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Abstract. Mathematical morphology is a general theory that stud-
ies the decomposition of operators between complete lattices in
terms of some families of simple operators: dilations, erosions, an-
tidilations, and antierosions. Nowadays, this theory is largely used in
image processing and computer vision to extract information from
images. The KHOROS system is an open and general environment
for image processing and visualization that has become very popu-
lar. One of the main characteristics of KHOROS is its flexibility,
since it runs on standard machines, supports several standard data
formats, uses a visual programming language, and has tools to help
the users to build in and install their own programs. A set of new
programs can be organized as a subsystem called a toolbox. We
present MMach, a fast and comprehensive mathematical morphol-
ogy toolbox for the KHOROS system dealing with 1-D and 2-D gray-
scale and binary images. Each program that is applicable to gray-
scale and binary images has specialized algorithms for each of
these data types, and these algorithms are chosen automatically
according to the input data. Several examples illustrate applications
of the toolbox in image analysis. © 1998 SPIE and IS&T.
[S1017-9909(98)01701-2]
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Mathematical morphology is a solid algebraic theory to
study operatorgi.e., transformationsbetween complete
lattices!? and is an extremely powerful tool to extract im-
age informatiort*

From a theoretical point of view, mathematical morphol-
ogy studies the decomposition of operators between com-
plete lattices in terms of some families of simple operators:
dilations, erosions, anti-dilations, and anti-erosions. These
operators are called tledementary operators of mathemati-
cal morphology.

In mathematical morphology, operators are built by
combining the elementary operators through the union, in-
tersection, and composition operations. Once an operator is
built, it can also be used as a primitive to build other op-
erators and so on. This decomposition procedure can be
described by a formal language, and a particular implemen-
tation of this language is called raorphological machine
(MMach). The programs for an MMach are also called
morphological operators

From a practical point of view, an MMach is a tool to
Bxtract image information. Usually a goal is broken heuris-
tically in subgoals that are achieved by primitive operators.

Introduction
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Fig. 1 Ellipses of several sizes. Fig. 3 Markers for the long ellipses.

We believe that in addition to reading this text through
once, the readers may want to consult the mathematical
definitions. For this purpose, Table 1 is useful, since having
the name of the operator it is straightforward to get the
%humber of the corresponding mathematical expression.

Following this introduction, Section 2 gives the formal
specification of the implemented toolbox. Section 3 pre-
sents several application examples. Section 4 presents the
main characteristics of the KHOROS system. Section 5
gives some aspects of the toolbox architecture and dis-
cusses the main algorithms implemented. Section 6 pre-
sents a comparison of MMach with other freely available
software for mathematical morphology. Section 7 summa-
rizes the main contributions of this paper and gives some
directions for future works.

The right composition of these primitives gives the operator
that achieves the desired goal. For example, to extract lon
ellipses from images like the one in Figure 1, we could
transform the ellipses into line segmefiisgure 2, elimi-
nate iteratively the end points of these segments until the
segments representing the small ellipses disap{feégure

3), and finally, recover from the original image the ellipses
marked by the remaining fragments of the segméfigure

4).

Thus a good system to perform mathematical morphol-
ogy applications must have two main characteristics: fast
algorithms for the elementary operators and a suitable in-
terface to prototype new operators.

The KHOROS system is a portable environment for im- 2 Morphological Image Processing

age processing and visualization that hasf become venyt has been showif that any operator between complete
popular. It runs on several UNIX based architectures, has gattices can be described in terms of the four classes of
visual programm.ing Ianguage for user interface, and Pro-elementary operators of mathematical morphology.
vides tools to build and install new programs. This result means that by combining the elementary op-
As the original set of programs for mathematical mor- erators implemented in our toolbox, one can create, in
phology in KHOROS is not satisfactory, we decided 10 theory, any image processing algorithm. In practice, many
implement a toolbox dedicated to image processing by yseful operators can be implemented efficiently using de-
mathematical morphology. This toolbox, called MMach, composition in terms of elementary operators. However,

was first freely distributed in 1993. Now in its forth ver- for some useful operators this kind of implementation im-
sion, it has hundreds of users and is still freely distributed pjies bad performance.

at http://www.dca.fee.unicamp.br/projects/khoros/mmach/"  Therefore, given priority for developing an efficient

tutor/mmach.html. o _ o computational tool, we decided to implement hierarchically
An important characteristic of MMach is that its imple-  most of the operators, but keep special algorithms for some

mentation follows exactly a formal specification of the op- particular operators. So the kernel of the toolbox contains a

erators and operations. In this paper, we give the formalrequced set of chosen operators besides the elementary op-
specification of MMach as well as several illustrative ap- grators.

plication examples and the main characteristics of its archi- At the beginning, we decided to organize the MMach

tecture. menu hierarchically, based on the number of elementary
operators used in their decomposition. Thus, taking an in-
creasing complexity order, we defined the following fami-
lies of operations and operators: basic image operations and

-
—_— -=--,._,—-/
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Table 1 Toolbox content.

Toolbox Operators: MMach-1.4

Category Operator Executable Expression
Image Creation Frame vframe 1
Relations Equal vequal 3

Less or Eq vless 2
Operations Addition vaddm 10
Ext.Intersection vextintersec 6
Ext.Union vextunion 7
Intersection vintersec 4
Negation vheg 8
Subtraction vsubm 9
Sym-Differ. vsymdif 12
Toggle vtoggle 11
Union vunion 5
Structural Element 3% 3 Str.El vstrflat
Cylinder veylinder 22
Disk-City Block vdiskstr 20, 18
Disk-Euclidian vdiskstr 20, 17
Disk-Chess Board vdiskstr 20, 19
Rotate-SE vrotstr 27
Semi-sphere vsphere 21
Viff to Str.El. viff2str
Dilation and Erosion Dilation vdil 31
Dilation by Segment vdilseg 39
Dist. Function vdist 43
Erosion vero 32
Erosion by Segment veroseg 40
N Dilation. vndil 13, 31
N Erosion vhero 13, 32
Geometric Manipulation Expansion by Dilation or vexpand 48, 49
Erosion
Shrink by Dilation or Erosion vshrink 50, 51
Morphological Filters Center Filter veentfilt 13, 63
Closing vclose 53
Closing by Segment vcloseseg 57
Cco-ASF VCOASF 59, 62
coc-ASF VCOCASF 61, 62
oc-ASF VOCASF 58, 62
0Cco-ASF VOCOASF 60, 62
Opening vopen 52
Opening by Segment vopenseg 56
N-Closing vnclose 55
N-Opening vnopen 54
Connected Filters Cond. Dilation veonddil 64
Cond. Erosion vcondero 65
Closing of Holes vclohole 68
Inf-Reconstruction vopenrec 66
Labeling vlabelm 69
Minima Imposition vminimpos 70
N Cond. Dilation vnconddil 13, 64
N Cond. Erosion vncondero 13, 65
Regional Max vrlocmax 71
Regional Min vlocmin 72
Sup-Reconstruction vclorec 67
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Table 1 Continued.

Toolbox Operators: MMach-1.4

Category Operator Executable Expression

Residues Close Reconst. Top Hat vcloserecth 77
Last Erosion vlastero 80
Morph. Close Top Hat vcloseth 75
Morph. Gradient vmorphgrad 73
Morph. Open Top Hat vopenth 74
Morph. Skel. vskel 79
N-Cond. Bisector vncondbisec 81
Objects on Frame Off vedgeoff 78
Opening Reconst. Top vopenrecth 76
Hat

Sup-generating and Inf-generating Adaptive Threshold vthreshm 82
Inf-Generating vinfgen 87
Inf-Canonical vicanon 92
Sup-Generating vsupgen 86
Sup-Canonical vscanon 91

Thinning and Thickening Cond.Exoskel by Thick vcondskthick 104
Cond.Skel by Thin vcondskthin 103
Cond.Thick vcondthick 96
Cond.Thin vcondthin 95
Exoskel by Thick vkthick 100
N-Cond.Thick vhcondthick 102
N-Cond.Thin vhcondthin 101
N-Smoothing Segm. vsmoothseg 106
N-Thick vnthick 98
N-Thin vnthin 97
Refined Skel by Thin vskelthinP 108
Skiz vskiz 105
Skel by Thin vskthin 99
Thinning vthin 93
Thickening vthick 94
Watershed vwatersh 107

operators, and first, second, and third level image operatorsizes it, for example, 0, 1k. WhenK={0k}, the setk®
Although this organization is a clear criteria, it is not intui- || represent the binary images. A binary imafjenay be

tive for users without a deep knowledge of the operator’s represented equivalently by the subBebf E such thatx
decomposition. Therefore, from MMach version 1.4, _ g fx)=k.

we have reorganized the toolbox menu in the following Figure 5 presents a binary image. Figures 6 and 7

families ?f ?perauonzllan_d operactjors: relations, operations,, esent, respectively, a gray-scale image and the graph of
structural elements, dilations and erosions, geometric Mayg yaprasentation as a function,

nipulation, morpho_logical fiIt_ers, connejcted fi_Iter_s, resi- Let JE denote the limit points of the rectange The
dues, sup-generating and inf-generating, thinning, andfunCtion in{OKIE given by

thickening.

k if xedE

2.1 Image Representation f(x)= 0 otherwise
otherwis

Let Z be the set of integer& be a rectangle af?, andK
be an interval 0 k] of Z, with k>0. The collection of func- 5 called the frame oE.

tions fromE to K will represent the gray-scale images of

interest. We denote such collection By and its generic )

elements byf, g, f,, f,, f; andf,,. When it is certain that 2-2 Relations

we are dealing just with functions, a constant function in One of the most fundamental notions in mathematical mor-
KE will be denoted by the element & which character-  phology is the less or equal relation that induces the notion

&)
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Fig. 5 Binary image. Fig. 6 Gray-scale image.

of partial ordering in a set of objects. In an MMach the
existence of a function that checks this relation is important,yhere < denotes the less than or equal relation between

for the construction of iterative morphological operators jnteger numbers. Figures 8 and 9 show, respectively, a situ-
with an undefined number of iterations. For this kind of ation where this relation holds and where it does not.
operator the satisfaction or not of the ordering relation be- A, imagef, is equalto an imagef,, denotedf;=f,, if
tween images produced in two consecutive iterations de-,o following statement holds: ' ’
fines if the next iteration will be performed or not.

An imagef, is less than or equahn imagef,, denoted

f,<f,, if the following statement holds: f1=faelf00=1(x), for any xeE], ®

where = denotes the equality relation between integer
fisf,o[fi(x)<f,y(x), for any xeE], 2 numbers.

Fig. 7 3-D representation.
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) Fig. 10 Intersection.
Fig. 8 fi=<f,.

these operations applied to two distinct functidpsandf,
produce, respectively, the infimum and the supremurh, of
nd f,, with respect to the partial ordering. For this

2.3 Operations
Some useful definitions of punctual operations on images
are given here. These definitions are based on structur eason, the two binary operatioisand O are also called

properties of the intervglok] of Z. , infimumand supremunoperationgor simply infimum and
The intersectionof f, and f,, denotedf,lf,, is the  gypremum

function inK*® given by, for anyxe E, Usually, in practice, we need to perform successively
) several intersections or unions, so it is useful to have pro-
(f10f2) (x)=min{f1(x),f2(x)}. 4 grams that implement extended intersections and extended
unions.
_ TEE unionof f, andf;, denotedf,[f5, is the function Let 1={1,2,3,..n} be a set of indices. Thextended
in K= given by, for anyxeE, intersection of a set of functions{f;:iel}, denoted
O{f;:i e}, is the function inKE given by
(f10f2) (x)=max{ f1(x),f2(x)}. ) &l I
Figures 10 and 11 show, respectively, the intersection Dt fi ‘i €1}=((f10f2)0...)Of . (6)
and the union of the two 1-D functions of Figure 9.
The two binary operations and [ from KEX KE to KE The extended uniowf a set of functiongf;:i 1}, de-

are calledintersectionand union, respectively. Actually, — noted({f;:i e 1}, is the function inKE given by

Fig. 9 fi<f,. Fig. 11 Union.
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—+ F —— Negatlon

Fig. 12 Negation.

O{f;:i e 1} =((f,0f ) O...) Of . 7

The complementaryor negative of f, denoted—f, is
the function inKE given by, for anyxe E,

(=f)(x)=k=1(x). 8

The unary operation- from KE to KE is called acomple-
mentaryoperation(or negation. Figure 12 shows a func-
tion and its negation.

The differencebetweenf,; and f,, denotedf,—f,, is
the function inKE given by, for anyxe E,

f —f if f <f

The binary operation- from KEXKE to KE, is calleddif-
ferenceoperation(or subtraction. Actually, we havef,
—f,=<f,0(—f,), and we get the equality for binary im-
ages, that is, fof,(E)=f,(E) ={0Kk}. Figure 13 shows the
subtraction of a constant from a function.

Thesumof f, andf,, denotedf; + f5, is the function in
KE given by, for anyxeE,

R0+ (%) i f(x)+fi(x)<k
(f1F12)(X)= k otherwise - (10
The binary operation from KExXKE to KE is calledsum
operation(or addition). Figure 14 shows the addition of a
constant to a function.

Let f, f;, andf, be such thaf;<f<f,. The toggle
transform off with respect tof; andf,, denotedf,[f]f,,
is the function inKE given by, for anyxe E,

f if (f—f =(f,—f
(LL00=] 0 omermica 2% an

180/ Journal of Electronic Imaging / January 1998/ Vol. 7(1)
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Function +—s—s Subtraction

Fig. 13 Subtraction.

The transforn -] from KExX KEX KExX KE to KE is called
the toggle operator.

Note that the toggle produces image enhancement, since
it increases the relative distance between the gray levels of
the image and preserves their partial ordering. Figure 15
shows the effect of the toggle operator, characterized by the
two extreme functions of Figure 16, when applied to the
intermediate function of Figure 16.

The symmetrical differencbetweenf; andf,, denoted
f,~f,, is the function inKE given by,

¢

o 200 400 700

Furcticn +—+—+ Additicn

Fig. 14 Addition.
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Fig. 17 Symmetrical difference.
Fig. 15 Toggle.

2.4 Operators and Operations on Operators

An operatoris a mapping fronkE to KE. We denote op-
erators by Greek lettersy, 8, y, I', etc. Therefore, an op-
(fi=fy)=(f,—f)0O(f,—fq). (12 eratory transforms an imagé into an imagey(f ).
The identity operator is the mapping, denotedgiven
The transform~ from KEX KE to KE is calledsymmetrical by, for anyf e KF,
differenceoperation.

Note that in the binary case the result of this operation is ¢(f )=f.
the set of points that is contained in one input image and
not in the other. Figure 17 shows two functions and their ~ The operators may be combined by simple operations to
symmetrical difference. build other operators. In this section, we present some op-
erations defined on the space of operators.

Many useful operations on operators are inherited from
operations on functions. In the following, we present some
operations on operators inherited from the operations de-
fined in the previous section. A common characteristic of
s all these operations is that they have a parallel nature.

Let ¢, and ¢, be two operators fronkKE to KE. The
ok intersectionof the operatorgs, and, is the operator from
\/ \ KE to KE, denotediy,0i,, given by, for anyf e KE,

(¢ Oery) (F )=ty (F )Oaprp(T ).

The operation ofntersectionbetween the operatoig, and
Y, denoted], is the mapping given by

(1 0¢hy)— ¢ O,

Analogously, we define the operations wfion, addi-
tion, and subtraction denoted by[], +, and —, respec-
° ° 10 . 20 tively. These binary operations can be extended to a se-
quence of identical operation or reduced to a unary operator
by fixing one of its arguments. We wriig(f ) (g to denote
the intersection of the functiong(f ) andg.

P2 —F R F Let ¢ be an operator fronkE to KE. The negationof
the operatory is the operator fronk € to KE, denoted— i,
Fig. 16 Three ordered functions. given by, for anyf e KE,
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(=) (f)=—u(f).

The operation ohegationfor operators, denoteet, is the
mapping given by

b=y

An important operation on operators that is not inherited
from an operation on functions is the composition. A sa-

lient difference between composition and the other opera-

tions presented before is that it has a sequential nature.
The compositiorof the operator); with the operatok),

is the operator froniE to KE, denotedy,;, given by, for

any f e KE,

(atp)(F)=hol pu (T )].

The operation otompositionof two operators is the map-
ping given by

(1, 2) > bathy .

Of course, any operator may be composed with itself.
The succession af self compositions of a generic operator
¥, wheren is a positive integer, is denoted

Y.

For example, the operatafys will be denotedy?. This
notation is extrapolated far=0 by statingy°=.

In practice,n self compositions of an operatap is
implemented by a recursive procedure, that is, for &ny
e KE,

Pr(f)=1n,

wheref; 1= (f;,) andfy=f.

Analogously, an undefined number of self compositions
of an operatory is implemented by the following recursive
procedure, for any e KE,

Pr(f)=",,

wheref; . 1= (f,), fo="F, andn is the first iteration such
thatf,=f,,,. Toimplement this kind of iterative system it
is necessary to use the relations stated in Section 2.2.

(13

2.5 Structural Elements

Important classes of operators are characterized by func

tions fromBC7Z? to K. These functions are callestruc-
tural elements and are denoted by the lower case lbtter

2.5.1 Notations

Usually, the domain of a structural element is much smaller
than the image that should be transformed. Hence, a cond(u,w)=<d(u,v)+d(v,w).
venient representation for it is a structure composed of a

matrix and a vectofi.e., a pair of numbejs defined from
the origin[i.e., the point(0,0)] to a point of the matrix, for
example its right up corner. An example of a structural
element is the pair

182/ Journal of Electronic Imaging / January 1998/ Vol. 7(1)

1
5 4 5 1(572)1
8

where the dots in the matrix represent points that are out of
the structural element domain. When the origin belongs to
the domain of the structural element, it may be denoted just
by a matrix, the origin being represented by a bold charac-
ter. For example, the structural element

1
5 4 5(/(1,)
8

may be represented just by

1
5 4 5
8

When a structural element is a function that is constantly
equal to zero, it is called flat. We convention to substitute
the function by its domain in the representation of a flat
structural element and denote it by a capital letter. In this
case, instead of representing the function by the gray level
of its points, we represent it by a matrix of zer@sthe
point is not in the function domajrand onesif the point is
in the function domain For example, the flat structural
element{(-1,-1),(0,0),(1,1} is represented by

0 0 1
0 1 0f,.
1 0O

The image operators that are characterized by a struc-
tural element are denoted by a Greek letter with an index
that may be the lower case letter(for generic structural

element$ or an upper case lettdfor flat structural ele-
ment33 7b1781¢b7¢BirAvrbv"' .

2.5.2 Discs, semisphere, and cylinder

In practical applications some important flat structural ele-
ments are the disks. The notion of disk depends on the
notion of distance in a metric space.

A distance(or metric¢) d is any function defined fronk

to R that, for anyu,v,w e E, satisfies the following prop-

erties

d(u,v)=0[d(u,v)=0=u=v], (14

d(u,v)=d(v,u), (15
(16)

The valued(u,v) is called thedistancebetweenu andv.

Let u and v be two elements ofE represented by
(ulu2) and @lp2), respectively. Three particular ex-
amples of distances are: tl®iclideandistance
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de(u,v)=[(u;—v1)%+ (Uy—v,)?]*2 17 This notation is extrapolated for=0 by stating

the city blockdistance 0B={(0, 0)}.

dp(U,0) =|us—v4|+[uz—vol, (18 We denote byB the reflectionof B, that is,

and thechessboardlistance B= {—x:xeB}. (26)
di(u,v)=max|u;—vy|, Uz~vol}. (19) Another useful operation on structural elements is the

clockwise integer rotation around the origin. Let (x,) be
an element of/? and let ;,,X,,) denote the integer rota-
tion of (x;,X,) by a degrees, that is, the point i#f that is
the nearest neighbor of the real rotation af (x,) by a
Dy(x,r)={yeE:d(x,y)<r}. (20 degrees. -
! ' Let B be a flat structural element aacbe a positive real
Two particular disks used often in practice are the 3 number. Thanteger rotationof B by a degrees is the sub-

X 3 square centered at the origin and the cross contained irpet
this square. These subsets are calledetkenentary square
d ysd Ba=1{(X1a,X2a):(X1,Xz) € B}. (27)

and theelementary cross.
For example, the integer rotation by 45 degees of the subset

Let x be an element oE andr be a positive integer. A
digital disk under the distancé of centerx and radiug is
the subset oE given by

Let (0,,0,) e Z2 andog, r e K. A semispher@f center
(01,0,,03) and radiug is the structural functiob from B

to K given by, for any &;,x,) € B, 0 0 1 0 0O
b[(Xl,Xz)]:03+[r2_(X1_01)2_(X2_02)2]1/2, (21) 0 1 0 is the subse 1 1 1),
1 0 O 0O 0 O

whereB is the digital disk(under the Euclidean distance
of center 0,,0,) and radius. 2.5.4 |Interval

LetheK andB be a digital disk(under the Euclidean  Some important families of operators are characterized by a
distancé. A cylinderis the structural functiotv from B to collection of structural elements called intervals. In this

K given by, for anyx e B, subsection we introduce the notion of interval and the no-
tations adopted to represent it.
b(x)=h. (22) Let W be a finite subset of?. Let A and B be two

subsets ofW, such thatACB. The collection[A,B] of

2.5.3 Operations on structural elements subsets oW, such that

Next, we present some operations on structural element§A B]={XCW:ACXCB} (28
that are useful in characterizing important classes of opera-
tors. is called an interval of extremitie& andB.

Let W be a finite subset of? andB be a subset ofV. Often the interva[ A,B] is represented in a single ma-
We denote byB® the complemenbf B with respect toV,  trix, whose values are @hen at a given point botA and
that is, B have the value ) 1 (when at a given point botA andB

have value 1and X (when at a given poinA andB have

B°={xeW:x¢Bj}. (23 different values For example, the interval of extremities

We denote byB+u the translateof B by any vectoru

_ _ 11 1 111
in 72, that is,
0 1 Of and |1 1 1
B+u={x+u:xeB}. (24) 0 0O 0 0O
The Minkowski addition of two subsefs andB of 72 is is represented by

the subseA@ B of 72, given by,

1 1 1
A®B=U{A+b:beB}. (25) % 1 x
Of course, the two arguments of the Minkowski additon | 0 0 0
may be the same subset. The successiom-of, wheren o _
is a positive integer, self additions of the subBetdenoted ~ 26 Dilations and Erosions

nB, is given by Dilations and erosions are the most fundamental classes of
operators in mathematical morphology. Their algebraic
nB=(BeB)o...®B. definitions involve the notion of infimum and supremum on
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complete lattices. Dilations commute with the supremum
operation, while erosions commute with the infimum opera-
tion. In fact, through the Galois connection concept we can
establish a one-to-one relation between the set of dilations
and the set of erosions; that is, for each dilation there is a
corresponding erosion and vice versa. We say that a pair
formed by a dilation and its corresponding erosion consti-
tutes an adjunction. These definitions and properties are
quite general, but we study here just some subclasses of
dilations and erosions defined on gray-scale images. For a
complete characterization of translation invariant gray-level
dilation and erosion, see Banon in Refs. 7 and 8.

A property of the elementary operators defined on gray-
scale images is that any anti-dilation and anti-erosion can
be obtained directly by the composition of, respectively, a
dilation and an erosion with the negation. Thus, it is enough
to state the notions of dilation and erosion to get the other
corresponding elementary operators.

2.6.1 Dilations and erosions by structural elements

We now recall the definition of two important subclasses of
dilations and erosions that are based on the Abelian group
property of (/2,+).

Let + be the operation fronk X Z to K defined by, for
anyteK andv €7,

L] 200 400 To0

Funet ton

+—— Dllution NP

Fig. 18 1-D dilation.

0 if t=0
) if t>0 andt+v<O0
=1 {4y  if t>0 and O<t+v=k (29
k if t>0 andt+uv>k

Similarly, let — be the operation fronK X7 to K defined
by, for anyte K andv 7,

0 if t<k andt—v<0
. t—v if t<k and Ost—v<k
t=v=9 g if t<k andt—o>k (30
k if t=k

The dilation of f by b is the functiond,(f ) in KE,
given by, for anyxe E,
Sy(f )(x)=ma>{f(y)+b(x—y):ye(EH—X)ﬂE}. (31

The erosionof f by b is the functione,(f ) in KE,
given by, for anyx in E,
ep(f )(X)=min{f(y)=b(y—x):ye (B+x)NE}. (32

The two operatorss, and e, from KE to KE are called

The pair €, ,8,) forms an adjunction okE (Ref. 2, p.
388). Yet the use of the operatioAsand - is important to
give similar treatment in the limit cases for the spatial and
gray-scale dimensions: the spatial translation of the struc-
tural element is restricted to the image domain, while its
vertical translation saturates at 0 akdFigures 18 and 19
show a function and its dilation and erosion by the struc-
tural elementsg=[24 25 ... 46 44847 46 ... 25 24 and
g=[1516...28 28029 28 ... 16 15.

The dilation and erosion of a functidnby a flat struc-
tural element are, respectively, the function¥(f ) and
eg(f ) in KE, characterized just by the structural element

280
|

200
l

150
|

dilation anderosionby b.? In the previous expressions, we
recall that maxp)=0 and min{J)=k.

The fundamental idea under these definitions is to trans-
form the image based on local comparisons between the
image and translations of the structural element, which acts
as a sensor of geometrical properties of the function. More
precisely, e,(f )(X) can be equivalently computed by
translating spatiallyp until x, denotedb,, and then trans-
lating b, vertically by the maximuny, such that the trans-
lation of b, by v is less or equal td.
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Fig. 19 1-D erosion.

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'Ter msOfUse.aspx



MMach: a mathematical morphology toolbox

“
45
]

4
9
1

3
3
|

30
0

F > Dilation

F —e— Ercaicn

Fig. 20 1-D flat dilation. ) )
Fig. 21 1-D flat erosion.

B, the domain ofb. The functionség(f ) andeg(f ) are
called dilation and erosion dfby B and are given, for any

xeE, by ..'

3a(f ) () =maxf(y):y e (B+x)NE} (33

and

eg(f )(X)=min{f(y):ye(B+x)NE}. (39

The two operatorssg and eg from KE to KE are called Fig. 22 Binary dilation.

dilation and erosion b (Ref. 4, p. 80. Particularly, when
B={(0,0)}, the dilation and erosion bR are the identity
operator.

Figures 20 and 21 show a function and its dilation and
erosion by the flat structural elemefit1111]. Figures 22
and 23 show the dilation and erosion, respectively, of the
binary image of Figure 24 by an Euclidean disc of diameter
10. Figure 25 shows a gray-scale image, while Figures 26
and 27 show its dilation and erosion by an Euclidean disc
of diameter 10.

2.6.2 Self decomposition of dilations and erosions

Dilations and erosions can be decomposed in terms of other Fig. 23 Binary erosion.
simpler dilations and erosions. Such decompositions have
impact on the implementation of these operators.

If (E,+) constitutes an Abelian group, then the dilations
and erosions defined in the last section are translation in-
variant operators,i.e., to translate the image and then ap-
ply the operator is equivalent to applying the operator and
then translating the resulting image.

Now we present two useful properties of dilations and
erosions by flat structural elements.

Property 1.  The dilation(erosion by a structural seB is
equivalent to the uniofintersection of dilations(erosion$
by subsets in a family whose unionBs that is, Fig. 24 Binary image.

Journal of Electronic Imaging / January 1998/ Vol. 7(1) / 185
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/23/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'Ter msOfUse.aspx



Barrera et al.

Fig. 25 Gray-scale image. Transmitters of filariosis. Fig. 27 Gray-scale erosion.

Sg=0{ 55 :UB;=B}, (35) Let L be a generic digital line segmefite., that has an
: arbitrary size and slopewith one of its extremities at the
(36) origin. The segmerntt can be represented as a sequence of
directional structural element8,,B,,...,B,,, which de-
scribes the path to go from the origin to the other extremity
of L. Hence, as a consequence of Proposition 1, the dilation
and erosion off by the line segment are given by

(SBZD{EBi:UBiZB}).

Property 2.  If the dilation (erosion by the Minkowski

addition of two subset# andB is a translation invariant

operator, then it is equivalent to the composition of the
ilati i A B, that is,

dilation (erosion by A and at is 5.(f )=LD531(f )5532(531(1‘ )

Oao8= 9a%. S 0...00, (88, ,(--(3,(f ) (39)

(ercs=€a%8)- (38) and

A particular consequence of Properties 1 and 2 is that _
dilation and erosion by any subs®tcan be built by com- eu(f)=leg, (T )Ues, (2, (T )
posing dilations and erosions by subsets of the elementary O...0eg (65 (...(ea.(f ). (40)
square. Some studies reveal that this decomposition can nooonet !
lead to algorithms for dilations and erosions more efficient
than the direct onegRef. 9, p. 48. 2.6.3 Distance function and threshold

The two operators |, andey, wheren is a nonnegative ~ Two other important families of erosions are the distance
integer, fromKE to KE are called, respectively-dilation functions and the thresholds. A distance function maps a
andn-erosion Figures 18 and 19 show a function and its binary image into an equivalent gray-scale model, while a
24 dilation and 15 erosion by the structural elenfdr 1]. threshold transforms a gray-scale image into a simplified

Actually, whenb is flat, § § ande}} are equivalent to the ~Pinary model.
dilation and erosion by B. Let x be an element oE, X be a subset of, andd be

We call the subsets a distance. The distance between the priand the subset
X, under the distancd, is the value given by

0O 0 0Of|0 O Of[|O0 1 O 0 0O dix.X (g X A1
0 0 1 , 1 00 ’ 0 0O and 0 0 O (Xv )_mln{ (X!y)'ye } ( )
0O 0 0O/][0O O OJ][O0O O O 0 1 0 Let k be a positive integer such that

of directional structural elements. k>maxXd(x,y):x,y e E}. (42

Thedistance functiorapplied tof, under the distance, is
the function inKE given by, for anyx e E,

Vo(f)(x)=d(x,{yeE:f(y)=0}). (43

The operator¥ 4 from {0k}E to KE is called thedistance
functionoperator under the distanck The distance func-
tions are erosions frofOk}E to KE.

Figures 28 and 29 show a binary image and its corre-
sponding distance function. Note that in the image repre-
sentation of the distance function used in this figure, higher
points in the function surface are represented by darker
Fig. 26 Gray-scale dilation. gray levels.
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Fig. 28 Overlapped blobs.

The comparisonbetweenf, andf,, denotedf;<f,, is
the function inKE given by, for anyxe E,

k if fi(x)=<f,y(x)

(f2=<f2)X) =19 otherwise “

The unary operations<f and f<. from KF to KE are
called, respectivelyright and left adaptive thresholdvith

or shrinking. The difference between these operators and
the conventional expansion and shrink is that in the con-

ventional procedures just one point is considered, while in

the morphological procedures a neighborhood around each
point is taken into account. The analysis of the neighbor-

hood follows the one performed by dilation and erosion.

Let N be the set of positive integers and It be the set
of nonnegative integers. Letn{,n2)eN? and let E
=[0,1,...n;—1]%[0,1,...n,— 1] be a rectangle of?. Let
s=(s1,52)eN? and leto=(01,02)e N*2, such thatol
<sl ando2<s2. The vectors ando will be called scale
factor and offset.

LetsE=[0,1,...,6:n1) —1]X[0,1,...,62n;) — 1] and let
BCsE®(sE). sk will be the domain of the expanded im-
ages. o

Let feKE, we definef and f in KSE by, for anyy
e SE,

_|fl(y—o0)/s] if IxeEry=sx+o0
fy)= [ 0 otherwise ’ (46)
— . [f((y=0)/s) if IxeE:y=sx+o0
fy)= [ K otherwise ' “7)

The functionsf andf are expansions of with trivial
interpolations. In the first function, the interpolated value

respect tof. These unary operations are an antidilation and is 0, while in the second function it is. The operators-

an erosion, respectively.

The composition of a distance functidhny with the left
adaptive threshold operatde. is an erosion i{0k}E. If
f is a constant function equal o+ 1K, thenf<WV¥ is
the erosion characterized by the digital disk of cei(@d)
and radiug, that is,

st((O,O),r)Z(r+l$\Ifd). (45)

2.7 Geometric Manipulation

and— fromKE to KSE are called, respectively, inf and sup
expansion.

The expansion by dilatiorof f in KE by the structural
elementB, the scale factos, and offseto, is the function
expand- 8g s o(f ) in K°E, given by, for anyx e SE,

expand- &g s o(f )(x) =max{f(y)+b(x—y):
ye(é+x)ﬂsE}. (48)

In this section, we present some elementary operators that The expansion by erosioof f in KE by the structural
change the domain of definition of the image by expansionelementB, the scale factos, and offseto, is the function

Fig. 29 Distance function.

expand-eg s o(f ) in KSE, given by, for anyx e sSE,

expand- g 5 o f ) (x)=min{f(y) = b(y—x):
ye(B+x)NsE}. (49

The two operators exparts 5 , and expane g ¢ , from
KE to KSE are calledexpansion by dilatiorand expansion
by erosion,with the structural elemerB, the scale factor
s, and offseto.

Note that the expansions by dilation and erosion are a
composition of an expansion with a dilation and an erosion.
As 0 andk are the neutral elements for dilation and erosion
the sup expansion is used in the first case, while the inf
expansion is used in the second one.

Figures 30 and 31 show an image and its expansion by
dilation, using as structural element the image of Figure 30
itself.
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Fig. 30 Image to be expanded.

Let E/s=[0,1,..|n1/s1|=1]X[0,1,..[n3/s,|—1],
where| x| is the integer part o, and letBCE®E, where
E/s is a shrinking ofE.

The shrinking by dilationof f in KE by the structural
elementB, the scale factos, and offseto is the function
shrin—8g ¢ o(f ) in KSE, given by, for anyx e E/s,

shrin— g s o(f )=maxf(y)+b(x—y):

ye (B+sx+0)NE}. (50)
The shrinking by erosiorof f in KE by the structural

elementB, the scale factos, and offseto is the function

shrin—gg ¢ o(f ) in KSE, given by, for anyx in E/s,

shrin—ep ¢ o(f )(X)=min{f(y)—b(y—x):

y e (B+sx+0)NE}. (51
The two operators shrindg 5, and shrin-gg ¢, from
KE to KE are called, respectivelghrinking by dilationand
shrinking by erosionwith the structural elemenB, the
scale factors, and offseto.
The shrinking by dilation and erosion correspond to an
evaluation of the dilation and erosion operators on a grid of
E followed by a sampling.

...... I T S S S R 1
2 ' Y YIYEg 3 393 -
i T i i o 2 o e i i
R e = & = 4
X | . =

3 ) 3 3 3 3 3 n % 3 3 3 3 3 » 3 3 3 3 3
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Fig. 31 Expansion by dilation.
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Fig. 32 Flat opening.

2.8 Morphological Filters

As stated by SerréRef. 1, p. 10}, the morphological filters
are the family of increasing.e., preserve the partial order-
ing) and idempotenti.e., a second application of the op-
erator does not affect the resutiperators. These filters are
useful for shape and size classification as well as for noise
reduction.

In this section, we present some morphological filters
that have been used for image processing. All of these op-
erators are presented in dual pairs. The behavior of the dual
of a filter is equivalent to the behavior of the filter itself
when applied to the complementary image; that is, if a filter
affects the peaks of the images, then its dual affects simi-
larly the valleys and vice-versa.

Two important morphological filters are opening and
closing. They are particularly useful for shape and size
classification and constitute the basis for a complete family
of filters with a rich set of properties.

The operatorsy, and ¢, from KE to KE, given by

Yb= 6bEp (52)

and

$p=¢€p0p, (53

gre cz;l(l)ed(morphologica] openingandclosingby b (Ref.
, p- 50.

Figures 32 and 33 show a function and its opening and
closing by the flat structural elemefit1111]. Figures 34
and 35 show a function and its opening and closing by the
structural element5 10 5].

The operatorsy, , and ¢, , from KE to K, given by

Yno= 5888 (54

and
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Fig. 33 Flat closing.
Fig. 35 Closing.

YL=90LEL (56)
¢n,b:88581 (55)

and
are calledn-openingandn-closingby b. Actually, whenb = 8 5
. . . dL=eL 0L, (57
is flat, v, g and ¢, g are equivalent to the opening and
closing bynB. are calledopeningandclosing by the line segment L

The shape and size classification based on directional The next operators are built by sequential compositions
properties may be performed by the following specialized Of openings and closings. In fact, this family of operators

morphological operators. cover all possible _sequ_ential combir_1ation of openings and
Let L be a digital line segment. The operatgr and ¢, closings. Contrasting Wlth_the opening and closing opera-
from KE to KE, given by tors, they have similar actions on the peaks and valleys of

the images. However, there are still some differences of
behavior due to the fact of beginning by an opening or by a
closing. The operators that begin by an opening affect more

7 — the peaks, while the ones that begin by a closing affect
more the valleys.
The two operator®,, , and ¢, , from KE to K&, given
_ by
) an,b: ¢n,b7n,b (58
W/ and
% {\m ¥nb=YnoPn,p (59
are calledn— ¢y-filter and n— y¢-filter by b (Ref. 1, p.
2 — 203.
The two operator®, , and ¢, , from KF to K&, given
s - by
an,bzyn,b¢n,b7n,b (60)
8 and
¢n,b:¢n,b')’n,b¢n,bv (61
are callech— ¢y ¢-filter andn— y ¢ y-filter by b (Ref. 1, p.
203.
F T Opening WP Alternated sequential filters consist of iterations of filters
of increasing strongness. They produce refined filter effects
Fig. 34 Opening. by modifying sequentially details of increasing scale.
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Fig. 38 Corrupted image.

........ F +——b ASF

Fig. 36 Flat ASF filter.

Its remarkable property is that it is self-dual, that is, it af-
fects peaks and valleys of the images exactly in the same

Denote then— ¢y, n—yé, n—pyd, n— vy filter by way.

b, generically byy, ,. The operatory, , from KE to K&, The operatorB,,, from KF to K, given by
given by
Bo=(tUdpYbPb)\/ Y6 P b s (63
= b Pips 62 _ o _ o
Yno= Pnotn-1p-- 1 62 is called theprimitive of the center filterThe infinite suc-
is called ann alternated sequential filteby b (Ref. 1, p. ~ cessive compositions of this primitiyé, is called thecen-
203). ter filter (Ref. 1, p. 159.

Figure 36 shows a function and its filtering by an alter-  Yet several other morphological filters could be built
nated sequential filter of type-3¢7y, characterized by the from the filters that we have just presented. For example, a

flat structural elemeritL11]. Figure 37 shows the result of 9uite useful refinement of opening and closing operators is
the application of an alternated sequential filter on the im- Puilt by the union of openings and the intersection of clos-
age of Figure 38. ings. Heijmans presented in Ref. 10 other strategies to build

Another interesting morphological filter is the center filter. ”e"‘f{ rgor:phological filters from the ones that we have pre-
sented here.

2.9 Connected Filters

Connected filters constitute a particular family of morpho-
logical filters that are useful to change topological proper-
ties of images(to know more about digital topology, see
Ref. 11). On binary images, the effect of connected filters is
to eliminated objects of the image or of its backgrouinel,
holeg. On gray-scale images, the effect of the connected
filters is to join adjacent flat zondse., plateaus of constant
gray leve). On binary images these filters are based on the
connectivity of the 2-D space and on gray-scale images
they are based on the connectivity of the 2-D or 3-D spaces.

This family of filters is particularly useful in image seg-
mentation, because connected filters have good properties
for selecting objects preserving the details of their edges.

Let g be an element okE. The operators, ; andey, 4
from KE to KE, given by

Ob,g= Sp10 (64)

Fig. 37 Filtered image. and
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Fig. 39 Erosion by a disk.

€p,g=€p\V 0,

are calledconditional (or geodesit dilation anderosionby

b giveng (Ref. 3, p. 393

The operators, ; andep o, wheren is a nonnegative
integer, are called-conditional dilatationanderosionby b

giveng.

Let f be an element oKE. The operatorsy, ¢+ and ¢y, ¢
from KE to KE, given by, for anyg e KE,

Y0,(9) = ()

and

boi(@)=epg(f ),

are calledinf-reconstructionand sup-reconstructiorfrom

the markerf.'?

Figure 39 shows an erosion of the image of Figure 28.

MMach: a mathematical morphology toolbox

Fig. 41 Function and its marker.

square as the flat structural element. Note that the small
objects were eliminated by this filtering and the remaining
objects keep their original shapes.

The inf-reconstruction using the erosion of the input im-
age as a marker is also called opening by reconstruction.
The reason for this name comes from two facts: it is built
by an inf-reconstruction procedure, and it is an algebraic
opening, that is, it belongs to the class of operators that are
increasing, anti-extensighe transformed image is always
less or equal the input imageand idempotent. Other ex-
amples of operators that are also algebraic openings are the
morphological openings and the union of morphological
openings.

Dually, the sup-reconstruction that use a dilation as a

Figure 40 shows the inf-reconstruction of the image of Fig- marker is called closing by reconstruction_, since it_is an
ure 28 from the image of Figure 39, using the elementary element of the class of the algebraic closing; that is, the

Fig. 40 Inf-reconstruction.

class of operators that are increasing, extengive input
image always is less or equal the transformed inaged
idempotent. Other examples of operators that are algebraic
closings are the morphological closings and the intersection
of morphological closings.

Figure 41 shows a function and a marker. Figure 42
shows the same function and its inf-reconstruction from the
marker, using the subsgll1] as the flat structural element.
Figure 43 shows the sup-reconstruction of the image of
Figure 25 from a dilation by a large structural element
(closing by reconstructionusing the elementary square as
the flat structural element.

Figure 44 shows a function and a marker. Figure 45
shows the inf-reconstruction of the function from the
marker, using as structural elemgminflay the function
[111]. Note that the mountains pointed by the marker were
preserved, while the others were eliminated.

The application of the reconstruction operators with
good markers gives a powerful tool for image segmenta-
tion. Some operators derived from these operators are: clos-
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Fig. 42 Flat inf-reconstruction.

Fig. 43 Closing by reconstruction.
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Fig. 44 Function and its marker.

192/ Journal of Electronic Imaging / January 1998/ Vol. 7(1)

Barrera et al.

hE-1-1
|

100
|

R-14]
1

“a,
#

W
s Wﬂ | e ’
S '.,nm‘ M
I

= 200 400 700

—— Inf-rec NP

Fig. 45 Inf-reconstruction.

ing of holes, labeling, minima imposition, and regional
minimum and maximum.

All these operators depend on the choice of a connectiv-
ity relation and this is done via the choice of a flat structural
elementB. Usually, the elemenB adopted is the elemen-
tary squard8 connectivity or the elementary crosg con-
nectivity).

The operator®g from {0k}E to {0Kk}E, given by, for
anyge{0Kk}E,

®g(9)=—1v8,1(—9), (68)

is called theclosing of holesn g. Note that ind(g) there
are no holes. The image of Figure 46 is the effect of the
application of this operator on the image of Figure 47.

Let k=|E|, let i—x; be a numbering process of the
elements of (that is a bijection fronj1,...|E|JCN to E),
and letf be an element oKE such thatf(x;)=i, for x;
€ E. The operaton g from {0k}E to KE, given by, for any
ge{0Kk}E,

Ag(9)=vg,grt(9), (69)

is calledlabeling of g (Ref. 3, p. 405. Note that inAg(g)
each point of a connected componentgois associated to
the same value.

The labeling operator is fundamental for applications
that depend on geometrical measures of the objects.

Let f be an element of0k}E. The operatofl’; g from
KE to KE, given by, for anyg e KE,

I't 5(9)= ¢ +((g\/1) O(k—1)0f), (70

is calledminima impositioron g based on the marker.*?
This filter is quite important in image segmentation. For
example, if it is applied on an image of enhanced edges and
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the marker image has a connected component pointing each
object of interest for the segmentation, it will eliminate all s nitial 4 Marker  sesess Final
the undesired edges and keep just the true edges of the
chosen objects. Figure 48 shows a function, a marker, and
the minima imposition on the function based on the marker.
A point x in E is alocal maximum(resp.local mini- 210 Residues

. E . .
mum of a functionf K= if and on_Iy if the _valuef(x) The family of residue operators consist of operators that are
=f(y) [resp..f(x)<f(y)], for anyy in the neighborhood it py the difference between two morphological opera-

of x. Equivalently, we can say that the local maximum tors. They are commonly used to detect changes of con-
(reSp., local mlnlmumare the invariant pOIntS of the dila- trast, to segment and to compress images_

tion (resp., erosion that is, the set of points where the )
function f=8g(f ) [resp.,f=eg(f )] value isk. Note that ~ 2:10.1 Gradient

= is the equality operator defined by formula 84. Let the flat structural elemen#s andB be subsets of the

A regional maximuntresp.,regional minimumM of a  elementary square. The operatdn, g from KE to KE,
function f e KE is a connected component with a given given by

valueh (plateau of altitudén), such that every point in the

neighborhood ofM has a strictly lower(resp., higher ~ Vag=da—¢s, (73
value. The regional maximum and the regional minimum ) ) ]
can be extracted from the functions by the following opera- is called (morphological gradient (Ref. 3, p. 437. This

Fig. 48 Minima imposition.

tors. operator performs the enhancement of edges. Particularly,
The operatore[® and o™ from KE to {0K}E, given if A -andB are two or three point line segments it does a
by, respectively, directional enhancement of edges. The image of Figure 50
is the complement of the gradiefwith A andB being the
OT(f )= (1=((f+1)— yg 1(F+1))\/(f=Kk) (71) elementary squayef the image of Figure 51.

2.10.2 Top hats and reconstruction residues

An important class of residue operators are the top hats.
These operators are built by the subtraction of an opening

and
0F"(f)=(1=(gps(f-D=(f-1)v(0=f), (72

are calledregional maximunoperator andegional mini- o ?
mumoperator:? o 0306

The holes in the image of Figure 49 are the regional

maxima of the image of Figure 29. " °. r‘ ‘

%08 otb S 000080

-
08y o Q%% 49
o . O © Lo 08" ofa 8 Pa?
00°S ®® %%° %o, 0 :
o ° o o o o0 ° ’ o o
Fig. 47 Blob contours. Fig. 49 Objects and their markers.
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Fig. 52 Subtraction.

Ta(9) =0~ Ve, 0)(9), (76)

is called opening by reconstruction top hdty A andb
(Ref. 3, p. 474

The operatod}, ,, from KEF to KE, given by, for anyg
eKE,

D, b(g):¢A,5b(g)(g)_g. (77

these definitions are consistent with the fact that openings™ A

are antiextensive operators and closings are extensive op- ) .
erators. In the following, we give some top hat operators iS calledclosing by reconstruction top haty A andb (Ref.

defined from the morphological and reconstruction opening3: P 474.

and closing.

The operatory;, from KE to KE, given by

Ytbzb_?’b,

is called (morphological opening top haby b (Ref. 3, p.

474,

The operatorpy, from KE to KE, given by

¢E)= ¢b_ L,

is called (morphological closing top hatby b (Ref. 3, p.

474

Let A be a subset of the elementary square. The operator
Iy, from KE to KE, given by, for anyg e KF,

194/ Journal of Electronic Imaging / January 1998/ Vol. 7(1)

Fig. 51 Calculator pad.

The image of Figure 52 is the result of the application of
the closing by reconstruction top hat on the image of Figure
25.

The next residue operator uses the inf-reconstruction
from a particular marker, the frame image, to eliminate
objects that are on the frame.

The operatofl”g from {0k}E to {0k}E, given by,

Fg=t— g+, (78)

wheref is the frame ofg, is calledobjectsof g on frame
off. Note that in'z(g) there are no connected components
on the frame oE. The image of Figure 46 is the result of
the application of this operator to the image of Figure 53.

2.10.3 Morphological skeletons

In the following, we present three operators that are based
on the detection of centers of maximal shapes contained in
an object(Ref. 9, p. 166. These operators are built by the
union of particular residue operators.

The operatowrg from {0k}E to {0K}E, given by

o5=\/{e5— yse5:i=0,1,.}, (79

Fig. 53 Blobs.
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-~ ! . et ) \ [ )
. . v ! ] . - . Fig. 55 Threshold.
¢ > . . N\ N . .
e \ rl - . . . [ 4 . . .
- . . ,' . ° . union of an anti-erosion and a dilation. They have these
te . Lo ' names, because with the supremum of sup-generating op-
- - . Y . . erators or the infimum of inf-generating operators we can
- perform any complete lattice operafor.

Fig. 54 Dilation of the last erosion. The adaptive thresholdf f with respect tof; andf,,
denotedf,<f<f,, is the function in{0k}E given by, for
anyxeE,

is called thelmorphological skeleton of parameter BRef.
4, p. 207. k if fa00<f(x)<fy(x),
The operator g from {0k}E to {0k}E, given by (F=f<f)0=19  Gtherwise. (82
08=\/{ep~ ¥8,cir1ep:i =01}, (80) The operatorf;<.<f, from K& to {0k}F is called
adaptive thresholdransformation of parametefs andf,.
is calledlast erosion of parameter BRef. 1, p. 28. Actually, we have
The image of Figure 54 is the result of the application of
this operator on the image of Figure 28. The resulting im- fi<f<f,=(f;<f )O(f<f,), (83
age has been dilated by the elementary square for better
visualization. wheref;=<. is an erosion ands f, is an anti-dilation.
The operatorB, g from {0k} to {0Kk}E, given by, for The equality betweenf; andf,, denotedf,=f,, is the
anygeKE, function in{0k}E given by, for anyx e E,
Bne(9)=\/{e5(9) — 6 (e *(9)):i=0,1,..} (81) k if f1(0)="f5(x)

(f1=f2)(x)= 0 otherwise. (84)

is calledn-order conditional bisector of parameter @Ref.

3, p. 383. The binary operatiors from KEXKE to {0k}E is called
In fact, the conditional bisector is an intermediate opera- equality operation. Actually, we have

tor between the last erosion and the morphological skel-

eton, depending on the choice of the paramstéris near  (f;=f,)=f,<f,<f,. (85

to one or other. Fon=0, the conditional bisector will be

the morphological skeleton itself. For values mfbigger The image of Figure 55 is the result of the thresholding
than a given minimum, the conditional bisector will be the (with f; andf, being two constant functions such that
last erosion itself. <f,) of the image of Figure 52.

These operators are frequently used to produce markers Let F be the set representation for the functién
that identify overlapping objects. The image of Figure 54 is < {0k}E. Let W be a finite subset df? and letA andB be
an example of use of the last erosion with this purpose. Thewwo subsets ofV such thatAC B. The sup-generatingind
objects in this image are markers for the cells of the imageinf-generatingoff with respect to A,B), denotedh 5 g(f )

of Figure 28. and ua g(f ), is the function in{0k}E, given by
2.11 Sup-generating and Inf-generating Operators Ma(f ) (X)=kexelye E:FN(W+y) e [A+y,B+y]},
The sup-generating operators are useful to detect shapes. (86)

They act as a template matching where some tolerance is

permissible for the matching. This property is achieved by for anyxe E, and

verifying if the shapes to be transformed are limited by two

fixed shapes that define the interval that characterizes theuag(f )=—Nag(—f). (87)
operator. A sup-generating operator can also be built in

terms of intersection of an erosion and an anti-dilation. Its The operators., g and u g are calledsup-generatingand
dual, the inf-generating operator, can be built in terms of inf-generatingoperators of parameters andB.*4
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The sup-generating operators are useful to detect bidi-are calledn-sup-canonicaloperator andn-inf-canonical
mensional shapes. For example, the interval of extremitiesoperator of parametersZ and.%.

Let A be a subset ofV, i be a positive integer, ang

000 000 €{0,45,90,18p. We denote by, , (or simplyA;, whenq
A=|0 1 0| and B=|0 1 O is fixed in the contextthe subset built by an integer rota-
0 0O 0 0O tion by i X q degrees ofA. For example,

characterizes the sup-generating operator which detects iso-
lated pointdaccording to 8 connectivijywhile the interval if i=2, q=45, and B°=
of extremities

=)

0 0
0 1
11

0 0O 0 0 O then
A={0 1 Ol and B=|{0 1 1
0 0 O 0 0O 110
Bu=1 0 0.
detects horizontal segments of size one or two. 1 1 0

A possible equivalent representation fof g is, for any
feKF, The image of Figure 56 is the result of the application of

a sup-decomposition operator that detects end points of

Aap(f)=ea(f )Uepe(— 1), (88)

whereB€ is the complement oB relative toW. Note that
this representation is an intersection of an erosion of the

digital lines on the image of Figure 57. This operator is
characterized by the sequendgg, and Bﬁq, whereA and
B¢ are the end point parameters of Tableg2; 45, andi

€{0,1,2,...,%. The resulting image has been dilated by the

image with an erosion of its complement. Inspired by this
property, SerrdRef. 3, p. 39 called\ 5 g hit-missoperator
of parameterd\ (hit) andB® (miss.

As the hit-miss representation of the sup-generating op-2.12  Thinning and Thickening

eLatorst 'S cltgssmz?lithusually we f|r:_d in the ![lte;:ltur% the This family of operators is particularly useful for binary
characterization of the sup-generating operatorsAbgn image processing, where it is used to build skeletons and

BC. In the following sections of this paper we also adopt getect geometrical properties. These operators are based on
this convention. o _ . two simple operators: thinning and thickening. The thin-

~ Finally, we should say that the hit-miss representation is ning operator eliminates the center of shapes detected by
in fact an intersection of an erosion with an anti-dilation. ipe™ hit-miss operator, while the thickening operator adds
However, the decomposition of the sup and inf-generatingthe center of the detected shapes.

operators in terms of elementary operators can be more | ot A andB be two subsets oV. such thatAC B. The

elementary square for better visualization.

easily seen in the following representations:

)\A,BZSAD_ 5é0 (89)
and
Has= oal—ege. (90)

Table 2 presents some intervals that are commonly used a
parameter for sup- and inf-generating operators.

The next pair of operators are ttgip-decomposition
(i.e., supremum of sup-generating operataad theinf-
decomposition(i.e., infimum of inf-generating operatgrs
general representations for binary operators.

Let.Z and. % be two finite sequences of subsets with
elementsA; andB;, such thatA;CB;. The two operators
¥, »andw_, ,from {0K}E to {0K}E, given by the fol-
lowing n—1 operations

l,[ll //,,B:D{)\Ai,Bi:i:]-v---n} (91)
and
w_,8=Hua gii=1,.n}, (92

196 / Journal of Electronic Imaging / January 1998/ Vol. 7(1)

two operatorsoa g and 75 g from {0k} to {0Kk}F, given
by

opB=1"Apg (93)
and
TA,B: ID)\A,B y (94)

S

are calledthinning and thickeningby (A,B) (Ref. 3, p.
390.

Let g be an element of0 k}E. The operatorg, g g and
7a.8,g from {0k}E to {OK}E, given by

oaBg= a0 (95
and
TaB.g= Ta819, (96)

are calledconditional thinningand thickening by (A,B)
giveng (Ref. 3, p. 393

Let.Z and.% be two infinite sequences of subset3/df
respectively, with elementd; andB; such thatA;CB; .
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Table 2 Some useful pairs of structural elements for canonical operators, thinning, and thickning.

Struct. Element A Struct. Element B¢ [A,B] Canonical operator  Thinning Thickening
000 111 000 Homotopic
010 000 x1x - skeleton -
111 000 111
000 111 000 Homotopic
000 000 X X X - - Exoskeleton
111 000 111
000 100 0 xx Homotopic
011 100 011 - marking -
000 100 0xx
000 000 X X X Skeleton
010 101 010 End Points Pruning -
000 111 000
000 000 X X X Background Exoskeleton
101 010 101 End Points - Prunning
111 000 111
000 111 000 Point
010 101 010 Isolated Points Cleaning -
000 111 000
111 000 111 Pointwise Hole
101 010 101 Pointwise Hole - Cleaning
111 000 111
101 010 101
010 101 010 Triple Points - -
010 000 x1x
101 010 101
010 101 010 Triple Points - -
100 001 1x0
101 010 101
010 101 010 Triple Points - -
001 100 0x1
111 000 111
111 000 111 - Boundary -
111 000 111
a
: =1
. —
L}
= I D D
. — —
|

0

Fig. 56 Dilated end points. Fig. 57 Logic circuit.
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The two operatorsr,, , , and 7, , , from {0k} to ‘.
{0Kk}E, given by the followingn—1 successive composi- . [ ’.
tions (using the firstn elements of Z and %) . .". .3
&
On, 4, 5= OA, B, "OA, B, 97) ". 90 :.. L ]
e .: ‘. * ... *o' : X |
@,
Tn. /2= TA,.B," " TA, By (98) ¢ .. ¢ .. .‘ &

=
e
-y
]
@
v
&

. L - ®
are calledn-thlnnlng and n-thickening of parameters 7 ." ) @ . . ®
and.7 (Ref. 3, p. 390. ... ® .. [ ] a6 9

Figure 3 presents the result of an application of the .. L Y .. ¢ . @ ()
n-thinning operator on the image of Figure 2. This operator & 90 ¢ ® .. ®
performs the successive elimination of end points of digital % ® . .’.
line segments and is characterized by a sequence buitbhy &« ® g .o ® - @

repetitions of the sequence of structural elements used in

the operator that detects end points. Fig. 58 Conditional exoskeleton by thickening.
The two operatorsS, , , and T , , from {0k} to

{0K}E, given by

S = 4p (99 Letus denote the infinite sequenéeg, simply by A,.
Figure 58 presents the result of the application of the con-
and ditional exoskeleton by thickening on the image of Figure
54, conditioned by the image of Figure 28. This operator is
T 45= Too s, 595 (100 characterized by the sequences, and .7,, whereq

=45, andA and B are the parameters for the homotopic
are calledskeleton by thinningind exoskeleton by thicken- exoskeleton given in Table 2.
ing of parametersZ and.? (Ref. 4, p. 202 Note that the effect of this operator is similar to the
Figure 2 presents the result of the application of the inf-reconstruction operator, but it preserves the number of
skeleton by thinning operator on the image of Figure 1. objects of the marker.
This operator is characterized by the sequenggsand Let A andB® andC and D¢ be the parameters for the
Bqi. Whereq=45, andA andB° are the parameters for the homotopic skeleton and for the detection of end points
homotopic skeleton given in Table 2. A remarkable prop- given in Table 2. The operatd from {0k}E to {0Kk}E,
erty of this skeleton is that it preserves the topological given by, for anyf e KE,
structure of the original image. .
Let g be an element of0k}~. The two operators
On.s.ngand7, , ,q from{0K}F to {0k}E, given by the 2() =2y 0 d 2 g~ (109
following n—1 successive compositions
is calledskiz(Ref. 1, p. 260.

On. 2,297 OA, By g "OA By (101 The first operator is a skeleton that preserves the topol-
ogy of the complement of the input image, while the sec-
and ond one is a pruning of this skeleton. The skiz gives a
partition of the domaire. Figure 59 presents an application
Tn,. /.4,9= TA,.B,.g"*TA;,B, .0 (102 of the skiz operator on the image of Figure 60.

Let C andD¢€ be the parameters for the homotopic thick-
are calledn-conditional thinningand n-conditional thick-  ening given in Table 2 and leg,f e {0Kk}F, such that
eningof parametersZ and.% giveng. ena(f )=<g. The operatofl, ; from {0k}F to {0k}F given

The operatorsX , ;o and T , ,4 from {Ok}F to by
{0K}E, given by the following successive infinite compo-

stions Tog(F) =T .45, (T g, 25,0 1) '''(T(“ts’745"°“(n—2>.n’(f )
2 59T 0= 459 (103 X (T 4 g 1(9))09)...09)0g, (106
and

is calledn-smoothing segmentatidiRef. 4, p. 205.
T /o 5g= T, 4,59 (104 The effect of the smooth segmentation is similar to the
one of the conditional exoskeleton by thickening, that is, it
are calledconditional skeleton by thinningnd conditional partitions the input image keeping the topology of the
exoskeleton by thickenirg parametersZ and. 7% giveng. marker. However, usually the smooth segmentation pro-
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Fig. 60 Internal markers for the keys.

o = a2 w ] 9
» ao ] =

Fig. 59 Skiz.

L _ . _ at level one is reconstructed from the regional minima, the
duces division lines better positioned. This happens be-cyt at level two is reconstructed from union of the result of
cause the smooth segmentation does successive reconstrugre previous reconstruction and the regional minima and so
tions of n-erosions, while the exoskeleton does a direct gn.

reconstruction.
The operator() from KE to {0k}E, given, for anyf
e KE, by 000 110
_ let A=| 0 1 1| Be=[1 0 0,
O ) =Ty, 0 t=k(Tr g 0 t<k-1--(Tr g 0 =2 0 1 0 0 0 0
X(T 4,745, <10mn(F )
Deg™(f))...0eg"(f ) Deg"(f ) (107 000 010
is calledwatershed® C=1 1 1] and D=0 0 0
If we interpretf as a topographic surface, then the wa- 0 1 0 0 0 O

tershed produces a partition of the dom&nwhere each

part is the domain of a catchment basin. Figure 61 shows

the catchment basins separated by dams in the graph of and let. 7,5, %45, “ 45, and 7,5 be the respective infinite

1-D function. sequences created by rotations of these four subsets. The
To get the catchment basins the operator performs sucoperators , ;. ., from {0k}E to {Ok}E, given by the

cessive reconstructions of cuts at consecutive levels: the cufollowing succession of compositions

B T R T R T A R RS

Rintahgantaninahisn

Fig. 61 Watershed.
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ABCDEFGHIJ ABCDEFGHIJ
ELMNOPQRS ELMNOPQRS
TUVXLIWY TUVXIWY
Fig. 62 Skeleton by thinning. Fig. 64 Letters.
3 e Ias Tas Zas— (0a 8 0o 8 Hoc p) f3=(20<f,) (111
...(oa, 8,Hoa, 8,0oc, p,) (108  and 20 means a constant image.
is calledrefined skeleton by thinnin§ 3.2 Segmentation of Overlapped Objects

Figures 62 and 63 show, respectively, the images pro-the goal in this example is to separate overlapfdary)
duced by the application of the skeleton by thinning, using gpjects, for instance, to count the number of objects in an

the homotopic parameters, and its refinement to the imagqmage_ This procedure may be useful in cytology or in in-

of Figure 64. dustrial automation. The solution for this problem consti-
. tutes an interesting application of the distance function.
3 Examples of Applications The original imagef, (Figure 28 presents some over-
For demonstrating the potential of MMach, we present in lapped blobs. This image is binary so we apply the distance
this section some examples of applications of these tools tofunction operator to get a landscape model of the image.
image analysis. These applications illustrate the use of im-Image f, (Figure 29 presents the result of the distance
age analysis in cytology, industrial automation, and function:
medicine? (Note that these and other examples are depos-
ited in the subdirectory workspaces of the MMach tool- f,=W (f,). (112
box.)

Imagef; is the result of the regional maximum operator,
3.1 Noisy Edge Detection followed by a dilation(large enough to ensure that there is
The goal in this example is to detect edges of objects onohly one marker for each blokand an erosiorito ensure
images corrupted by noise. The original imaige(Figure  that they will not cause an ill positioning of the watershed
39) is a gray-scale image that presents a disk corrupted bylines:
additive Gaussian noise. By using an alternated sequential 2, @0 m
filter with three stages and two structural elemeBitsand fa= ea(da(08™(f2))), (113

B,, we get the filtered ima Figure 37%: . .
2 g 9e; (Fig ? where B is the elementary square. Figure 49 presents a
fo= composition of imaged, and f3, which permits a better
2= V38,938,738, P38, V28,028,728, visualization of the position of the markers.

X ¢, v8,%8,78, P8, (f1), (109

whereB; is the elementary cross am} is the elementary
square.

By using a threshold transformation with threshold value
20 and an internal contour extractor, we get the contour
imagef, (Figure 69:

f4=f3—ep,(fa), (110

where

AGBCDEEGHILY

RLMNOPQRS
TUVETWY

Fig. 63 Refined skeleton by thinning. Fig. 65 Edges.
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Fig. 66 Watershed lines.

Imagef, (Figure 66 is the negation of the image ob-

morphology toolbox

‘® g0
®
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083 2%59%78_ o0 o 8
R 07 oS S8
S ¢ .. ... ® |
® ® ® ® o ® . . .

Fig. 68 Opening.

tained by the application of the watershed operator to the3.3 Automatic Quality Control on Printed Circuit

image created by the negation of the union of the marker
image and the distance function image:

fa=—Q[—(fa/f3)].

Imagefs (Figure 67 is obtained by the subtraction of im-
agesf; andf,:

(114

f5:f1_f4. (115)

As the borders are not very smooth, we should apply a
morphological filter. Imagd g (Figure 68 is the result of

Boards

The goal in this example is to detect holes on printed circuit
board(PCB) images. This may be useful in quality control,
for instance, if a board has less holes than were expected,
then this board may be rejected.

The original imagef, (Figure 69 presents a circuit
board from where we want to extract the holes. The holes
are presented in imade (Figure 70, which is obtained by
applying the operator close holes and subtracting the origi-
nal image from that image:

an opening by a disk: fo=Pg(fy)—fq, (117
fe=va(fs), (116 .
whereB is the elementary square.
whereB is an Euclidean disc of diameter 7.
] .... .... 9
P o=
OF 00 0 0%, 9
& o o L TN
099 "o 0 ®e%® 0o %90
7Y 8® o9
¢ Ogo ....0.. c,...'. oD ao
...'..'.. ® “ ® n .ﬂ °9
%9 C... ‘.... ® e o9
Vg o ..‘ .. ... .8 1]
* 8 %9 S0 ege @ ——&|- 90
/Y ® .... .. ™ [ ) ]
e *% el o o Y mpe
Fig. 67 Subtraction. Fig. 69 PCB.
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MC MR M= M+
L ; 8 9 =+
4 5 6 X
1 2 3 -
0 . = +

- Fig. 72 Result of the digits segmentation.

Fig. 70 Holes of the PCB.
applied to the top hat:

3.4 Keys of a Pocket Calculator Machine f3=(128<f,<255), (119

The goal in this example is to identify quects in the image where 128 and 255 represent two constant images.
of a pocket calculator. Two segmentation problems can be

explored in that image: extraction of the digits printed on .
the keys and of the keys themselves. 3.4.2 Edges segmentation

The original imagef, (Figure 51 presents part of the  The successive composition of the morphological gradient,
panel of a pocket calculator machine. In this examplélet the imposition of minima and the watershed constitutes a

be the elementary square. very powerful tool for image segmentation that is known as
Beuchers’ paradigrit The division lines given by the wa-
3.4.1 Digits segmentation tershed operator when applied on the gradient filtered by

the minima imposition will give exactly the edges of the
tobjects pointed by the marker. The main quality of this
method is changing the problem of heuristic edge detection
to the problem of heuristic detection of markers to objects,
1t which is a much simpler problem. Let us use this approach
f2=Tas(fy), (118 {5 detect the keys of the calculator.

A good internal marker for a key is the digit printed on
it, but as a marker it must be a connected component. It is
necessary to apply some transformation to imggedmage
f, (Figure 60 is the result of am-dilation applied tof 5:

Imagef, (Figure 72 presents an enhancement of the digits
that is obtained by an opening by reconstruction top ha
transformation:

whereA=5B. The image has been inverted for better vi-
sualization.
Image f; (Figure 72 shows the result of a threshold

f4=0(f3). (120

' % AC % The external markers are obtained by applying the Skiz
operator on the imagg, (with an extended domajinimage
MC MR M W+ fs (Figure 73 is the result of the union of the internal and
external markers:

7

4

8

g -+ fs=f\/S(f,). (121
5 & e By applying the morphological gradient operator on the
3

original image we get imagé;:
—-— fGZWB,B(fl)' (122)

Figure 50 shows the inverse of imagg for better visual-
ization of the details.

Beucher’'s paradigm says that we have to impose new
minima to the gradient image according to the markers
Fig. 71 Top Hat. found. Imagef, (Figure 74 is the result of this procedure,

o
I
+
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Fig. 73 Markers for the keys. Fig. 75 Keys.

which is performed by applying the minima imposition op-

erator” on the gradient imagé; conditioned to the image Imagef, (Figure 43 is the result of the application of
of the markers s: the closing by reconstruction operator on the original im-
age:
f7=T¢ s(fe). (123
f2:¢B,b‘g(fl)(f1)- (125

Imagefg (Figure 79, which presents the desired edges,
is obtained by taking the division lines of the watershed of ~ An enhancement of the worms and other similar objects
imagef: is presented in imagk;, which is obtained by a subtraction
of the original image from the imagk :
f3:f2_f1. (126)
3.5 Identification of Filariosis Transmitters
The goal of this example is to identify filariosis transmit- Figure 52 shows the inverse of imagg for better visual-
ters, which are a kind of worm, in microscopic images. The ization.
original imagef, (Figure 25 shows an image with two The worm like objects are presented in imdgdFigure
worms. 55), which is obtained by applying the threshold operator
In this example leB denote the elementary square. Our on imagefs:
first subgoal is to separate the parts of the image that have

some visual similarities with the worms. To achieve this we f,=(12<f,<91). (127
apply a morp_holqgical filter, subtract the image from the
result of the filtering, and apply a threshold. Our next subgoal is to separate the worms from the other

extracted objects. Note that the main characteristic to dis-
tinguish the worms from the other objects is their size, so
we apply a similar operator to the one used to classify the
ellipses(Figures 1 through #

Imagefs (Figure 76 presents a simplified model of the
objects that preserves their lengths. This image was ob-
tained by applying the skeleton by thinning on the image

far

fs=12 . 2 fa)l, (128)

o
.

|

&)
SEICD

M

where. 7,5 and.%,5 are built from the parameters for the
homotopic skeleton given in Table 2.

Imagefg (Figure 77 presents a shortening of the worms
model. This image is obtained by applying a pruning of the
skeleton:

g

I*. ;}

Fig. 74 Minima imposition. fe= U (f5) (129
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Fig. 80 Worms.
Fig. 76 Skeleton.

where 2,5 and 5 are built from the parameters for the
skeleton pruning given in Table 2.

The remaining lines are part of the worms so they can be
used as markers to reconstruct them, but first it is necessary
to separate them from the rounded objects. ImBgé-ig-
ure 78 presents the rounded objects that are obtained by
f applying once more a pruning of the skeleton:

o f7:2Z45,{%45(f6)- (130)

Imagefg (Figure 79 presents the markers for the worms
! that are the result of the subtraction of imagefrom fg:

f8:f6_f7' (131)
Fig. 77 First pruning.

Finally, image fq (Figure 80 presents the filariosis
transmitters, which are obtained by the inf-reconstruction
of imagef, from imagefg:

fo= v 1,(fa). (132

Figure 81 shows the composition of the segmented im-
age with the original image.

o 4 KHOROS System

KHOROS"8 s a software environment designed for re-
search on image processing. It has been created at the De-
partment of Electrical and Computer Engineering of the
University of New Mexico, Albuquerque, and has become
very popular. According to recent statistics of the
KHOROS group, it has nearly 10,000 users around the
Fig. 78 Second pruning. world that can have support and exchange information
through a very active mailing list.

Since image processing encompasses a wide spectrum of
applications, it has been designed from a very broad per-

Fig. 79 Residue. Fig. 81 Worms in the original image.
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visualization. In fact, the known applications cover a very

broad spectrum: industrial inspection, medical diagnosis,
optical measurement, remote sensing, semiconductor pro-
cessing, optics, medical imaging, ecosystem analysis, cell
biology, etc.

——
—
—

5 Mathematical Morphology Toolbox for
KHOROS

. We implemented MMaclia contraction for a morphologi-
Fig. 82 Workspace. cal maching for 1-D and 2-D gray-scale or binary images
as a KHOROS toolbox, where each family of morphologi-
cal operators is presented as a submenu of the toolbox main
menu.

spective. For example, it includes mechanisms for distrib-
uted computing, interactive visualization of many data
types, and suitable user interfaces. .

One of the most powerful features of KHOROS is CAN- °-1  Architecture

TATA, its high-level abstract interface. CANTATA is a Following the theory of mathematical morphology, most of
graphically expressed, data-flow oriented language thatthe operators are built by composition of the elementary
provides a visual programming environment for the system.operators and operations.
Data flow is an approach in which a program is described The dilations and erosions can be further decomposed in
as a directed graph, where each node represents an operterms of dilations and erosions by subsets of the elementary
tion (or function and each direct arc represent a path over square, but there are also available algorithms for erosion
which data tokens flow. A CANTATA program is called and dilation by a generic structural element. Yet in the case
workspace. Figures 82, 83, and 84 are examples of work-of gray-scale image processing, the generic structural ele-
spaces. ment may be flat or not.

KHOROS has been designed to be portable and exten- The structural elements are represented by a special data
sible. It relies on existing standardX Windows and structure. This structure is more general than the one used
UNIX), incorporates tools for software development and to represent images, since the structural element domain is
maintenancéa high level user interface specification and a not necessarily rectangular. So, of course, images may be
code generation tool seta flexible data exchange format, converted to this structure, but the converse is not true.
tools to export and import standard data formats, and an As the elementary operators for binary images have
algorithm library. some additional properties over the corresponding ones for

The user programs can be organized as independent sulizray-scale images, different algorithms were chosen in each
systems, called toolboxes, that can easily be integrated tacase. Special algorithms for distance function, inf and sup-
the system. Usually, a new toolbox is deposited at ftp- reconstruction, labeling, and watershed are also available.
.khoros.unm.edu and can be accessed by the community of To simplify its use, the system has been designed to be
KHOROS users via anonymous ftp. data type oriented, that is, when executing a given opera-

KHOROS has been extensively u&d?to perform im- tion or operator that makes sense on different data types, it
age processing research, algorithm development, and datawitches automatically to the most efficient algorithm for

Fig. 83 Subroutine that performs the ASF filter (altfilter).
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Fig. 84 Subroutine that performs the contour extraction (contour).

the current input data. This polymorphism property is quite parametrically and images may be converted into structural
important, since it permits to represent the operators withelements. A complete specification of a structural element
all their theoretical generality keeping the performance of involves the definition of its origin, so we have attended for
its use. this point: in a disk the origin is its center; in a sphere and

We should also point out that all the operators built from in a cylinder the origin is the center of its domain; and in an
dilations and erosiongcharacterized by structural ele- image the origin is the poin{,/2],[n»/2]), wheren; and
mentg are polymorphic. However, we present just the bi- n, are the sizes of the image in the horizontal and vertical
nary definition for some of them, as some sup- and inf- gjrections.
generatings, some thinnings and thickenings, and some The composition of the skeleton by thinning built from
residues. We have adopted this presentation because th@e pair of structural elements
behavior of these operators on gray-scale images is not well
known.

Complex operators can be built either as CANTATA or
C programs, using main programs or subroutines of theA=
available primitives.

Figure 82 presents the workspace constructed to solve
the application example (etection of edges on noisy im- with the skeleton by thinning built from
ages. This workspace is composed of four icons: user de-
fined, which gets the original image; altfilter, which per- 0 0O 0 1 0
forms the alternated sequential filtering; contour, which o
performs the edge extraction: and edit image, which opens®=| + 1 1| andB®=/0 0 0,

0 0 1 1 0
0 1 andB°=|1 0 Of,
0 0 0 0 O

)

a visualization window. Actually, the icons altfilter and 0 1 0 0 0 O
contour are data-flow subroutines presented in Figures 83
and 84. gives a new interesting skeletbh.
For each program of the toolbox there is an online help
5.2 Contents associated, which gives the definition of the operators and a
set of well-known parameters to extract useful image infor-

The toolbox is composed by several groups of programs: ..

. . S mation.
relations, operations, structural elements, dilations and ero-
sions, morphological filters, connected filters, residues, sup- _ _ o _
generating and inf-generating operators, and thinning andd.3  Algorithms for Erosions and Dilations Defined
thickening(Table 1. by Structural Elements

_ The right choice of the parameters for these operatorssince the erosions and dilations defined by structural ele-
g|VeS a Ial’ge nl:lmber of tools tO extract image |nf0rmat|0.n: ments are an important part of the kernel of the System,
image sharpening and smoothing, threshold segmentationgonsiderable effort has been put on making them as fast as
elimination of particles that hit the image edges, closing of possible in current general purpose hardware. In order to
holes, size distributions, skeletons and their characteristicsgchieve a better performance, different algorithms were

points (triple, end, etg, geometrical segmentation and fil-  chosen for binary and gray-scale images.
tering, etc. For example, Table 2, which has been adapted

from Ref. 3, p. 392 for the square grid, gives some useful L . . .

pairs of structural elements for operators built from the sup-2-3-1  Dilation and erosion for binary images

and inf-generating operators. The key factor used to implement fast erosion and dilation
MMach has some tools for the creation of structural el- algorithms(by structural elementgor binary images is the

ements: small structural elements may be edited interacinherent parallelism of the 32-bit bitwise operations, found

tively; disks, semispheres, and cylinders may be definedin general purpose CPU instructions set.
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As a particular consequence of Property 1, the imple-we used was a SUN SPARCstation-2 and the input data
mentation of binary dilation and erosion can be made by were images of size 256256x 1 (binary) and 256< 256
translating the image by all the points of the structural ele- x 8 (gray scale

ment and taking, respectively, the logical OR and AND of  The speed-up of performing a dilation or an erosion of a

the translated images. By using this formulation, the paral-pinary image by the dedicated algorithm is between 8 to 10
lelism can be easily achieved. times (Table 3.

To use the intrinsic parallelism of the logical 32-bit bit-
wise AND and OR operations, we pack the binary imagess 4 Algorithms for Other Important Operators
in sets of 32 pixels in a 32-bit integer.

As the packed image is stored in a row by row basis,
vertical translations are efficiently handled by adding the
current packed pixel address by the width of the packed
image. Horizontal translations are implemented by shifting
and masking operations to shift 32-bit integer boundaries.

Using this approach we can compute 32 bits in parallel ) )
with the additional benefit of reading and writing the image 2-4-1 Distance function
data in a more efficient packed binary pixel format. The distance function algorithms implemented were the

In order to achieve moréadded performance, for op-  ones proposed by Soili®ef. 23, p. 25. They are based on
erators defined by structural elements that are subsets of théhe following principles: identification of the pixels in the
elementary square, the image is subdivided in nine imageedges of the image; and propagation of the computed dis-
regions: one middle, four corners, and four side regions.tance through a first-in, first-out queue.

Each region is processed separately to avoid unnecessary When the notion of distance used is the Euclidean, two
testing for image boundaries. distance images are computed, one for the horizontal pro-

The KHOROS has a bit format that already supports a jection and other for the vertical projection. From these two
packed image format. The implementation follows the 32- distance projection images the Euclidean distance is com-
bit parallel algorithm described using structural elements puted.
that are subsets of the elementary square. Some optimiza- The complexity of these algorithms depends on the
tions have been made for the limit cases, when the strucnumber of 1 pixels in the input binary images, when the
tural element is an empty set or the complete elementarynumber of 1 pixels increases the complexity of the algo-
square. rithm increases. The time spent by the algorithm for the

Euclidean distance is almost twice the time spent by the
- ) ) city block and chessboard distances. For a square of side
5.3.2 Dilation and erosion for gray-scale images 256, the time spent for computing the city block or chess-
Following the definition, the implementation of dilation and board distance functionf@ 1 constant image through this
erosion(by structural elementsan be made by translating algorithm was abdu2 s on aSPARC station IPX.
the structural element over the input image and taking the

In order to achieve a better performance, special algorithms
were implemented for commonly used morphological op-

erators. The operators implemented through special algo-
rithms are: distance function, inf- and sup-reconstruction,

labeling, and watershed.

local maximum and minimum. 5.4.2 Inf- and sup-reconstruction

By this approach, the neighborhood of each pixel needsThe reconstruction algorithms implemented for gray-scale
to be accessed; that is, it is necessary to acnesN XM images were the ones proposed by Vincénthese algo-
array elements, whene is the cardinality o8, andN and  rithms have a hybrid nature, because they are based on both
M are the number of rows and columns of the image. a sequential or recursive algorithm and an algorithm that

Taking as structural element just subsets of the elemen-uses a queue of pixels.
tary square, this algorithm leads to good implementations  The recursive algorithm is based on the following prin-
for gray-scale dilation and erosion. ciples: the image pixels are scanned in a predefined order,
The implementation is divided into ten cases, according
to the cardinality of the structural element, from zero
(empty seX to nine (the complete elementary squarén Table 3 Performance of dilations and erosions.
each case, the structural element points, the values for
local translationsare stored in a corresponding number of Structural Binary Image Gray-scale Image
fast registers. The nested conditional expressions were opef'©ment (ms) (ms) Speed-up
to avoid unnecessary steps. 111
To achieve a better performance, as in the binary case 11 . 712 8.4
the image was subdivided in nine subregions and some op- ’ ' '

timizations were made for the limit cases. 111
010

. 111 9.1 90.0 9.9
5.3.3 Performance evaluation 010

Table 3 shows the performance evaluation for some dila
tions and erosions in the binary and gray-scale cases. 000

The execution time for each operator, given in millisec- 111 55 48.0 8.7
onds(ms), has been calculated from measure of the timegoo
spent by a sequence of a thousand operators. The machine
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generally raster or antiraster; and the new value of the cur-performance of this algorithm. For example, the computa-
rent pixel, determined from the value of the pixel in the tion of the watershed of a 256256 gray-scale image by
neighborhood, is written directly in the same image, so thatthis algorithm was abdu4 s on aSPARC station IPX.

it is taken into account when determining the new values of

the as yet unconsidered pixels. 6 Comparison with Other Freely Available
The algorithms which use a queue of pixels are based on  Software for Mathematical Morphology
the following principles: Based on the “Mathematical Morphology Digest,” main-

tained since 1993 by H. Heijmans at web site http://
o - ] ) www.cwi.nl/projects/morphology/, there is only one other

* consider only the pixels which may be modified

that may be modified R. A. Peters Il, available at ftp:image.vuse.vanderbilt.edu/
* information is propagated only in the relevant image pub/morph.tar.Z since 1993. The major advantages of our
parts. software are: operator polymorphism, consistent definition

of dilation and erosion, and compatibility with Khoros soft-
The hybrid algorithm initiates with two scans of the re- ware platform. We use extensively the concept of operator
cursive algorithm, then the algorithm that uses a queue ofpolymorphism. It means, for instance, we have just a single
pixels is applied on the resulting image. The complexity of gperator called dilation that deals with binary and gray-
this algorithm depends strongly on the input images, butjevel images(8 and 16 bit of one and two dimensions,
experimental results show it has been up to 15 times fastelsing flat and nonflat structuring functions. This simplifies
than the algorithm built just from the gray-scale elementary the user interface to the software by reducing the number of

operators and operations. available functions and by increasing the flexibility and
power of the operators without losing its overall consis-
5.4.3 Labeling tency. Most of the time, a solution for a binary image prob-

The labeling transforms a binary BYTE image into a gray- Ie.m can also _be used as a solution for gray-_scale images
scale SHORT image, where each pixel of same connectedVithout changing the name of the operators being used. The
component of the binary image has the same value in thePin@ry general case of erosion in Peters’ software is a hit-
gray-scale image. The algorithm implemented was the la-MISS transform, which can be confusing for the mathemati-

beling algorithm proposed by SerfRef. 3, p. 40%; thatis, ~ cal morphology user.
the iteration(from the original binary image until this im- The completeness of the set of operators and the speed
age is empty of the following steps: enhancements of MMach such as the 32 bit processing for

binary images and queue based algorithms for labeling, dis-
« identification of the first point of the input image tance transform, watershed, and image reconstruction are
(counting from left to right and from top to bottom features only available in high quality commercial soft-

« inf-reconstruction of the input image from the first Wares.
point image
« labeling of the identified connected component

7 Conclusion

) ) . This paper presents MMach, a KHOROS toolbox for image
. subtracuo_n of_the identified connected component processing by mathematical morphology and several appli-
from the input image. cations of this system in image analysis. MMach increases

.y . . KHOROS potential by adding a set of high performance
The inf-reconstruction step was implemented based on s for multiple purpose use.

the representation of the objects by their contours and the The main characteristics of MMach are its hierarchical

g{?;'%g slggg:]hén" ;ﬁ;;?ésd %‘;t%vfigﬁgtujfgnhg tﬁ:b:éigtrlw(;?ru C_decomposition structure and the polymorphism associated
. ' . ; .~ to its operators. The first property gives high modularity

gog ?rfetr}gb%?%ﬁﬁfd i)c(glmponent, directly in the input im and portability to the software, while the second one per-
9 PIXE'. mits the representation of abstract concepigerators de-

The performance of this algorithm depends mainly on . : - .
the number of 1 pixels in the input image, when this num- flngd on general domaipeeping the efficiency of their

; ; s
ber decreases the algorithm performance increases. For 4 The implemented elementary operations of mathemati-

_squareE of side 2'_56, the Fime for labeling the one constant cal morphology(running on a SPARC station erform a
Istﬁ%?w tlrg;)(ugh this algorithm was aliais on aSPARC dilation or an erosion on a 256256 image in about 8 ms
' in the binary case, and 0.1 s in the gray-scale case.

For each main program of the toolbox there is an online
5.4.4  Watershed help, which gives the definition of the operator and a set of
The watershed algorithm implemented was the one pro-well-known parameters useful for extracting image infor-
posed by Soille and VinceRt.This algorithm simulates the  mation.
progressive flooding of the picture and is based on the fol-  Since a high level operator can be built either as a C
lowing principles: pixels are sorted in the increasing order program or a CANTATA workspace, the toolbox is useful
of their gray values; and successive gray levels are pro-for two main purposes: to solve real image processing
cessed in order to simulate the flooding propagation. problems and didactic applications.

A distributive sort technique combined with a breadth- At the moment, we are implementing a new version of
first scanning of each gray level allows an extremely fast MMach that will have an extension of the present set of
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operators for 3-D images and 2-D neighborhood graphs, as
well as a complementary set of morphological algorithms
(granulometries, measures, geodesic distance transformg
etc). An important advancement of the new version of
MMach is that it will be an independent library that could
have several different interfaces for Khoros, Matlab, Math- 19.
ematica, etc.

Additionally, this paper has introduced the elementary g
operators that perform expansion or shrinking of images
and that are useful, for example, in the synthesis of artistic
images.
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