribution along the western Atlantic boundary, at a fixed instant, for a
second baroclinic mode incident Rossby wave in the first meridional mode with a period of
72 days. Curves I and II show the pressure distributions obtained with boundary discretiza-
tions extending from 20N to 20S and from 14.5N to 14.5S, whose boundary elements have
characteristic sizes of 120 and 60 km, respectively. The coordinate s varies from s = 0 at
14.5N to s = 5340 km at 14.5S. Letters on the top indicate localities along the coast:
Georgetown (G), Maracé Island (M), Sao Luis (SL), Fortaleza (F), Natal (N), Recife (R)
and Salvador (S).

Maraca Island or south of Natal. Between Natal and Sdo Luis, the phase propagates
northwestward along the coast, at a speed of 56 km/day. In the ocean interior, the
interference pattern shows a maximum of pressure amplitude between 36-44W,
2-8N (Fig. 2b). The largest amplitude in the field resulting from scattering occurs at
5N, 39W, and is equal to 3.6 times the maximum amplitude in the incoming wave,
which occurs at 4N. It may be noted from Figure 2 that this maximum occurs at the
same longitudes where the largest amplitudes are found along the boundary.
Besides, Figure 2b shows that there is considerable amplitude north of the “extreme
latitude,” or caustic,

ye=2Q" = [(T/T,) + (T,/T)]" (5-2)

(see Part I), which is equal to 6.7N in the present case. Since this latitude marks the
maximum latitudinal extension of the propagating modes at a given frequency, this
suggests that the damped equatorial modes make an important contribution at the
amplitude maximum,

The time evolution of the pressure and velocity fields over the region of maximum
amplitude is shown at high resolution in Figures 3 and 4. The zonal wavelength in this
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Figure 2. Results for an incident Rossby wave with period T = 50 days (first baroclinic mode,
first meridional mode): (a) boundary solution p(s) = |p(s)] exp [—~ie( 5)], where |p(s)| is the
amplitude and ¢(s) is the phase. The phase speed along the boundary is given by ¢, =
o(de/ds)™, so that de/ds > 0 corresponds to phase propagation in the direction of
increasing 5. (b) contour map of pressure amplitude, |p(x, y)|. The pressure has been scaled
in such a way that the maximum amplitude in (b) is 10. The s-scale and the localities along
the coast are as in Figure 1.
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Figure 3. Time evolution of the pressure field over the amplitude maximum of Figure 2b
(50-day incident wave, first baroclinic mode, first meridional mode). The figurcs show two
phases which differ by one fourth of the 50-day cycle. The pressure has been scaled as in
Figure 2.

region is approximately 7° (Fig. 3), while the incident Rossby wave has a wavelength
of 23.5°. The real part of the wavenumber of the damped equatorial modes at the
50-day period is given by —y = =T/2T, = ~1.72 in non-dimensional units (see
Section 2), which yields a wavelength of 7.1°. This is consistent with our interpreta-
tion of the amplitude maximum in terms of damped modes.

The results for an incident wave in the first baroclinic mode and in the second
meridional mode are shown in Figure 5. The pressure distribution along the
boundary (Fig. 5a) displays a broad relative maximum in amplitude between Sao
Luis and Maraci Island, and a narrower absolute maximum between Fortaleza and
Natal. The phase propagation between Natal and Maracd Island is generally
northwestward, with two points of stationary phase appearing near Sdo Luis. The
phase speed along the coast between Natal and Fortaleza is 54 km/day to the
northwest; between the two points of stationary phase it is 57 km/day to the
southwest; and between Sao Luis and Maraca Island it is 39 km/day to the northwest.
The amplitude of oscillation in the ocean interior (Fig. 5b) is small west of 38W. East
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Figure 3. (Continued)

of this meridian, the interference pattern features a sequence of weak amplitude
maxima, lying symmetrically with respect to the Equator at 5N and 5S. The maxima
have a zonal spacing of about 10°. The amplitude is small poleward of the extreme
latitudes xy, = *6.7°, what suggests that the maxima result from the interference of
the equatorial modes with real wavenumbers.

In the second baroclinic mode, (5.1) with T = 50 days yields N, = 1. The pressure
distribution along the coast induced by a first meridional mode incident wave is
qualitatively similar to the one shown in Figure 2a. The interference pattern shows a
sequence of weak amplitude maxima, similar to those in Figure 5b.

b. 72-day and 90-day waves (second baroclinic mode). When the incident wave is the
first meridional mode Rossby wave, a sharp amplitude maximum appears close to the
western boundary, north of the Equator. At the 90-day period (Fig. 6a), the largest
amplitude in the field resulting from scattering occurs at SN, 45W, and is equal to 4.8
times the maximum amplitude in the incident wave, which occurs at 3N. The
interference pattern for a 72-day incident wave is very similar to Figure 6a, with the
difference that the center of the amplitude maximum (4N, 43W) is slightly shifted to
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Figure 4. Velocity field over the same region displayed in Figure 3 (50-day incident wave, first
baroclinic mode, first meridional mode). In (a), the arrow in each current ellipse gives the
sense of rotation of the velocity vector. The pair of straight lines drawn from the center of
each ellipse represents the velocity vectors at the phases ot = 0 and wt = 90°. For the sake of
clarity, the ellipses have been scaled (keeping their shape unchanged) so that their major
axes are all of the same size. The actual sizes of the major axes (in arbitrary units) are shown
by the contour map in (b).

the southeast. As discussed above, the amplitude maximum is absent when the
incident wave has a 50-day period, but we have verified that it appears for waves with
periods larger than 60 days. As was the case in Figure 2b, the presence of large
amplitudes north of the extreme latitude y, (which is 5.7N at the 72-day period and
7.1N at the 90-day period) suggests the presence of damped equatorial modes at the
amplitude maximum.

When the incident wave is the second meridional mode Rossby wave, the interfer-
ence pattern has a sharp maximum north of the Equator, which lies more to the east
than the maximum induced by a first meridional mode incident wave with the same
period (Fig. 6b). As the period is increased, this maximum shifts considerably to the
northwest. A second maximum, about 3° in width, appears close to Natal at the
72-day period; it is directly related to a sharp coastal maximum at that position,
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Figure 4. (Continued)

similar to the narrow maximum in Figure 5a. Both maxima exhibit large amplitudes
poleward of the extreme latitudes +y,, so that damped equatorial modes seem to be
important in those regions.

c. The numerical results and the observed oscillations. The main purpose of the
preceding numerical experiments has been to determine what kinds of interference
patterns are produced on a basin-wide scale by the scattering of free Rossby waves
from the western Atlantic boundary. The most prominent features in several of our
simulations are the amplitude maxima appearing close to western boundary, north of
the Equator. Observations of intraseasonal oscillations in the regions of the calcu-
lated amplitude maxima are still very few in number, making it difficult to assess
whether or not they actually exist. The answer to this question must await for new
data and for more analysis of data already available.

Even though the horizontal geometry of our model is realistic, the only process it
describes is the (linear) scattering of single-mode free equatorial waves. Thus, with
this model we cannot expect to explain in detail the available observations of
intraseasonal oscillations, taken at widely separated points in the ocean. What can be
done here is to look for features of the observed oscillations which are shared by the
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Figure 5. Results for an incident Rossby wave with period T = 50 days (first baroclinic mode,
second meridional mode), displayed as in Figure 2. The stationary phase points mentioned
in the text are marked “S” on the phase curve in (a).
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Figure 6. Contour maps of pressure amplitude, |p(x, y)|, for incident Rossby waves in the
second baroclinic mode: (a) first meridional mode, T = 90 days; (b) second meridional
mode, T = 90 days. The pressures have been scaled in such a way that the maximum
amplitudes in (a) and (b) are equal to 10 (Of course, the scaling factor is different for each
map). The abbreviated names of the localities along the coast are defined in the caption of
Figure 1.

calculated response due to an incoming free wave of the same period. We consider
below three of the observations mentioned at the beginning of this section:

(1) 40-day oscillations at 6N, 28W. Current meter data from 6N, 28W (Richardson
and Reverdin, 1987) reveal the existence of 40-day oscillations in the eastern portion
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of the NECC, wherein the current vector rotates clockwise, with the eastward (1) and
northward (v) velocity components being approximately 90° out of phase. At this
position, the current vector u which resuits from the scattering of the 40-day Rossby
wave (first baroclinic mode, first meridional mode) rotates clockwise, and the phase
difference between the velocity components is 118°. The current vector u” of the
incoming wave at 6N also rotates clockwise, and the phase difference between the
velocity components is 89°50'. The observed amplitudes of oscillation in # and v are
of the same order of magnitude, and the same is true for u”. On the other hand, the
vector u has its u- and v-amplitudes of oscillation in the ratio 1:8. This is due to the
excitation of short Rossby waves (with large meridional velocities) at the western
boundary. Thus, the incoming wave current vector u” resembles the observations
more closely than the current vector resulting from scattering. An increase in the
dissipation coefficient A would reduce the difference between u and u®, by decreas-
ing the amplitudes of the short Rossby waves.

(2) 73-day oscillations at 3N, 38W. A spectral peak in a period band centered at
T = 73 days was noted in IES data from 3N, 38W (Garzoli, 1987). There is a
suggestive coincidence between this observation and the sharp amplitude maximum
(2-7N, 35-39W) which results from the scattering of a 72-day Rossby wave (second
baroclinic mode, second meridional mode). The interference pattern is qualitatively
similar to Figure 6b.

(3) 50-day oscillations at 8N, 52W. These oscillations were detected with two
current meter moorings off French Guiana, one at 7.56N, 52.74W (site B) and the
other at 8.50N, 52.15W (site C) (Johns ef al,, 1990). The current vectors at the two
sites rotate in opposite directions, and the meridional velocities at site B (v;) lag
those at site C (v.) by about 45°. At each site, the current vector rotates in one
direction during one half cycle, and in the opposite direction during the other half of
the cycle.

We have calculated the current vectors at sites B and C for incident waves in the
first baroclinic mode and periods of 45, 50 and 55 days. For T' = 45 days, we have
N = 1, and for T = 50 and 55 days, N, = 2. The calculated vectors exhibit
counter-rotation for T = 45 and 50 days, when the incident wave is in the first
meridional mode (Fig. 7). Both the current vectors resulting from the scattering of
second meridional mode waves and those of the incident waves under consideration
do not exhibit the counter-rotation. Johns et al. (1990) have proposed an interpreta-
tion for the oscillation in terms of a local mid-latitude Rossby wave with nearly zonal
wave vector, neglecting the interaction between the wave and the ocean boundary. In
such a model there is no reason to expect the observed counter-rotation. In our
calculation, this effect appears in the 45-50 day period range as a result of interaction
between an incoming wave and the boundary geometry; it is not displayed in the inci-
dent waves. At T = 45 days, the major axis of the current ellipse at site C is tilted by
nearly 60° with respect to the zonal direction (Fig. 7). This resembles somewhat the
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Figure 7. Calculated current vectors at sites B and C of Johns et al. (1990), resulting from the
scattering of Rossby waves with periods T = 45 and 50 days (first baroclinic mode, first
meridional mode). The display of the current ellipses is similar to Figure 4, but their sizes
arc shown to scale.

tilt of the longest current vectors at 100 m depth at site C, displayed in Figure 3b of
Johns et al. (1990). The calculated phase lags between the two sites are strongly sensi-
tive to wave period. At T = 50 days, v leads v, by 36°, which is reasonably in accord
with the observed lag of 45°, but at T = 45 days the phase difference increases to 135°,
Both our model solution and the mid-latitude Rossby wave proposed by Johns er
al. (1990) fail to exhibit the reversal in the direction of rotation of the currents during
half of the cycle. Furthermore, the amplitudes resulting from scattering of equatorial
Rossby waves are small west of 50W (Fig. 2b and 5b). Thus, a single incident plane
Rossby wave seems unable to generate certain aspects of the observed 50-day
oscillation off French Guiana. A better simulation might possibly be obtained by
including the effects of local and remote wind forcing at more than one period.

6. Discussion

In this paper we have applied the general boundary integral equation method
proposed in Part I to treat the scattering of equatorial waves by islands and
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continental margins of arbitrary geometry. The resulting formulation (Egs. 3.20 and
3.21) is exact in the context of linear theory, and unifies the description of high,
intermediate and low frequency dynamics, as well as the treatment of wave scattering
by eastern and western ocean boundaries.

From the computational standpoint, the boundary element method is suitable for
use with small computers (all the numerical results of this paper were obtained with a
personal computer). In fact, little information is needed to describe the geometry of
a particular scattering problem, and this can be very easily changed if necessary to
increase the boundary resolution. Besides, the number N of boundary elements will
normally be O(10%), so that the solution of the non-sparse system of equations (4.3)
for the boundary pressures can be performed in a short time and with modest
memory requirements.

The scattering of intermediate frequency equatorial Rossby waves by a western
Atlantic boundary of realistic horizontal geometry was numerically studied using the
boundary element method. In all considered wave modes (first and second baroclinic
modes, first and second meridional modes), and for low enough frequency, the field
resulting from scattering is dominated by an amplitude maximum near the western
boundary, north of the Equator. The amplitude at this maximum may be as high as 5
times the maximum amplitude in the incoming wave. The amplitude maxima always
appear at the longitude range where maximum amplitudes occur at the coast.
Furthermore, the local wavelength at the maxima and the appearance therein of high
amplitudes poleward of the extreme latitudes (caustics) xy, is consistent with an
interpretation in terms of constructive interference of damped equatorial modes
(evanescent waves). These modes, excited at the boundary south of the Equator by
the incident Rossby wave, can travel with little damping in the meridional direction,
since they are affected by damping in the zonal direction only. In this way, the
evanescent waves can reach the northern caustic at the latitude y,, making there a
significant contribution to the pressure field. Therefore, the appearance of the
maxima is an effect of linear theory which would probably be missed in a long-wave
calculation.

The presence of the maxima is clearly dependent on the slanted boundary
geometry, since with a meridional boundary the interference pattern would be
symmetrical with respect to the Equator. An amplitude maximum resembling the
one found in our study was found in the recent simulation of Moore and McCreary
(1990), where a model western Indian Ocean was forced by a zonal wind stress with a
period of 60 days. The maximum appears close to the western boundary between 3S
and 8S; from our study, we would expect the maximum to lie in the southern
hemisphere due to the slant of the African coast from southwest to northeast, as
opposed to the slant of the South American coast from southeast to northwest, which
produces maxima in the northern hemisphere.
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There is still a lack of observational data on intraseasonal oscillations in the
regions where our calculations predict the appearance of amplitude maxima. In this
respect, a possible evidence is provided by a spectral peak at T = 73 days, detected in
IES data from 3N, 38W (Garzoli, 1987); large amplitudes are expected at this point
from the scattering of the second meridional mode Rossby wave in the second
baroclinic mode. On a basin-wide scale, the calculated interference patterns for
50-day waves (Figs. 2b and 5b) seem generally consistent with the observations of
50-70 day oscillations found in IES data from 28W, those maximum amplitude
occurs between 3-9N, and from 10-34W along the Equator, where the amplitude is
low (Garzoli, 1987).

The 40-day current oscillations in the eastern portion of the NECC, observed at
6N, 28W (Richardson and Reverdin, 1987) exhibit some similarity to the current
induced there by a 40-day free Rossby wave (first baroclinic mode, first meridional
mode). The inclusion of the waves reflected at the western boundary sharply
increases the amplitude of oscillation of the northward velocity component, but this
effect would be weaker if the dissipation coefficient were larger than the one
employed in our calculations.

Current oscillations with periods near 50 days have been detected with two current
meters moored off French Guiana (Johns et al.,, 1990). Even though the amplitudes
of the fields resulting from the scattering of 50-day waves are small west of SOW, we
have compared the calculated current vectors at both current meter sites with the
observed oscillations. For incident Rossby waves with periods between 45 and 50
days (first meridional mode, first baroclinic mode), the calculated current vectors at
the two sites exhibit the observed counter-rotation, as a result of the interaction of
the incident wave with the western boundary. The phase lag between the sites is
strongly sensitive to the wave period, but at T = 50 days it is reasonably in accord with
the observations. On the other hand, our simple model is unable to reproduce the
observed reversal in the direction of rotation of the current vectors during half of the
50-day cycle. A more elaborated model for the oscillation should incorporate the
effects of some wind-stress distribution over the ocean; to carry out such a study, it
would be convenient to develop a time-dependent version of the BIE techniques of
the present series of papers. Furthermore, the presence of the strong North Brazil
Current in the region could indeed require the use of a non-linear model.

Although we have not investigated the scattering of waves with periods longer than
90 days, our results suggest that in these cases large amplitudes are also to be found
north of the Equator, near the western Atlantic boundary. This seems consistent with
the presence of a strong maximum in the annually averaged eddy kinetic energy,
centered at SN, 47W, as derived from historical ship drift data (Richardson and
Philander, 1987). Furthermore, the present calculations suggest that scattering
effects may be important in the interpretation of recent altimetric observations of sea
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level in the equatorial Atlantic from Geosat (Carton, 1989), GEOS3 and Seasat
(Menard, 1988), which exhibit high-amplitude features north of the Equator and
west of 35W.
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APPENDIX

Evaluation of near-singular integrals

The singular parts of the kernels are linear combinations of homogeneous
functions of R = r’ — r and of logarithmic functions of R = |R| (see Part I). Consider
a straight-line boundary element E = [r,, r,}, and a point ' not on the element. The
length element along E is

ds = |r, — r||dE = d,,dE, (A1)
where 0 < £ < 1, the normal vector to £ is
A=d;(r,—r) x2 (A2)
and for r on E we have

R=(r'-r)+ & 1), (A3)
R*=A8+ Bt +C,

with
A=d},, B=2(r,—r) (' -r), C=|r-r]- (A4)
Thus, from (A.3) and (4.9) we get

- J; K®(r'; r)ds = (Y/"T)[[yc(xm)’]z = XpYo)

+ 1y (o X, + yay)ll + y'dyl, — [2yxy" + iy12]13} »

(AS)

where

n =X =Xy Yu =Y —Y, X=X =Xy Yo=Y Y (A.6)

fl;lgg;’ 2_f g;:f’ 13=J:lnR2d§- (A7)



1992] Holvorcem & Vianna: Tropical ocean dynamics—Part [1 59

Using the expression for 2™(r’; r) given in Part I, we find analogously

R fED(S)(r’; r)-hds = (y/mi) [d%z()ﬁzla + 2y 15)
+ [2¢,%0 Y0 + V(Yo — xél)]lﬁ + 2y [ ey = xnz}’m)[(}’?z - X?Z)IA (A.8)
+ (v — X)) + (o = Yoy )xyor = Yixo) Is)
= Yis [y (y"™ + 4h_A) + lexllylyc]li!] ’
¥ L‘@(S)(r'; r)-ids = ('Y/"Ti)[_dﬁz(xlzltz + 2 15)

= [2yiXa Yo — xlz()’(zn _Xgl)]ls + i'Y[(.Yél - x(zn)[(xlzxm + Yeyolls + 2d%zls] (A.9)
+ oye(h + 3h) — xox, (8, + 3L, + dbl, + 2x,x01]

+ Vis e (y'? + y2 = 3y = 2ypy'ye b},

where
1 E4dE VEAE 1 dE
1= f = 15=f07, 16=f0};. (A.10)
Inview of (A.3), the integrals /,, . . ., I, can be expressed as
L=27T, I,= lBT lli
1= s 2_-A _2nC’
I—lTA lBl s 1 2
Sy +t5BIno+ ns -2,
/ 1r4CT B+2C ; 1ZBT 24 +B
STATTTT s P T aA s )
. 1] r A(2C - B) - B?
6_A. + cs ’
where
A=44C-B* T ! t 241 5) t .5
= - B?, =—|tan”' ——=———tan"' —|,
/A /A /A (A12)
§S=A+B+C
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